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Abstract Though the existence of hydrogen sulfide (H2S)
in biological tissues has been known for over 300 years, it is
the most recently appreciated of the gasotransmitters as a
physiologic messenger molecule. The enzymes cystathio-
nine γ-lyase (CSE) and cystathionine β-synthase (CBS)
had long been speculated to generate H2S, and inhibitors
of these enzymes had been employed to characterize influ-
ences of H2S in various organs. Definitive evidence that
H2S is a physiologic regulator came with the development
of mice with targeted deletion of CSE and CBS. Best char-
acterized is the role of H2S, formed by CSE, as an endothe-
lial derived relaxing factor that normally regulates blood
pressure by acting through ATP-sensitive potassium chan-
nels. H2S participates in various phases of the inflammatory
process, predominantly exerting anti-inflammatory actions.
Currently, the most advanced efforts to develop therapeutic
agents involve the combination of H2S donors with non-
steroidal anti-inflammatory drugs (NSAIDs). The H2S re-
leasing moiety provides cytoprotection to gastric mucosa
normally adversely affected by NSAIDs while the combi-
nation of H2S and inhibition of prostaglandin synthesis may
afford synergistic anti-inflammatory influences.
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Introduction

Hydrogen sulfide (H2S) is the most recently appreciated of
the three gasotransmitters, joining nitric oxide (NO), and
carbon monoxide (CO). Though only recently recognized as
being physiologically formed in mammalian tissues, H2S
has been known to exist in animal tissues for many years.
Like NO and CO, H2S is toxic, about five times more so
than CO [1]. Recently, cystathionine β-synthase (CBS) and
cystathionine γ-lyase (CSE) have been established as the
major physiologic sources of mammalian H2S based on
studies showing that their deletion or inhibition markedly
diminishes mammalian H2S levels [2, 3]. As with NO and
CO, identification of the biosynthetic enzymes now pro-
vides a firm basis for elucidating how H2S is produced,
signals to intracellular targets, and affects diverse physio-
logic processes. In the interest of brevity, the review will be
limited to a few areas of H2S disposition: focusing on
physiologic roles in the cardiovascular system and inflam-
mation and a brief discussion of regulatory mechanisms and
signaling modalities.

Understanding the disposition of H2S can be facilitated by
comparisons with NO and CO. NO was identified as
endothelial-derived relaxing factor and as regulating macro-
phage function years before the first NO synthase (NOS) was
purified and cloned [4, 5]. NO is formed by a family of NO
synthase isoforms. Cloning and characterization of neuronal
NOS (nNOS), endothelial NOS (eNOS), and inducible NOS
(iNOS) greatly facilitated research in the field and led to a vast
expansion of NO literature [6]. The NOS isoforms are all
heme-requiring enzymes, a property they share with CBS.
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nNOS and eNOS are constitutively expressed but activated in
response to Ca2+/calmodulin [7], which also activates CSE [8].

NO relaxes blood vessels by binding to heme in the
active site of guanylyl cyclase to facilitate formation of
cyclic GMP which, via protein kinase G, relaxes blood
vessels [9]. S-nitrosylation is a more prominent and ubiqui-
tous physiological signaling mechanism for NO whereby
NO reacts with the SH group of cysteines in target proteins
to inhibit or activate them [10]. As described below, H2S
appears to signal predominantly by an analogous mecha-
nism—sulfhydration of target proteins, whereas no major
action via cyclic nucleotides has been reported for H2S [11].

nNOS is highly localized to discrete neuronal systems in
the brain and to autonomic nerves in the periphery [12].
eNOS occurs in the endothelial layer of blood vessels and
the respiratory system, while iNOS occurs in all cells of the
body, but is notably enriched in macrophages [4]. Local-
izations of CBS and CSE are less well characterized, though
the enzymes are highly expressed in liver and kidney and at
lower levels in pancreas, adipose tissue, small intestine and
brain [13]. In the brain, CBS is largely glial while CSE
occurs in neurons and endothelial cells [14, 15].

CO also displays some analogies to NO. It is gener-
ated by two isoforms of heme oxygenase (HO) with
HO1 being inducible, similar to iNOS while HO2 is
constitutive. Like nNOS and eNOS, HO2 is activated
by calcium/calmodulin [16]. HO2 is highly localized to
neurons in the brain and the periphery and fulfills many
characteristics of a neurotransmitter [17]. In the intestine
HO2 and nNOS are co-localized in myenteric neurons
where both appear to serve as neurotransmitters of non-
adrenergic-non-cholinergic neurotransmission [18, 19].
As related below, there is some evidence for myenteric
localization of CSE which might fulfill similar functions
as the other two gasotransmitters in the gut. A conjunc-
tion of all three gasotransmitters occurs in the carotid
body, where nNOS is expressed in nerve fibers, HO2,
and CSE colocalize in glomus cells and regulate carotid
body afferent discharge in response to hypoxia [20].

H2S metabolism

There has been much controversy over endogenous, mamma-
lian levels of H2S, and the extent to which the gas derives from
exogenous sources or reflects influences of biosynthetic
enzymes (Figs. 1 and 2). Estimates for H2S concentrations
have ranged from the high micromolar to the low nanomolar
with recent appreciation that physiologic levels are probably
relatively low [21]. A major confounding factor in H2S mea-
surement has been the large endogenous stores of sulfane
sulfur, which is artifactually reduced to H2S during assays
[22, 23]. Another difficulty relates to sensitivity and

specificity of the various techniques employed to measure
H2S. Recently, several groups have developed fluorescent
probes which may be substantially more sensitive and may
permit imaging of H2S in intact cells [24, 25].

CBS and CSE, the enzymes generally acknowledged as the
principal sources of physiologic mammalian H2S, were both
first known as participants in metabolism of cystathionine,
which is formed by CBS via the condensation of homocys-
teine with serine to generate cystathionine as a thiol ether. The
markedly elevated levels of homocysteine in patients with
homocystinemia, a genetic deletion of Cbs, lead to substantial
cardiovascular disability [26]. CBS forms H2S from cysteine
or homocysteine with a combination of the two substrates
providing maximal yields in vitro [27]. Inhibitors of CBS,
such as hydroxylamine or amino-oxyacetate impair the gen-
eration of H2S from cysteine in the brain, but they are non-
specific, affecting all pyridoxal phosphate enzymes. More-
over, because the Km of CBS for cysteine and homocysteine
is 3–7 mM, high concentrations of these amino acids are
employed in studies of H2S formation, whereas physiologic
levels are less than 10% of the Km values [27].

The heme in CBS binds CO with high affinity, at least
100 times that of NO [28]. Hence, CO appears to be a
physiologic inhibitor of CBS, which, as described below,
may account for vasodilation of the cerebral circulation.
CBS is also activated by S-adenosyl methionine, whose
function is unclear but might reflect some relationship
between signaling by H2S and biologic methylation [29].

CSE was first characterized as cystathionase, responsible
for the pyridoxal phosphate dependent hydrolytic degrada-
tion of cystathionine [30]. CSE was proposed as a physio-
logic generator of H2S in peripheral tissues such as the liver,
because inhibitors, such as propargylglycine and β-
cyanoalanine, diminish H2S formation. While these inhib-
itors are relatively non-selective, more recent studies of
CSE-deleted mice have definitively established that CSE is
the predominant source of H2S in peripheral tissues [8].
Evidence supporting CSE as generating H2S for signaling
purposes comes from the finding that CSE, like nNOS,
eNOS, and HO2, is activated by calcium/calmodulin [8].

Less well characterized than CBS and CSE as a source of
H2S in mammalian tissues is the enzyme 3-mercaptyopyruvate
sulfotransferase (3-MST). Kimura and associates [23] devel-
oped evidence that 3-MST acts in conjunction with cysteine
aminotransferase (CAT) to produce H2S from cysteine in the
presence of α-ketoglutarate. The combination of 3-MST and
CAT might be responsible for the generation of H2S in brain
preparations from CBS-deleted mice (Table 1). Because
3-MST is maximally active at very high pH levels, it is
not clear to what extent it is responsible for mammalian
formation of H2S.

CBS, CSE, and 3-MSTappear to be highly conserved, with
the sequences of bacterial forms of these enzymes fairly similar
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to mammalian isoforms. Very recently, Nudler and associates
[31] have discovered that H2S is critical for the survival of
bacteria and that a wide range of antibiotics, whose initial
targets vary markedly, all act via H2S as a final, common
pathway. Thus, bacteria with deletion of the H2S forming
enzymes are markedly more sensitive to antibiotic killing. This
discovery may portend a new class of antibiotic-sensitizing
drugs that lower the bactericidal concentrations of antibiotics.

H2S signaling

Unlike NO and CO, H2S does not appear to stimulate
guanylyl cyclase [32], even though it can bind with reason-
ably high affinity to heme containing domains like that
found in guanylyl cyclase. H2S has been shown to signal
via a mechanism analogous to nitrosylation whereby it
forms a covalent linkage to the SH of cysteines, a process
designated sulfhydration [11]. Sulfhydration was first
detected by the biotin switch assay employed to monitor
nitrosylation. In this procedure free thiols are blocked by
methyl methane thiosulfonate (MMTS). The SH groups of
nitrosylated cysteines can then be exposed by treatment with
ascorbate and subsequently labeled and identified [33].

Even in the absence of ascorbate, some proteins are labeled
by the biotin switch technique, which provided a clue to the
existence of sulfhydration. Accordingly, sulfhydration can
be detected in a modification of the biotin switch procedure
with omission of the ascorbate step [11].

Recently, sulfhydration has been monitored by a new
technique which overcomes concerns that some free thiols
might not be blocked by MMTS [34]. The newer procedure
employs a fluorescent maleimide derivative, which interacts
selectively with sulfhydryl groups of cysteines, both sulfh-
dyrated and non-sulfhydrated. Treatment of samples with
dithiothreitol selectively cleaves disulfide bonds, detaching
the fluorescent signal from sulfhydrated but not non-
sulfhydrated proteins and leading to decreased fluorescence
[34]. This technique can be modified to simultaneously
detect nitrosylation using a differently colored fluorescent
maleimide after treatment with ascorbate to remove NO
from nitrosylated cysteines, exposing previously nitrosylated
SH groups [34].

Sulfhydration appears to be substantially more prevalent
than nitrosylation. Whereas nitrosylation typically affects
only about 1–5% of most proteins, 10–25% of endogenous
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-
tubulin and actin are basally sulfhydrated [11].
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Fig. 1 Pathways of H2S metabolism. Cysteine metabolism from methionine and dietary cyst(e)ine, which enter cells via specific transporters, leads
to H2S production. H2S is derived from cysteine, cystine, and 3-mercaptopyruvate (3MP). 3-Mercaptopyruvate sulfurtransferase (3MST) and 2-
cysteine aminotransferase (CAT) produce H2S and pyruvate from 3MP, which is formed from cysteine and α-ketogluterate produced by CAT.
Cystathionine-β-Synthase (CBS) catalyzes the β-replacement of cysteine with homocysteine (Hcy) to generate H2S and the corresponding thiol
ether (Hcy-S-Cys). Cystathionine-γ-lyase (CSE) catalyzes β-disulfide elimination on cystine, the product of which reacts with available thiols (Cys
is shown) to generate H2S and a disulfide (Cys-S-S-Cys)
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Sulfhydration can influence protein function differently
than nitrosylation. Nitrosylation provides an NO “cap” to

reactive SH groups of cysteines typically inactivating pro-
teins, though in some instances it has been shown to have an

Table 1 Models of inflammation

Model Donor/inhibitor/KO mouse References

Hypertension: CSE −/− mice Age-dependent hypertension observed beginning at 7 weeks [8]
cholinergic relaxation of mesenteric artery reduced 75–80% in CSE −/− mice

Ischemia reperfusion injury (rat,
mouse, and pig)

NaHS and H2S donors reduced myocardial infarct size in rat, mouse, and pig models while PAG
attenuated this effect and increased infarct size

[45–48,
50]

ischemia reperfusion injury:
perfused rabbit heart

H2S releasing NSAID S-diclofenac was found to protect against ischemia-reperfusion injury in
isolated rabbit heart

[53]

Burn injury-induced inflammation
in mouse

Prophylactic and therapeutic administration of PAG reduced burn-associated systemic inflam-
mation while NaHS was found to increase systemic burn-associated inflammation

[56]

LPS-induced lung and liver
inflammation in mouse

NaHS administration resulted in marked increase in lung inflammation and MPO activity in the
liver and lung as well as increased TNF levels while PAG exhibited reduced lung and liver MPO
activity and ameliorated lung and liver tissue damage

[55]

Mouse airpouch model NaHS and other donors suppressed leukocyte infiltration which was enhanced under the use of
endogenous H2S inhibitors

[59]

Carrageenan-induced paw edema:
mouse

NaHS and other donors suppressed carrageenan-induced paw edema in the mouse to a level
similar to KATP channel agonist .

[59, 62]

Carrageenan-induced joint
synovitis model: rat

Treatment with H2S donor Lawesson’s reagent attenuated pain response and all inflammatory
biochemical changes whereas PAG potentiated synovial iNOS activity and enhanced
macrophage infiltration

[61]

TNBSA-induced mouse model of
colitis

H2S donating mesalamine derivative ATB-429 was found to reduce trinitrobenzene sulphonic acid
induced colitis severity and granulocite infiltration by 70%

[63]

NSAID-induced gastropathy: rat NaHS and S-diclofenac were found to reduce NSAID-induced gastric injury and to decrease
inflammatory mediators TNF, Cox2, and ICAM1 while H2S inhibitor BCA increased these
mediators and enhanced gastric injury

[52, 65]

BCA β-cyanoalanine, CSE cystathionine γ-lyase, iNOS inducible NOS, NSAID non-steroidal anti-inflammatory drug, PAG propargylglycine, TNF
tumor necrosis factor
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activating effect [35]. By contrast, in sulfhydration, an SH is
converted to SSH which, with its lower pKa, is more reac-
tive chemically than SH and may have greater exposure to
the cellular environment. This notion is substantiated by the
finding that sulfhydration of GAPDH increases catalytic
activity 700%, and sulfhydration of actin similarly enhances
biologic activity. Activation of GAPDH by sulfhydration is
physiologically relevant, as total GAPDH activity of liver
extracts is reduced about 25–30% in CSE deleted mice
despite normal levels of GAPDH protein [11]. It appears
that, as with nitrosylation, many, if not most, proteins are
sulfhydrated.

Physiologic actions of H2S

Cardiovascular system

Like NO and CO, H2S dilates blood vessels. Studies with
exogenous H2S largely report vascular relaxation, though
under some conditions, such as high oxygen concentration,
vasoconstriction is evident. NO was first elucidated as en-
dothelial derived relaxing factor (EDRF). Investigations
employing eNOS knock-out mice and NOS inhibitors reveal
only a partial reduction of EDRF activity in certain vascular
beds [8, 36, 37]. EDRF activity in HO2 knockout mice has
not yet been reported. Studies of H2S in CSE knockout mice
indicate a major contribution to EDRF activity [8]. Immu-
nohistochemical analysis shows that CSE is highly localized
to the endothelial layer of blood vessels. Cholinergic relax-
ation of the mesenteric artery is reduced by about 75–80%
in homozygous CSE deleted mice and about 50% in hetero-
zygotes. This cholinergic relaxation reflects EDRF activity
being abolished by removal of the endothelium. CSE knock-
out mice develop age-dependent hypertension with maximal
increases in blood pressure of about 20 mmHg, similar to
levels of hypertension in eNOS knockouts [8].

The EDRF activity associated with NO is most evident in
large vessels such as the aorta, while in the resistance
vessels that are the primary determinants of blood pressure,
actions of NO are less prominent. In the mesenteric artery, a
resistance vessel, H2S is predominant [8]. Relative roles of
H2S, NO, and CO in various vascular beds may be eluci-
dated by systematic comparison of mice with deletion of
HO2, eNOS, or CSE.

NO and H2S differ markedly in mechanisms whereby they
influence blood vessels. NO and CO stimulate cyclic GMP
levels while recent studies indicate that H2S vasodilation
largely reflects hyperpolarization elicited by opening ATP-
sensitive potassium channels (KATP) [38–40]. While vasore-
laxation by exogenous H2S has long been known to involve
such channels, recent work establishes that physiologic vaso-
relaxation is mediated by H2S. Thus, glibenclamide, a potent

and selective inhibitor of the KATP channel, reduces effects of
H2S and diminishes cholinergic hyperpolarization of mesen-
teric arterial smooth muscle by about 70% while not affecting
relaxation elicited by NO donors [40].

H2S stimulates KATP channels by sulfhydrating them at
cysteine-43. These channels are activated physiologically
when bound by phosphatidylinositol(4,5)bisphosphate
(PIP2). The binding of PIP2 to KATP channels is abolished
in cells devoid of CSE or containing a catalytically inactive
form of the enzyme. Moreover, H2S donors substantially
enhance the binding of PIP2 to KATP channels, and PIP2
binding occurs at the sulfhydrated cysteine-43 [40].

The observation that H2S physiologically acts by sulf-
hydrating and activating the KATP channel supports the
notion that H2S is a major if not predominant mediator of
EDRF activity. Numerous investigators have found much if
not most EDRF activity involves cGMP-independent blood
vessel hyperpolarization [37] implying that EDRF is primarily
dependent upon an endothelial-derived hyperpolarizing factor
whose activity is largely attributable to H2S .

The major role of H2S in regulating the peripheral circu-
lation suggests that it may be the principal vasoactive gaso-
transmitter, implying therapeutic relevance. This notion is
supported by the limited success of studies devoted to
inhibiting or enhancing NO formation respectively to combat
endotoxic shock or to treat hypertension [41].

H2S may also impact the cerebral circulation. Hypoxia is
well known to stimulate cerebral blood flow, but underlying
molecular mechanisms have been elusive. Very recently,
CSE has been identified as a major regulatory factor for
cerebral arteriolar vasodilation, acting in conjunction with
CO formed by HO2 [42, 43], similar to that seen in the
carotid body [20]. HO2 is an established physiologic O2

sensor, especially in the carotid body where it is exquisitely
sensitive to oxygen and is inhibited by hypoxia in a precise-
ly graded fashion [44]. At physiologic concentrations, CO
inhibits CBS, the predominant generator of H2S in the
cerebral circulation [29]. Thus, by inhibiting HO2, hypoxia
would lead to activation of CBS and generation of H2S as a
vasorelaxant.

Before endogenous H2S was shown to regulate blood
vessels, exogenous H2S had been shown to exert beneficial
cardiovascular actions. Many studies have dealt with myo-
cardial ischemia, which is substantially diminished by ad-
ministration of H2S donors during ischemia/reperfusion of
the heart [45–47]. Numerous mechanisms had been pro-
posed for these cardioprotective actions [48, 49]. Particular-
ly promising is evidence that H2S acts by inhibiting
apoptosis, as H2S donors reproducibly diminish poly
(ADP-ribose) polymerase cleavage, as well as cleavage of
caspase-3 [50]. H2S also preserves mitochondrial structure
and function in response to myocardial ischemia. H2S may
also be cardioprotective by decreasing the “work” of the
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heart, analogous to beta-blockers, through diminishing con-
tractility of cardiac myocytes, largely by inhibiting L-type
calcium channels [51].

Because of the promising cardiovascular actions of H2S a
variety of drugs have been developed based on this gaso-
transmitter. Some are simple H2S donors, such as
GYY4137, while others combine an H2S donating structure
with an anti-inflammatory drug such as diclofenac or a
classical vasodilator such as sildenafil [52–54].

H2S and inflammation

The literature on NO, CO, and H2S has been plagued with
conflicting claims for their effects. Nowhere has this been
most evident than with H2S and inflammation. Prominent
pro-inflammatory effects have been reported in association
with increased formation of sulfide in neutrophils as well as
activation of these cells [55]. Administration of H2S donors
has been reported to accentuate inflammatory factors asso-
ciated with burns, while burn injuries were reduced by
treatment by the CSE inhibitor propargylglycine [56]
(Table 1). Lung injury elicited by bacterial sepsis can be
alleviated by treatment with propargylglycine and worsened
with H2S donors [55]. By contrast, there are numerous
reports of anti-inflammatory effects for H2S donors as de-
scribed below. A consensus has emerged in recent years that
the apparently contradictory findings largely reflect varia-
tions in dose–response relationships. At relatively low,
physiologic concentrations H2S appears to be anti-
inflammatory, while high concentrations elicit inflamma-
tion, a pattern reminiscent of NO, which is anti-
inflammatory in low concentrations and pro-inflammatory
at high levels. CO, well known to be lethal in high doses, is
also often beneficial when administered in low doses [57, 58].

What physiologic mechanisms underlie influences of H2S
on inflammation? One of the best characterized involves the
disposition of leukocytes, especially their adherence to vascu-
lar endothelium as well as their extravasation. H2S donors and
sulfide salts diminish lymphocyte and neutrophil infiltration in
models of inflammation, whereas inhibitors of H2S biosyn-
thesis increase leukocyte adherence [59]. H2S donors diminish
edema, presumably due to inhibition of plasma exudation,
while CBS and CSE inhibitors increase the formation of
edema in response to inflammatory stimuli [59]. A molecular
mechanism underlying anti-inflammatory roles of H2S may
include its scavenging peroxynitrite, a toxic derivative of NO,
as well as other oxidants [60].

H2S has been shown to exert beneficial influences in
disorders of joints, including resolving synovitis in rodents
[61] and alleviating the pathology of carrageenen-associated
arthritis [62]. H2S donors also have been extensively
explored in intestinal disorders, with beneficial effects in
several models of colitis [63].

H2S may participate in some actions of tumor necrosis
factor alpha (TNF-α). While TNF-α is regarded as pro-
inflammatory, it does display anti-apoptotic actions mediat-
ed via nuclear factor kappa-light-chain enhancer of activated
B cells (NF-κB). The anti-apoptotic actions of NF-κB ap-
pear to be mediated by H2S generated by CSE [34]. TNF-α
treatment (10 ug/kg for 4 h) in peritoneal macrophages
triples H2S generation by stimulating the binding of the
transcription factor SP1 to the CSE promoter increasing
CSE protein levels. The H2S generated by CSE enhances
the binding of NF-κB to promoters of downstream genes,
whose signaling is markedly diminished in CSE knockout
mice. H2S acts by sulfhydrating the p65 subunit of NF-κB,
which promotes its binding to the co-activator ribosomal
protein S3. The anti-apoptotic influences of NF-κB are
substantially reduced in CSE-deleted mice [34].

The anti-inflammatory influences of H2S have led to
efforts to develop therapeutic agents. Classic non-steroidal
anti-inflammatory drugs (NSAIDs) often cause gastric irri-
tation by inhibiting the formation of prostaglandins, which
are physiologic cytoprotectants of the gastric mucosa. H2S,
on the other hand, reduces mucosal inflammation, protects
the gastrointestinal mucosa from injury and also augments
tissue repair. In direct comparisons of naproxen and its H2S-
linked derivative, the latter exerted comparable therapeutic
efficacy with reduced gastric damage [64, 65]. Several other
NSAIDs have been combined with H2S donors. Mechanistic
studies have been conducted with some of these drugs, with
particularly extensive investigations utilizing S-diclofenac
[52, 66, 67]. S-diclofenac has been shown to inhibit cell
proliferation [68, 69] and to protect against ischemia-
reperfusion injury in perfused hearts [53].

New directions

Evidence for H2S as a physiologic gasotransmitter has
lagged behind CO and NO, but H2S is rapidly catching up.
Therapeutic applications may emerge in the not-too-distant
future, especially in the area of anti-inflammatory drugs.
Definitive understanding of how H2S participates in inflam-
matory processes may come from studies of inflammation in
mice with deletion of CSE and/or CBS. In the gastrointes-
tinal system and liver, CSE levels greatly exceed those of
CBS. Because many major proteins are physiologically
sulfhydrated, it is possible that many metabolic functions
of the liver are determined in notable part by the actions of
H2S, as is evident by the substantial decrease in GAPDH
activity in livers of CSE knockout mice, due to the loss of
the activating influence of GAPDH sulfhydration [11].

One area not addressed in this review is the role of H2S in
the brain, which was discussed in a previous review [70].
Studies with mice lacking CBS and CSE suggest that the
majority of H2S in the brain derives from CBS rather than

260 J Mol Med (2012) 90:255–263



CSE. The limited immunohistochemical studies thus far per-
formed reveal CBS predominantly in glia [14]. CSEmay have
neuronal as well as glial localizations so that even if it gen-
erates a smaller amount of H2S, this enzyme might be the
source of a neurotransmitter pool [15]. In the intestine, there is
evidence that CSE is localized to the myenteric plexus of
neurons and may exert physiologic influences on intestinal
motility [15, 71]. Conceivably, neuronal CSE in the gut occurs
in the same neurons known to possess HO2 and nNOS, which
are co-localized in neuronal populations [72].
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