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An emerging role of PARK2 in cancer
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Abstract PARK2 (PARKIN ) is an E3 ubiquitin ligase in-
volved in multiple signaling pathways and cellular processes.
Activity of PARK2 is tightly regulated through inter- and
intra-molecular interactions. Dysfunction of PARK2 is asso-
ciated with the progression of parkinsonism. Notably, frequent
PARK2 inactivation has been identified in various human
cancers. Park2 -deficient mice are more susceptible to tumor-
igenesis, indicating its crucial role as a tumor suppressor.
However, biological studies also show that PARK2 possesses
both pro-survival and growth suppressive functions. Here, we
summarize the genetic lesions of PARK2 in human cancers
and discuss the current knowledge of PARK2 in cancer pro-
gression. We further highlight future efforts for the study of
PARK2 in cancer.
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Introduction

The PARK2 (PARKIN ) gene encodes a RING-between-
RING-type E3 ubiquitin ligase which serves as a RING/
HECT hybrid [1, 2]. The functions of PARK2 have been
implicated in protein turnover, stress response, mitochondria
homeostasis, xenophagy [3], metabolism, and many other
cellular processes regulating cell growth and survival. Genet-
ically, PARK2 status is associated with risk of autosomal
recessive juvenile Parkinson's disease (ARJPD), leprosy, ty-
phoid, and paratyphoid fever [4–6].

A growing body of evidence also shows the involvement of
somatic PARK2 inactivation in human cancers, albeit the
association between PARK2 genotype and cancer susceptibil-
ity is still under debate [7]. Park2 -deficient mice show in-
creased susceptibility to tumorigenesis. PARK2 depletion
promotes the proliferation and tumor formation ability of
pancreatic cancer cells [8], whereas ectopic PARK2 reduces
the in vitro or in vivo growth of cancer cells of various tissue
origin [9–14], strongly suggesting a tumor suppressive role of
PARK2. Moreover, PARK2 overexpression inhibits the mi-
gration and invasion of multiple cancer cells ([9] and our
unpublished data). This review aims to summarize recent
advances on structure, regulation, and function of PARK2
and its murine models, with the emphasis on cancer-
associated lesions and the potential link between PARK2
inactivation and cancer development.

Expression, structure, and regulation of PARK2

PARK2 is ubiquitously expressed [15]. The transcription of
PARK2 can be regulated by N-myc, Max, p53, and ATF4
[16–18], and various environmental stimulations, such as nu-
trients, growth signals, mitochondrial, and ER stresses [18–22].
PARK2 precursor transcripts can be processed by pre-mRNA
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splicing factors, TDP-43, and FUS/TLS [23, 24]. Alternative
splicing of PARK2 produces multiple tissue-specific variants
[15, 25]. Interestingly, an internal in-frame Kozak sequence
exists in the full-length PARK2 open reading frame (ORF),
which initiates the translation of a special form of PARK2
which lacks the N-terminal ubiquitin-like (UBL) domain.

The PARK2 protein is well conserved from nematodes to
humans. Full-length PARK2 consists of four important do-
mains: UBL, RING0 (also known as Unique PARKIN do-
main), RING1, in-between-RING (IBR) domain, and RING2.
Additionally, it contains a class II PDZ domain-binding motif
towards the C-terminal end [26], and a newly identified Re-
pressor of PARKIN (REP, also known as tether) fragment
between IBR and RING2 [27, 28] (Fig. 1a, b). Structural
studies reveal an auto-inhibited conformation of PARK2
through complex intra-molecular interactions [27–30]. Brief-
ly, the UBL domain binds to the linker region between IBR
and RING2 to stabilize the quaternary structure of PARK2.
REP associates with RING1 at the E2 binding site to block E2
recruitment. RING0 intervenes between RING1 and RING2
and buries the catalytic C431, preventing E2-RING2 ubiquitin
transfer and subsequent ubiquitin-ester formation (Fig. 1c).
Thus, the activation of PARK2 requires massive conforma-
tional changes, and the intrinsic auto-inhibition of PARK2
implicates its strict regulation and important function.

Timely recruitment of substrates and activation are two
important aspects to execute the E3 ligase function of PARK2.
Phosphorylation (S65), oligomerization, and ligand and/or E2
binding contribute to PARK2 activation [27, 30, 31], whereas
the phosphorylations catalyzed by c-Abl (Y143) and Cdk5
(S131) attenuate its activity [32–34] (Fig. 2a). Additionally,
phosphorylation of PARK2 may modulate its folding, solubil-
ity, and ligand or substrate binding affinity [35–37]. To date,
posttranslational modifications and interaction partners of
PARK2 have been extensively studied [38]. However, the
mechanism of PARK2 activation, how PARK2 transits be-
tween active and inactive modes, and what determines the
specificity of PARK2 remain largely unclear.

Inactivation of PARK2 in cancer

Mutation

Mutations of PARK2 occur in both ARJPD and solid tumors.
Based on the analysis of recent next generation sequencing
data via cBio [39, 40], the frequency of PARK2 mutations is
relatively high in cervical cancer (5.6 %), lung squamous cell
cancer (5.6 %), colorectal cancer (2.4~5.6 %), gastric cancer
(4.6 %), skin cutaneous melanoma (3.5 %), lung adenocarci-
noma (2.7~3.1 %), and endometrioid cancer (2.1 %). In
addition, several cancer cell lines harboring PARK2 mutations
have been identified (Supplementary Table 1). Most cancer-

derived PARK2 mutations are located at conserved regions
(Fig. 2b), and more than 10% ofmutations lead to frame shifts
or truncations, suggesting that those mutations may disrupt or
abolish the function of PARK2. Notably, several sites map-
ping to various domains are recurrently mutated, such like
A46, T173, T240, P294, P343, Q347, A371, and E395
(Fig. 2b, c). The biological consequences of those mutations
need further clarification.

Copy number alterations

Loss of heterozygosity and copy number loss of PARK2 are
found in breast cancer [15], clear cell renal cell carcinoma
(ccRCC) [41], esophageal adenocarcinoma [42], glioma [12,
43], non-small cell lung cancer [14], lung adenocarcinoma
[44], ovarian cancer [15], and pancreatic adenocarcinoma [8]
(Table 1). Further analysis based on recent cancer genomic
studies reveals that PARK2 deletion is also prevalent in ade-
noid cystic carcinoma (10 %), skin cutaneous melanoma
(3.5 %), ovarian cancer (3.2 %) [39, 40], gastric cancer [45],
and triple-negative breast cancer (6 %) [46], suggesting that
copy number loss is another leading genomic defect of
PARK2 .

Promoter hypermethylation

Promoter hypermethylation is a common epigenetic mecha-
nism to alter the gene expression. PARK2 promoter hyperme-
thylation has been found in acute lymphoblastic leukemia
(ALL, 26 %), chronic myeloid leukemia (CML, 3 %) [47],
and colorectal cancer (4.7 %) [10]. 5-Aza treatment could
restore the expression of PARK2 in ALL cell lines with
PARK2 promoter aberrant methylation. Interestingly, among
10 samples of CML with lymphoid blast crisis, two showed
PARK2 promoter hypermethylation. To date, the function of
PARK2 in the pathogenesis of leukemia remains unexplored.
Although the frequency of PARK2 promoter hypermethyla-
tion is low when compared with mutation or deletion, it may
serve as an alternative way to inactivate PARK2.

mRNA/protein aberrant expression

As a result of genomic and epigenetic inactivation, the mRNA
expression level of PARK2 is downregulated in a wide spec-
trum of human malignancies (Table 1). In addition, our un-
published analysis of TCGA dataset supports that the mRNA
of PARK2 is significantly lower in ccRCC, bladder urothelial
cancer, head and neck squamous cell carcinoma, lung adeno-
carcinoma, breast cancer, thyroid cancer, and endometrioid
cancer compared with corresponding normal tissues [39, 40].
Notably, low transcription of PARK2 correlates with in-
creased lymph node metastasis, higher tumor grade, and
worse overall survival in ccRCC [48].
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In parallel to mRNA underexpression, PARK2 protein has
been shown to be downregulated in a large panel of cancer cell
lines [9–13, 15, 49] and primary tumors (Table 1) [8, 13, 48,
50]. In pancreatic cancer, PARK2 expression is negatively
correlated with grade and lymph node metastasis [8].
In breast cancer, PARK2 levels can predict the outcome
of paclitaxel treatment [51]. Interestingly, stromal PARK2
abundance is remarkably reduced in malignant breast tissues
[9], suggesting a potential role of PARK2 in tumor
microenvironment.

Aberrant or alternative splicing may also lead to PARK2
abnormal expression. Aberrant transcripts have been identi-
fied in ovarian cancer (15 %) [15], colorectal cancer (42 %)
[22], and several CML or cancer-derived cell lines [47, 49,
52], which may result in the disruption of PARK2 ORF and
protein function.

Together, genetic and epigenetic disruptions of PARK2 are
prevalent across human malignancies, suggesting that PARK2
inactivation may be a driving event during neoplastic trans-
formation and progression.

Fig. 1 Schematic and spatial illustrations of PARK2 structure. a Functional domains of PARK2 protein. b Structure of full-length PARK2 (PDB 4K95).
c Surface representation of full-length PARK2 (remodeling of PDB 4K95) indicating complex intra-molecular interactions and buried catalytic C431
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PARK2 and tumorigenesis in animal models

Animal models have helped to investigate the role of PARK2
in tumorigenesis. To date, seven lines ofPark2 knockout mice
have been generated in an attempt to reproduce Parkinson's
disease [53–59]. Generally, Park2−/− mice develop normally
and do not show a severe neurodegeneration phenotype or
obvious clinical defects [60].

However, Park2 −/− mice are more susceptible to γ-
irradiation-induced tumorigenesis [17]. After irradiation,
Park2 is specifically elevated in mouse spleen and thymus
in a p53-dependent manner. Park2−/−mice show significantly
shorter γ-irradiation-induced tumor latency compared with
wild-type littermates, even though the tumor spectrum is
similar (with the predominant type being lymphoma).

Adult Park2 null mice show reduced body weight but en-
larged livers compared towild-typemice [61]. Notably,Park2−/−

mice develop spontaneous hepatocellular carcinoma (HCC) at

advanced age [61]. Those tumors histologically recapitulate hu-
man HCC with prominent expression of α-fetoprotein and β-
catenin. In mouse liver, Park2 is a lipid-responsive gene whose
expression facilitates the lipid uptake of hepatocytes and main-
tains the systematic lipid metabolism [21]. Whether the dysfunc-
tion of liver metabolism contributes to the subsequent hepatocel-
lular carcinogenesis in Park2−/− mice is unclear.

Park2 deficiency also promotes colorectal adenoma devel-
opment [10]. Park2+/−; Apc+/min mice show higher incidence
(fourfold increase) of adenomas, and earlier onset of intestinal
neoplasia compared with Park2+/+; Apc+/min littermates. The
wild-type allele of Park2 is retained in most adenomas de-
rived from Park2+/−; Apc+/min mice, suggesting that Park2
may be a haploinsufficient tumor suppressor.

Notably, Park2−/− mice develop liver cancer only at ad-
vanced age (72 weeks or older) [61], and Park2+/−; Apc+/+

mice do not develop intestinal adenoma [10], suggesting that
Park2 deficiency alone may not be sufficient to drive rapid

Fig. 2 Phosphorylation and
cancer-derived recurrent
mutations of PARK2. a Sites
of PARK2 phosphorylated by
various kinases including PINK1,
c-Abl, Cdk5, and CK1. b
Schematic representation of
recurrent mutations of PARK2
in cancer. c Mapping of cancer-
derived recurrent mutations
onto the PARK2 structure

34 J Mol Med (2014) 92:31–42



neoplastic transformation. Since PARK2 is critical for
mitophagy (selective autophagy to degrade damaged mito-
chondria [62–64]), liver-specific spontaneous tumor forma-
tion in Park2 null mice may result from the long-term toxic
effect of mitophagy and/or autophagy defects. A similar phe-
notype is observed in both Becn1+/− and Atg5f/f; CAG-Cre
mice with their advancing age [65–67].

Involvement of PARK2 in cancer associated signaling
pathways

Microtubule organization

Microtubules are critical for diverse cellular processes and
have been targeted for cancer therapy for decades. The

microtubule filaments are composed of α- and β-tubulin
heterodimers. PARK2 co-localizes with microtubules and
possesses three independent microtubule/tubulin binding do-
mains, including RING0 (together with linker region between
UBL), RING1, and RING2 [68]. PARK2 promotes the poly-
merization of microtubules, thereby increasing their stabiliza-
tion in cooperation with paclitaxel treatment, and antagoniz-
ing the effect of depolymerizing drugs. In response to
microtubule-depolymerizing drugs, PARK2 also suppresses
the subsequent activation of microtubule-associated protein
kinases (MAPKs) including JNK, ERK, and p38 [69]. Ectopic
expression of PARK2 sensitizes breast cancer cell lines to
paclitaxel, docetaxel, and epothilone B. Moreover, the
PARK2 level correlates with the paclitaxel sensitivity in pri-
mary breast cancer cells and predicts the response of paclitaxel
treatment in breast cancer [51].

Table 1 Summary of PARK2 lesions in human malignancies

Type of lesions Type of malignancies (percentage) Methods Refs/database

Mutation CRC (1.2~2.3 %); GBM (9.3 %); lung cancera (6.5 %) Sanger sequencing/NGS [10, 12]

Cervical cancer (5.6 %); endometrioid cancer (2.1 %);
lung squamous cell cancer (5.6 %); CRC (2.4~5.6 %);
gastric cancer (4.6 %); skin cutaneous melanoma (3.5 %);
lung adenocarcinoma (2.7~3.1 %)

NGS cBio [39, 40]

mRNA
downregulation

Breast cancerb; ccRCC (52.1~57 %); GBM (61 %);
pancreatic adenocarcinoma (100 %)

qRT-PCR [8, 9, 41, 43, 48]

ALLb; breast cancer (94.4 %); CMLb; NSCLC (55 %);
ovarian cancer (46.7~50 %)

Semi-qRT-PCR [14, 15, 47, 52]

Bladder urothelial cancerb; breast cancerb, ccRCCb; endometrioid
cancerb; HNSCCb; lung adenocarcinomab, thyroid cancerb

cDNA microarray cBio [39, 40]

Breast cancerb; CRCb RNA-sequencing cBio [39, 40]

mRNA
upregulation

ccRCC (10.6 %); NSCLC (11 %); ovarian cancer (10 %) Semi-qRT-PCR [14, 15, 48]

Protein
downregulation

HCC (83.3 %); ovarian cancer (71.4 %) WB [13, 49]

Breast cancer (stromal tissue) (100 %); breast cancer (13 %);
ccRCC (82.8 %); pancreatic adenocarcinoma (76 %)

IHC [8, 9, 48, 50]

Promoter hypermethylation ALL (26 %); CML (3 %); CRC (4.7 %) MSP [10, 47]

Gene breakage Breast cancer (6 %) FISH [50]

LOH Breast cancerb; NSCLCb; ovarian cancerb MSM [14, 15, 52]

Copy number loss Pancreatic adenocarcinoma (100 %) qPCR [8]

CRC (33 %) aCGH [10]

ccRCC (27 %); CRC (24.4 %); esophageal adenocarcinomab;
GBM (24.5~29.1 %); gastric cancerb; lung adenocarcinoma (11.6 %);
triple-negative breast cancer (6 %)

SNP chip [12, 41–46]

Adenoid cystic carcinomac (10 %); skin cutaneous melanoma (3.5 %);
ovarian cancer (3.2 %)

SNP chip/NGS cBio [39, 40]

Abnormal splicing CRC (42 %); ovarian cancer (15 %) RT-PCR [15, 22]

ALL acute lymphoblastic leukemia, CML chronic myeloid leukemia, ccRCC clear cell renal cell carcinoma, CRC colorectal cancer, FISH fluorescence
in situ hybridization, GBM glioblastoma multiforme, HCC hepatocellular carcinoma, HNSCC head and neck squamous cell carcinoma, IHC
immunohistochemistry, LOH loss of heterozygosity, MSM microsatellite marker analysis, MSP methylation-specific PCR, NGS next-generation
sequencing, NSCLC non-small cell lung cancer, SNP single nucleotide polymorphism, WB western blot
a The detailed subtype was not clear
b The exact percentage was not revealed or could not be calculated
c The percentage was estimated on the basis of NGS data
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On the other hand, PARK2 also acts as an E3 ligase of α/β-
tubulins [70]. Interestingly, all of three microtubule/tubulin
binding domains and several E3 ligase-deficient PARK2 mu-
tants are able to rescue the microtubule depolymerizing effect
by colchicine [68], suggesting that the microtubule-stabilizing
ability of PARK2 is independent of its E3 ligase activity.
Further, expression of any one of three domains is sufficient
to attenuate the activation of MAPKs upon colchicine and
nocodazole treatment [69]. Regarding how PARK2 balances
betweenmicrotubule stabilization and tubulin degradation, one
explanation might be that PARK2 predominantly binds with
microtubules and selectively targets misfolded tubulins for
proteasomal degradation, similar to the case of DJ-1 [71, 72].

Together, the aforementioned observations suggest that
PARK2 is an important regulator of tubulin polymerization
and microtubule stability. Of note, ectopically expressed
PARK2 suppresses cancer cell migration and invasion in vitro
([9] and our unpublished data). As the dynamics of microtu-
bules have been associatedwith cell migration [73, 74], PARK2
may negatively regulate cancer cell metastasis through its
microtubule-stabilizing activity.

Cell cycle progression

PARK2 appears to play a role in cell cycle progression. A
recent study revealed the dynamic subcellular localization of
PARK2 during cell cycle progression: in interphase, PARK2
shows perinuclear distribution; in mitotic phase, PARK2
mainly localizes to centrosomes and mitotic spindles; and
PARK2 is found at midbody during cytokinesis [8].

Functionally, PARK2 mediates the ubiquitination and deg-
radation of Cyclin E in complex with FBXW7 and Cullin1
[12, 22, 75]. It also downregulates the Cyclin D1 level prob-
ably through indirect transcriptional repression ([11] and our
unpublished data). Overexpression of PARK2 increases
G1-phase arrest and delays mitotic entry [9, 11]. Interestingly,
PARK2 upregulates the mRNA level of CDK6 specifically in
MCF7 breast cancer cells which leads to the cell cycle arrest
and growth suppression [9], suggesting that PARK2 may
function in a cell type-specific- or context-dependent manner.

PARK2 depletion increases the cell fraction in S- and
G2-M phase [12]. Multiple lines of evidence indicate that
PARK2 also regulates centrosome and mitotic spindle partial-
ly through interaction with γ-tubulin, a protein with well-
established function in nucleation and orientation of microtu-
bules [76–78]. The PARK2/γ-tubulin complexes are physio-
logically present in the cytosol, and PARK2 is reversibly
recruited to the centrosome through HDAC6 and a
microtubule-dependent mechanism after proteasome block-
age, suggesting a potential role of PARK2 in centrosome
function. As centrosomes contribute to the formation of the
mitotic spindle, the inactivation of PARK2 in cancer may
promote the dysregulation of cell division. Indeed,

knockdown of endogenous PARK2 leads to spindle misori-
entation [8], and the development of multipolar spindles as
well as micronucleus [12]. Similarly, cells with exogenous
C-terminal truncation of PARK2 display increased ability to
bypass the mitotic arrest induced by nocodazole and show a
higher frequency of multinucleation [78], suggesting a defect
in spindle assembly checkpoint. In addition, PARK2may help
to maintain the bipolar spindle assembly through transcrip-
tional repression of Eg5 [8, 79], hence facilitates the proper
chromosome segregation during cell division. Together,
PARK2 safeguards the proper mitosis by ensuring the func-
tion and organization of centrosome and spindle, and PARK2
loss may contribute to the development of aneuploidy.

Mitochondria homeostasis

Mitochondria are critical for cell metabolism and cell death
whose dysfunction contributes directly to cancer develop-
ment. Increasing amount of evidence indicates that PARK2
is involved in the turnover and function of mitochondria.

Mitochondrial genome PARK2 binds to mitochondrial DNA
(mtDNA), enhances TFAM-mediated mitochondrial tran-
scription, and restores the PGC-1α expression, thereby pro-
moting mitochondria biogenesis [80–82]. Moreover, it pro-
tects the mitochondrial genome from reactive oxygen species
(ROS)-induced damage and supports mtDNA recovery [81].
Long-term overexpression of PARK2 selectively eliminates
mitochondria with deleterious mtDNA mutations, thereby
enriching the wild-type mtDNA for normal mitochondrial
function [83]. This suggests that PARK2 is important for the
maintenance of integrity of the mitochondrial genome, and
thus linking PARK2 alterations to tumorigenesis [84–86].

Mitophagy The role of PARK2 in the induction and progres-
sion of mitophagy has been extensively studied, leading to
some controversy [62–64]. Generally, mitochondrial stress
(depolarization) blocks the inner mitochondrial import of
PINK1 and triggers its auto-phosphorylation and stabilization
[87–89]. The accumulated PINK1 phosphorylates many sub-
strates including PARK2 at S65, thereby stimulating self-
association of PARK2 and then recruiting it to depolarized
mitochondrial membrane [31, 90, 91]. Upon activation,
PARK2 rapidly catalyzes the ubiquitination of a vast array
of mitochondrial proteins, such like FIS1, MFN1/2, RHOT1/
2, TOMM70A, and many other substrates [63, 92, 93], and
separates mitochondria from the microtubule network [94].
The bulky ubiquitination of mitochondrial proteome subse-
quently recruits adaptor proteins to connect the autophagy
machinery and initiates selective autophagy [95–98]. Ulti-
mately, PARK2-dependent mitophagy selectively degrades
damaged mitochondria, thereby maintaining a healthy popu-
lation of mitochondria.
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The function of mitochondria is commonly impaired in
cancer [99]. Those mitochondria isolated from the brain of
Park2−/− mice have reduced respiratory capacity [100], sug-
gesting that PARK2 loss undermines themitochondrial energy
production. However, to what extent PARK2 inactivation
contributes to the mitochondria impairment in cancer remains
uncertain.

Apoptosis pathway

PARK2 alters the intrinsic mitochondrial threshold for cyto-
chrome c release, thereby protecting cells from apoptotic stress
[101, 102]. However, the presence of PARK2 in the mitochon-
dria is not sufficient to prevent cytochrome c release, suggest-
ing that the anti-apoptotic function of PARK2 may be indirect,
probably mediated through cytosolic factors. Indeed, PARK2 is
capable to regulate the activity of several proteins belonging to
the pro- and anti-apoptotic BCL-2 family, including BAX,
MCL1, and BCL-2 [92, 103–105]. Of note, after apoptosis
onset, PARK2 is cleaved by caspase 1 and caspase 8 [106,
107]. However, compared to the well-established protective
function in neurons, the role of PARK2 in regulation of cancer
cell apoptosis remains elusive. In cancer cells derived from the
liver or breast, PARK2 expression augments the apoptotic cell
death induced by HDAC inhibitors and microtubule-stabilizing
drugs [13, 51]. Park2−/− hepatocytes are more resistant to
anticancer drugs than the wild-type counterpart [61]. Addition-
ally, PARK2 sensitizes Hela cells to TNF-α-induced apoptosis
[108]. Together, these observations suggest that PARK2 gener-
ally exerts an anti-apoptosis function but it also sensitizes
cancer cells to certain stimuli.

Cancer cell metabolism

Warburg effect Reprogramming energy metabolism is one of
the hallmarks of cancer [109]. During malignant transforma-
tion, cancer cells switch from mitochondrial respiration to
aerobic glycolysis to sustain the bioenergetics and biosynthet-
ic requirement (known as Warburg effect). PARK2 is a p53
target gene and negatively regulates glucose uptake, oxygen
consumption, glycolysis, and lactate production, mitigating
the Warburg effect [17]. The mechanism underlying
the inhibitory activity of PARK2 may be mediated by regu-
lating the mitochondrial function as well as the expression/
activity of metabolic enzymes. Proteomic studies have identi-
fied many metabolic enzymes which might be regulated by
PARK2 [92, 100, 110–112], albeit the functional conse-
quences of most alterations need to be further clarified. As
an example, PARK2 positively regulates the expression of
PDHA1, which reduces mitochondrial oxidative phos-
phorylation and promotes glycolysis [17, 100].

Antioxidant defense Park2 mutant flies or mice show defects
in antioxidant defense [100, 113–115]. Consistently, ectopic
PARK2 expression reduces the ROS level and increases the
glutathione (GSH) level in cells [17, 116], while PARK2
mutants decrease the GSH and elevate the intracellular oxida-
tive damage [117]. Thus, loss of PARK2 may contribute to
ROS production during oncogenic transformation, similar to
the effect of p53 inactivation. Paradoxically, PARK2 activity
may be required for KRAS-driven tumors to maintain mito-
chondrial quality control and buffer the oxidative stress, since
functional mitochondria and mitochondrial ROS generation

Fig. 3 Mapping targets and/or
pathways associated with PARK2
deficiency to cancer hallmarks
defined by Hanahan and
Weinberg [109]. MSD ,
microtubule-stabilizing drug
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are essential for the growth of those tumors [118, 119].
In such a context, PARK2 becomes a pro-survival pro-
tein in KRAS-transformed cancer cells. On the other
hand, excessive ROS modulates the sulfonation, protein
folding, and solubility of PARK2, and thus represses its
activity [120–123].

PARK2 in the receptor tyrosine kinase pathway

PARK2 interacts with Eps15 and EGFR upon EGF treatment
[124]. Thus, loss of PARK2 might accelerate EGFR endo-
cytosis and degradation, and decrease the EGFR-AKT sig-
naling. However, overexpression of PARK2 in glioma cells
paradoxically inhibits signaling through AKT/mTOR [11].
Our unpublished data also support the role of PARK2 as a
negative regulator of the EGFR-AKT pathway in gliomas,
suggesting a differential behavior of PARK2 in cancer cells.
Moreover, PARK2 is able to downregulate VEGFR2 in
gliomas [11]; thus, it may have a role in suppression of cancer
angiogenesis.

Conclusions and future perspectives

As discussed above, although many aspects remain unex-
plored, recent data highlight the auto-inhibited structure of
PARK2 and uncover its important roles in multiple cellular
processes relevant to neoplastic transformation and malignant
progression, such like cell cycle control, mitochondria homeo-
stasis, and metabolism (Fig. 3). Importantly, advances in
cancer genetics reveal frequent inactivation of PARK2 in a
broad panel of human cancers. Murine studies further support
the tumor suppressive role of PARK2 [10, 17, 61]. However,
characterization of the putative roles of PARK2 in cancer still
awaits further efforts as outlined below.

As an E3 ligase, the substrates of PARK2 involved in
tumorigenesis remain largely unknown. Apparently, many
lessons can be learned from its role in neuron, including its
involvement in key signaling pathways implicated in both
neurodegeneration and tumorigenesis, such as NF-κB, Wnt,
JNK, and estrogen-related receptor pathways [125–129]. Im-
portantly, transcriptomic and proteomic approaches are re-
quired to profile systematically the targets of PARK2 in can-
cer. In addition, deciphering the functional importance of
cancer-associated PARK2mutations is fertile ground of study.

Moreover, knowledge concerning the regulation of PARK2
needs to be expanded. The transcriptional and posttranslational
regulation of PARK2 in cancer is unclear, though both are very
likely to be impaired. For example, the association between
expression and/or activity of PARK2 and the cellular status of
p53, N-myc, and c-Abl in human malignancies has not been
determined. How does PARK2 shuttle among different cellular
compartments? What coordinates the mitochondrial dependent-

and independent-function of PARK2? And to what extent do
these dysregulations contribute to cancer?

Additional genetic and in vivo studies, including animal
models, are essential to dissect further the function of PARK2
during tumorigenesis. Notably, Park2 deficiency is likely to
increase the risk of cancer during exposure to carcinogens or
tumor suppressor inactivation [10, 17], suggesting that murine
models of Park2 knockout and other oncogenic background
may help to clarify its involvement in tumorigenesis. Mean-
while, the role of PARK2 in “mitochondria-addicted” tumors,
especially in RAS/RAF-driven tumors needs further study,
perhaps by crossing Park2 null mice with Ras /Raf transgenic
or knockin mice. Also, generation of Park2 -associated tumor
models will be a powerful tool to test the in vivo efficacy of
small molecules modulating the PARK2 pathway, such as
vitamin K2 [130]. Understanding the mechanism of PARK2
activation and function will therefore provide more insights
into the development of cancer therapy by targeting the
PARK2 pathway.
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