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Abstract Migratory capacity is a fundamental property
of hematopoietic stem and progenitor cells (HSPCs).
This feature is employed in clinical mobilization of
HSPCs to the circulation and constitutes the basis for
modern bone marrow (BM) transplantation procedures
which are routinely used to treat hematological malig-
nancies. Therefore, characterization of new players in the
complex process of HSPC motility in steady-state
conditions as well as during stress situations is a major
challenge. We report that while the metalloproteinase
membrane type 1-metalloprotease (MT1-MMP) has an
essential role in human HSPC trafficking during granulocyte
colony-stimulating factor (G-CSF)-induced mobilization, its
inhibitor reversion-inducing cysteine-rich protein with Kazal
motifs (RECK) and the adhesion molecule CD44 are required
for HSPC retention to the BM in steady-state conditions. The
nervous system via Wnt signaling along with HGF/c-Met
signaling and the complement cascade play a major role in
regulating MT1-MMP increased activity, CD44 cleavage,
and RECK-reduced expression during G-CSF-induced
mobilization. This review will elaborate on the opposite
roles of MT1-MMP and RECK in HSPC migration and
retention and suggest targeting them in order to facilitate
HSPC mobilization and engraftment upon BM transplan-
tation in patients.
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Hematopoietic stem and progenitor cell egress
and mobilization by G-CSF

Hematopoietic stem and progenitor cells (HSPCs) as well
as maturing leukocytes are typically distinguished by their
motility capacity and ability to pave their way out from the
bone marrow (BM) reservoir to the circulation, as part of
host defense and repair mechanisms. HSPCs and maturing
leukocytes are continuously released at low levels from the
BM during steady-state homeostasis and at increased rates
upon stress, such as bleeding or inflammation [1–4].
Current models of cell egress from the BM imply that
HSPCs detach from their supporting stromal niches via
adhesion interactions, translocate to the blood vessel, and
extravasate through the endothelial barrier into the circula-
tion. This multi-step process is orchestrated by a large
number of cytokines, chemokines, proteolytic enzymes, as
well as adhesion interactions [5, 6] that are all synchronized
in parallel or in a reciprocal manner. These dynamic
changes in HSPCs and their microenvironment during
trafficking are achieved through a complex interplay
between the immune and the nervous systems and bone
remodeling (osteoblast and osteoclast activities) [1, 2, 7].
For instance, the sympathetic nervous system regulates the
steady-state egress of HSPCs in murine, via circadian
rhythms peaking 5 hours after the initiation of light and
reaching a nadir 5 hours after darkness [8]. The sympathetic
nervous system can directly stimulate human HSPC
motility and proliferation [9] in addition to its indirect
effect on the murine stroma microenvironment [10, 11].
Once HSPCs are found in the circulation, they may enter
the spleen and non-lymphatic tissues or migrate back to the
BM in a process called “homing”. As evident from the
experiments with parabiotic mice, which share blood
systems, donor peripheral blood HSPCs are cleared within

K. Golan :Y. Vagima : P. Goichberg : S. Gur-Cohen :
T. Lapidot (*)
Department of Immunology, Weizmann Institute of Science,
Rehovot, Israel
e-mail: tsvee.lapidot@weizmann.ac.il

J Mol Med (2011) 89:1167–1174
DOI 10.1007/s00109-011-0792-9



minutes from the circulation of intravenously transplanted
congeneic recipients [12, 13]. HSPC mobilization can be
clinically or experimentally induced by a variety of
cytokines and chemokines [5, 6]. At present, granulocyte
colony-stimulating factor (G-CSF) is the most commonly
used agent [14]. The mechanisms of G-CSF-induced
mobilization consist of induction of quiescent HSPC
proliferation thus increasing progenitor cell pool, accompa-
nied by a decrease in retention of HSPCs in their BM
microenvironment [15]. During the 5-day regimen of G-CSF
administration, there is an increased release of proteolytic
enzymes from BM neutrophils and other myeloid cells,
correlating with the peak in HSPC mobilization [16].
Furthermore, following G-CSF administration, stromal cell-
derived factor (SDF-1) (CXCL12, a chemokine able to
strongly attract human and murine HSPCs [17–21]) levels in
the BM are transiently increased followed by their down-
regulation at both protein [22, 23] and mRNA [24] levels.
Thus, G-CSF administration results in proteolytic degrada-
tion of BM SDF-1 with subsequent mobilization of HSPCs.
Most HSCs are found in contact with stromal cells that
highly express SDF-1 within their specialized niches, which
induce stem cell quiescence. Therefore, this chemokine is
essential for maintaining a lifelong pool of HSCs by
controlling the balance between HSC quiescence and self-
renewal [25, 26]. SDF-1 downregulation allows quiescent
HSCs to proliferate, differentiate, and to be recruited to the
circulation.

MT1-MMP and RECK-mediated regulation of cell
motility

Matrix metalloproteinases (MMPs) are a subfamily of zinc-
and calcium-dependent enzymes, which all share a con-
served methionine residue located C-terminal to the zinc
ligands [27]. MMPs are implicated in a variety of
physiological processes, including wound healing, uterine
involution, and organogenesis, as well as in pathological
conditions such as inflammatory, vascular and auto-immune
disorders, and carcinogenesis [28–31]. While most MMPs
are soluble proteins, six of them are membrane-bound
MMPs (MT-MMPs). The proper functioning of membrane
type 1-MMP (MT1-MMP) is essential for angiogenesis,
wound healing, tissue remodeling [32], as well as tumor
growth and metastasis [33, 34]. MT1-MMP-deficient mice
develop multiple abnormalities due to defects in the
remodeling of connective tissue [35, 36]. In accordance,
osteogenic cells from MT1-MMP KO mice cannot degrade
collagen and do not form bone when transplanted subcu-
taneously into host immunodeficient mice [35]. In terms of
cell motility, MT1-MMP activates pro-MMP-2, which is
involved in the invasion of cancer cells and spread of the

metastasis [37]. Accordingly, MT1-MMP accumulates at
invadopodia, which are specialized ECM-degrading mem-
brane protrusions of invasive cells and thus facilitates tumor
invasiveness [38]. Importantly, MT1-MMP is required
during human monocyte migration and endothelial trans-
migration, thereby revealing a key role for MT1-MMP in
monocyte recruitment during inflammation [39]. The
induction of MT1-MMP activity in human mesenchymal
stem cells by inflammatory cytokines promotes directed
cell migration across reconstituted basement membranes
[40, 41]. In addition to extracellular matrix degradation,
MT1-MMP promotes cell invasion and motility by shed-
ding of cell adhesion molecules, such as CD44 [32] and
syndecan-1 [42]. Thus, MT1-MMP is considered a key
player in cell trafficking by allowing proper migration of
various cell types through mechanical barriers. The cata-
lytic activity of MT1-MMP is regulated at the level of
transcription as well as secretion by different endogenous
activators and inhibitors such as furin, tissue inhibitor of
metalloproteinase-1 (TIMP-1), and TIMP-2 [27]. Another
inhibitor is a membranal endogenous glycoprotein, named
RECK (reversion-inducing cysteine-rich protein with Kazal
motifs) [43]. Homozygous RECK-deficient murine embry-
os die at E10.5 and are characterized by small body size,
reduced structural integrity, and frequent abdominal hem-
orrhage [44]. It has been previously demonstrated that
RECK directly inhibits MT1-MMP via protein–protein
interactions, subsequently interfering with the pro-MMP-2
activation cascade [45]. The mutual and reciprocal rela-
tionship between MT1-MMP and RECK seems to be
necessary for regulation of cell motility.

Regulation of the HSPCs motility by MT1-MMP
and RECK

SinceMT1-MMP and RECK are essential for the motility and
blood vessel intravasation of cancer and inflammatory cells,
we and others studied their involvement in the trafficking of
HSPCs between the BM and peripheral blood.We have found
that both MT1-MMP and RECK are expressed on human and
murine hematopoietic progenitor cells. Under steady-state
conditions, human CD34+ progenitor cells from the periph-
eral blood express higher levels of MT1-MMP as compared to
their BM counterparts, suggesting its involvement in the
egress of these cells [46]. Neutralization of RECK activity in
steady-state condition induces mobilization of human
CD34+ progenitor cells in chimeric mice, emphasizing its
role in retention of these cells in the BM [46]. Interestingly,
MT1-MMP in mobilized peripheral blood cells is localized
to lipid rafts [47], which are enriched in CXCR4, the major
receptor for SDF-1 [48]. Since SDF-1 and lately also
sphingosine 1-phosphate [49–51] were shown to be potent
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chemoattractants of HSPCs, MT1-MMP activity may affect
the CXCR4/SDF-1-regulated trafficking of HSPCs. BM-and
cord blood-derived mesenchymal stem cells, responsible for
the development of stromal cells, also express MT1-MMP
[41]. G-CSF-induced mobilization in clinical BM transplan-
tation protocols is accompanied by an increase in MT1-
MMP expression [46, 47] and a parallel decrease in RECK
protein level on human and murine HSPCs [46]. The
dynamic changes in MT1-MMP expression levels correlate
with the numbers of mobilized CD34+ progenitor cells in
healthy donors, suggesting a clinical relevant role for this
molecule [46]. The reciprocal changes in the expression
levels of MT1-MMP and RECK induced by G-CSF in
human and murine progenitor cells are dependent on the
PI3K/Akt pathway and antagonized by the treatment with
rapamycin [an inhibitor of mammalian target of rapamycin
(mTOR)] [46, 47]. PI3K/Akt pathway is essential for G-
CSF-induced mobilization, since its inhibition by adminis-
tration of rapamycin diminishes the level of HSPCs in the
circulation [46], and abnormal PI3K activation interferes
with HSPC retention in the BM [52]. In addition, PI3K/Akt
signaling is essential for increased MT1-MMP incorporation
into membranal lipid rafts and thus for its localization at the
cellular migration front during G-CSF-induced mobilization
[47]. Additional regulators implicated in G-CSF-induced
mobilization are the cytokine hepatocyte growth factor
(HGF) and its receptor c-Met, which were shown to play a
crucial role in the motility of cancer cells [53]. HGF is
increased in the plasma of mice upon treatment with G-CSF,
while its receptor c-Met is upregulated on immature HSPCs
[54]. The major regulator of c-Met transcription, HIF-1α was
increased as well by G-CSF stimulations, correlating
progenitor mobilization with an expansion of hypoxic
murine BM areas [55]. HGF activates the mTOR pathway,
thus inhibiting FOXO3a expression and leading to an
increase in the reactive oxygen species (ROS) production
during G-CSF-induced mobilization [54]. Accordingly, direct
administration of HGF induces mobilization of HSPCs in
humans as well as in mice, albeit at a lower level as
compared to G-CSF [54, 56, 57]. Similarly to G-CSF, HGF
treatment augments MT1-MMP expression on human
CD34+ cells, revealing that activation of the HGF/c-Met
pathway may contribute to the increase in MT1-MMP
expression by G-CSF [56]. Additionally, HSPC mobilization
is orchestrated by elements of the complement cleavage
cascade, which is activated in the BM during G-CSF-
induced mobilization [58]. As evident from the studies in
C5-deficient mice, G-CSF-induced mobilization was signif-
icantly suppressed in the absence of functional complement
system [58]. Activated C5a fragments (anaphylatoxin)
decrease CXCR4 expression and chemotaxis toward an
SDF-1 gradient of granulocytes and monocytes and promote
proteolysis in the BM microenvironment through increased

secretion of MMP-9 and expression of MT1-MMP and
carboxypeptidase M in mononuclear and polymorphonuclear
cells [58, 59]. Finally, HSPC egress and mobilization are
affected by circadian oscillations due to the involvement of
sympathetic nervous system in the regulation of hematopoi-
etic cell trafficking [8]. G-CSF activation of peripheral
noradrenergic neurons induces mobilization of HSPCs
through suppression of endosteal bone-lining osteoblasts
and reduction in BM SDF-1 levels [10]. However, our lab
showed that this regulation is also through a direct effect on
HSPCs since treatment with catecholamine increases the
motility of normal and mobilized human progenitor cells,
correlating with the increased expression of MT1-MMP and
the activity of the metalloproteinase MMP-2 [9]. Interesting-
ly, neurotransmitter stimulation activates the canonical Wnt
signaling pathway, which mediates the increase in MT1-
MMP activity on human CD34+ HSPCs [9].

How do MT1-MMP and RECK inversely regulate
HSPC mobilization?

HSPCs are retained in the BM by adhesion interactions
with different types of molecules such as: vascular cell
adhesion molecule-1, intercellular adhesion molecule, β1
and β2 integrins, and the CD44 receptor [60]. Homing, as
well as adhesion of immature human CD34+ cells to the
BM microenvironment, depends on CD44 [61]. During G-
CSF-induced mobilization, there is a reduction in CD44
membrane levels on BM HSPCs [61]. CD44-deficient mice
display increased frequencies of circulating immature
colony-forming cells, suggesting the importance of this
adhesion molecule in HSPC retention. In accordance,
increased activity of MT1-MMP and inhibition of RECK
induces CD44 cleavage in the BM [46], implying that
MT1-MMP facilitates progenitor cell release at least partly
by antagonizing adhesion interactions, such as CD44-
mediated retention. In addition, MT1-MMP affects the
trafficking of HSPCs by modulating chemotaxis towards
SDF-1 [17, 62, 63]. Blocking of MT1-MMP activity
reduces SDF-1-induced chemotactic responses of human
G-CSF-mobilized peripheral CD34+ cells [46, 47], whereas
neutralization of RECK activity enhanced migration of
steady-state human BM CD34+ cells via Matrigel. Accord-
ingly, neutralization of MT1-MMP interferes with homing
of human G-CSF-mobilized CD34+ cells to the BM of
transplanted NOD/SCID mice, and the engraftment poten-
tial of BM progenitor cells from MT1-MMP deficient mice
is significantly lower [46]. Interestingly, c-Met silencing on
leukocytes obtained from the BM of G-CSF-treated mice
impairs their ability of chemotaxis towards SDF-1 [54].
Thus, the emerging picture suggests a functional interaction
between c-Met and SDF-1 pathways in BM leukocytes via
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MT1-MMP regulation of SDF-1 induced migration. In line
with the aforementioned data, C5 and C5a complement
cleavage fragments are released to the peripheral blood
during mobilization and can directly chemoattract granulo-
cytes and monocytes. These myeloid cells in contrast to
stem cells are highly enriched in proteolytic enzymes and
activated MT1-MMP and are the first cells that egress
during mobilization from BM to pave a way for stem cells
to follow [59, 64]. Of note, C3 and C3a complement
cleavage fragments are also released in BM microenviron-
ment and increase the responsiveness of HSPCs to SDF-1
[65], which is released from the BM to the blood, leading

the way of HSPC [21, 23]. In addition, MT1-MMP can
facilitate HSPC mobilization to the circulation by modulat-
ing MMP-2 and MMP-9 activity. During G-CSF-induced
mobilization, there is an increase in the functional expres-
sion of MMP-2 and MMP-9 on circulating CD34+ cells
comparing to their BM counterparts [66, 67]. RECK
downregulates MMP-2 activation and MMP-9 expression
in vivo [43, 44]. Accordingly, the inhibition of RECK
activation in mice showed increased levels of secreted
MMP-2 and MMP-9 [46]. This activation and secretion of
MMP-2 and MMP-9 during G-CSF administration were
found to be dependent on MT1-MMP activation [47].
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Fig. 1 MT1-MMP and its inhibitor RECK play opposite and essential
roles in retention and mobilization of HSPCs. 1 G-CSF administration
promote catecholamine secretion from the sympathetic nervous system
as well as HGF secretion from PMN cells in the BM and activation of
the complement cascade in the blood. 2 HGF binds to its receptor, c-
Met, and activates the PI3K/Akt pathway, subsequently leading to ROS

production. As a result of steps 1 and 2, MT1-MMP activation and
RECK inhibition are induced in HSPCs, leading to cleavage of the
adhesion molecule CD44 and detachment of HSPCs from stromal cells.
3 In parallel, MT1-MMP activity leads to increased motility of HSPCs
towards SDF-1 which leads their way into the blood
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Clinical aspects and future directions

The mobilization of HSPCs into the circulation constitutes
the basis for modern BM transplantation procedures, which
are routinely used to treat patients with hematological
malignancies as well as inherited genetic disorders.
Therefore, characterization of new regulators of HSPC
development and mobilization in homeostasis and during
stress became a major focus in the last decades. As
MT1-MMP plays an essential role in motility while its
inhibitor RECK plays an important role in retention, they
both may become prime candidates for future clinical
trials aimed at improving HSPC clinical mobilization in
patients. Notwithstanding the foregoing, MMPs also play
an important role in tumor invasion and metastasis [68,
69] and in particular MT1-MMP was found to have an
essential role in the invasive capacity of acute myeloblas-
tic leukemia (AML) cells [70]. The frequency of extra-
medullary infiltration (EMI) in AML is reported to be up
to 40% and is most prevalent in the myelomonoblastic and
monoblastic subtypes of AML. EMI patients have lower
complete remission rates following induction chemother-
apy and a shorter overall survival [71–74]. Therefore,
clinical inhibition of MT1-MMP by drugs or neutralizing
antibodies in addition to RECK activation in patients with
AML or other types of cancer might be an important way
to inhibit cancer cell invasiveness and subsequent metas-
tasis formation [75, 76]. In summary, MT1-MMP and
RECK are essential for the motility of HSPCs versus
retention conditions respectively. During G-CSF-induced
mobilization, there is a parallel increase in MT1-MMP
and decrease in RECK levels on progenitor cells through
the activation of PI3K/Akt pathway. The sympathetic
nervous system as well as HGF and its receptor c-Met and
also the complement system were all shown to have an
important role in the regulation of MT1-MMP and RECK
activity (Fig. 1, step 1). The HGF/c-Met axis activates
PI3K/Akt pathway, leading to increased MT1-MMP
activity and decreased RECK levels, both mediating the
cleavage of the adhesion molecule CD44 to promote
progenitor cell detachment from their BM niches (Fig. 1,
step 2). Moreover, MT1-MMP and RECK promote the
motility of HSPCs and chemotaxis towards SDF-1 thus
increasing their migration to the blood (Fig. 1, step 3).
Future directions in the study of MT1-MMP and RECK
role in HSPC egress and mobilization must focus
primarily on the molecular aspect of their activation.
Though it was previously established by our group that
the PI3K/Akt pathway plays an important role in this
process, it is still unknown which downstream activators
and transducers facilitate MT1-MMP and RECK upregu-
lation both on the transcription and protein levels. In
accordance, it is important to find whether MT1-MMP

and RECK are both upregulated by the same molecular
pathway or by different pathways and whether there is a
mutual regulation between those two factors. Since the
nervous system has an essential role in the trafficking of
HSPCs, the cross talk and regulation of MT1-MMP and
RECK by the sympathetic nervous system should be
examined. In particular, it would be of great interest to
identify a possible circadian oscillation rhythm in the
expression of MT1-MMP and RECK on stem and
progenitor cells which may correlate to the level of egress
as previously described regarding SDF-1 levels in the BM
[8]. Nevertheless, the molecular mechanism by which the
sympathetic nervous system directly regulates the levels
of MT1-MMP and RECK [9] during G-CSF-induced
HSPC mobilization would be of great interest for future
studies. We conclude by emphasizing that MT1-MMP and
its inhibitor RECK play an essential role in HSPC
retention versus mobilization from the BM to the
peripheral blood.
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