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Abstract A variety of cancers are accompanied by debil-
itating pain, which constitutes the primary reason for poor
quality of life in cancer patients. There is an urgent demand
for the development of specific mechanism-based therapies
against cancer pain. Recently, important advances have
been made in mechanisms contributing to cancer pain. A
notable finding was that the tumor-derived hematopoietic
growth factors, granulocyte- and granulocyte-macrophage-
colony-stimulating factors (G-CSF/GM-CSF), subserve
important functions in the generation of pain hypersensi-
tivity in tumor-affected regions. In this context, their
receptors were unexpectedly found on pain-sensing nerves
and were observed to be functionally linked to nociceptive
sensitization and tumor-induced pain. Here, we review
evidence supporting a role for G-/GM-CSF in sensitization
of pain-sensing nerves, the underlying signaling pathways
and the cross-talk with other pronociceptive cytokines,
peptides and modulators derived from immune cells,
osteoclasts and tumor cells. These findings hold implica-
tions in the therapy of pain in disease states, such as cancer
and rheumatoid arthritis.
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Introduction

Approximately one third of adults who are actively receiving
treatment for cancer and two thirds of those with advanced
malignant disease experience pain [1]. Children with cancer
have similar experiences, which is why the International
Association for the Study of Pain (IASP) defined the year
2008-2009 as a global year against cancer pain. In a large
number of clinical cases, cancer-associated pain, particularly
the neuropathic component thereof, is resistant to conven-
tional therapeutics or their application is severely limited
owing to the widespread side effects [1, 2]. In order to
develop novel, mechanism-based therapeutic strategies, it is
imperative to delineate the cellular and molecular mecha-
nisms underlying cancer-induced pain. Unlike pain of
neuropathic or inflammatory origin, cancer pain has not been
widely studied [2, 3]. Well-characterized animal models,
which merge pain research and cancer research, have only
recently become available and now provide a platform for
interdisciplinary research [2—4]. These studies have revealed
that although tumor-induced pain shares features of inflam-
matory as well as neuropathic pain, it is clearly distinguished
by distinct pathophysiological and mechanistic aspects [3, 4].

Various types of carcinomas and sarcomas metastasize to
skeletal bones and cause spontaneous bone pain, hyper-
algesia (exaggerated pain) and allodynia (pain in response
to a normally innocuous stimulus), which is accompanied
by bone degradation and remodelling of peripheral nerves
[3, 4]. A cardinal feature of cancer pain is the involvement
of mediators secreted by tumor cells (tumor-associated
mediators) [2, 3]. These include growth factors, cytokines
and peptides, which have the potential of either directly
activating nociceptive nerves or sensitizing them towards
sensory stimuli. The identity of tumor-associated mediators
and precisely how they affect sensory nerve function is an
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area of research which carries immense promise in
understanding and treating cancer pain. For example, a
variety of tumors of myeloid and non-myeloid origin secrete
large quantities of the cytokines, granulocyte-colony-
stimulating factor (G-CSF) and granulocyte/macrophage-
colony-stimulating factor (GM-CSF) [5]. Here, we will
review evidence supporting a novel role for G-/GM-CSF in
pain associated with cancer and inflammation and we will
discuss potential underlying mechanisms.

A novel role for G-CSFR and GM-CSFR«
in cancer pain

A recent study has, for the first time, functionally linked G-/
GM-CSF secreted by tumor cells in bone metastases to
sensitization of pain-sensing nerves (nociceptors) and tumor-
evoked pain [6]. Although G-/GM-CSF receptors (G-/GM-
CSFR) and G-/GM-CSF signaling are classically associated
with modulation of hematopoietic and tumor cells, three
independent lines of evidence extend the range of G-/GM-
CSF signaling to sensory nerves: (1) protein and mRNA
analyses reveal expression of G-CSFR and the alpha-subunit
of GM-CFSR (GM-CSFRw) in sensory nerves in peripheral
tissues, including cancerous pancreas and bone matrix/
periosteum, as well as in their somata lying in the dorsal
root ganglia (DRG). (2) Exposure to G-/GM-CSF activates
their cognate receptors and their typical signaling pathways
in DRG neurons and leads to potentiation of neuropeptide
release from nociceptive neurons. (3) Exposure to G-/GM-
CSF sensitizes sensory nerves to nociceptive stimuli, which
can be observed at the level of activity of single nerves in
electrophysiological analyses ex vivo as well as the level of
behavioral responses to noxious stimuli in vivo. These
observations are highly suggestive of activation of receptors
on sensory nerves by tumor-derived G-/GM-CSF. Indeed,
blocking G-/GM-CSFR signaling by receptor neutralising
antibodies or via signaling inhibitors leads to an abrogation
of bone tumor-induced pain hypersensitivity; however, these
treatments also partially affect tumor growth, raising the
question as to whether pain reduction is only secondary to
reduced tumor growth. A key finding was that specific
downregulation of GM-CSFR« in DRG neurons specifically
reduces tumor-induced pain hypersensitivity without affect-
ing tumor growth, indicating thereby that GM-CSFR«x
signaling in sensory nerves is causally linked to cancer pain.

Signaling mechanisms linking G-/GM-CSFR
to nociceptor sensitization

Receptors for G-CSF and GM-CSF can signal via multiple
pathways and diverse signaling mediators may be employed
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in different cell types [5, 7, 8] (see Figs. 1 and 2). The GM-
CSF receptor is a heterodimer consisting of the ligand-
binding a-subunit, which is specific for GM-CSFR, and the
signal transducing (-subunit, which is shared with the
receptors for IL-3 and IL-5 [5]. G-CSFR is a typical class I
cytokine receptor [5].

The three main signaling pathways, which are activated by
G-/GM-CSF and mediate their functions in hematopoietic
cells, include the Janus kinase-signal transducer and activator
of transcription (JAK-STAT) pathway, the mitogen-activated
protein kinase (MAPK) pathway and the phosphoinositide 3-
kinase (PI3K) pathway [5, 8], all of which have been directly
or indirectly implicated in pain modulation (see below).
Furthermore, G- and GM-CSFR are also able to signal via
other mechanisms like activation of phospholipases or
changes in cyclic nucleotide levels [7], which seem to be
of marginal importance for G-/GM-CSF functions in
hematopoietic cells, but could be essential for signaling in
nociceptors. Possible links between signaling pathways
stimulated by G-/GM-CSF and sensitization of nociceptors
are highlighted below and represented schematically in
Figs. 1 and 2.
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Fig. 1 Schematic representation of potential signaling mechanisms
linking transmembrane receptors for G-CSF and GM-CSF to
sensitization of nociceptive transducers in peripheral sensory neurons.
Binding of G-CSF or GM-CSF to their cognate transmembrane
receptors can activate a myriad of signaling cascades resulting
ultimately in sensitization and increased membrane levels of TRPV1
and Na,1.8, which representatively depicts the process of nociceptor
sensitization here. TRPV1 transduces heat, protons and lipids, such as
anandamide (4EA) and Na,1.8 is a key determinant of nociceptor
excitability. The MAP kinases ERK1/2, Src kinases, protein kinase C
(PKC) and protein kinase A (PKA) modify either the function of
TRPVI or its membrane localisation via phosphorylation. Signaling
cascades stimulated differentially by G-CSF and GM-CSF are not
depicted separately here. Dotted arrow lines indicate that intermediate
steps of the signaling cascade were omitted in the representation
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Fig. 2 Further implications of G-/GM-CSF-induced JAK-STAT
signaling in peripheral sensory neurons. G-/GM-CSF induces nuclear
translocation of STAT3 and promotes the transcription of genes
encoding TRPV1 (Trpvl), Na,1.8 (Scnl0a), K\4.2 (kend2), TREK-1
(kenk2) and possibly other pain-related genes via the JAK-STAT
pathway

Sensitization processes in nociceptors often involve
potentiation of nociceptive transducers, such as the ion
channels of the transient receptor potential (TRP) family.
For example, the vanilloid receptor TRPVI, a sensor of
noxious heat, protons and lipid algogens is potentiated via
phosphorylation by diverse protein kinases, including the
protein kinase C (PKC) and the non-receptor tyrosine
kinase, Src, amongst others [9-11] (Fig. 1). Increased
excitability can also come about by enhanced membrane
expression of nociceptive transducers or transcriptional
upregulation of key modulators. Prominent amongst the
latter are tetrodotoxin-resistant sodium channels, such as
Na,1.8, which specifically impart nociceptors with their
characteristic activation properties [9, 11] (Fig. 1). The
activation properties of nociceptors may also be changed by
shifts in the membrane potential, e.g. via modulation of
potassium channels. Long-lasting sensitization of nociceptors
can also be accompanied by structural changes, e.g. sprouting
of peripheral terminals.

Activation of the JAK-STAT pathway by G-/GM-CSF
leads to the activation of the STAT family transcription
factors, which dimerize and translocate to the nucleus upon
activation and modulate gene expression [5, 8, 12]. In
cultured DRG neurons, STAT3 is rapidly phosphorylated
and translocates to the cell nucleus upon exposure to G-/
GM-CSF [6] (Fig. 2). However, the targets of STAT3 in
pain-sensing neurons remain unknown. So far, G-CSF
treatment has been reported to enhance the expression of
nociceptive transducers such as TRPVI1, Na,1.8 and
potassium channels which are involved in regulating

excitability of sensory nerves, such as K,4.2 in cultured
DRG neurons [6] (Fig. 2). G-/GM-CSF signaling in
nociceptors was associated with hyperalgesia to thermal
and mechanical stimuli. However, it has not been worked
out which of the above targets of G-/GM-CSF signaling
mediate modulation of which modality of nociception and
further studies are required to address this important
question. The modulation of TRPV1 expression by CSF
signaling in sensory neurons is particularly interesting since
TRPV1 is an important mediator of pain evoked by tissue
acidosis, which is frequently observed in tumor-affected
tissues. Although TRPV1 is primarily associated with
thermal hyperalgesia, some studies have also linked it to
mechanical hyperalgesia under certain pain conditions
[13-16]. Blocking TRPV1 has been reported to alleviate
tumor pain [14]. Unfortunately, therapy with TRPV1
antagonists appears to be problematic on account of
hyperthermia, which has been reported in clinical trials
[17]. Another interesting aspect is that STAT3 signaling in
sensory nerves has been implicated in structural changes,
such as enhancement of neurite outgrowth in cultured DRG
neurons [18] and regeneration [19]. This raises the
possibility that STAT3 may mediate G-/GM-CSF-induced
nerve remodelling which was observed in cultured DRG
neurons as well as in tumor-affected mouse paw in vivo [6].

The two other main signaling mechanisms of G-/GM-CSF,
the MAPK pathway and the PI3K pathway, are also promising
candidates for mediating G-/GM-CSF-induced hyperalgesia.
PI3K and MAP kinases, such as the extracellular signal
regulated kinases 1 and 2 (ERK1/2) and p38, have both been
strongly implicated in sensitization of peripheral sensory
neurons [9, 20-22]. In cultured DRG neurons, application of
G-/GM-CSF leads to a rapid activation and nuclear
translocation of ERK1/2 in a PI3K-dependent manner, which
is highly interesting in the light of a study showing that the
PI3K-ERK pathway induces heat hyperalgesia by sensitizing
TRPV1 [21].

G-/GM-CSF also activate signaling pathways less known
for their functions in hematopoietic cells, but strongly
involved in peripheral sensitization. Colony-stimulating
factors are able to stimulate guanine nucleotide-binding
proteins (G proteins) [7]. Most notably in this context is a
study showing that GM-CSF stimulates G-protein activity in
a cholera toxin-sensitive manner and increases levels of
cyclic adenosine monophosphate (cAMP) in T lympho-
cytes [23]. This suggests an involvement of Gs proteins
with subsequent increase of cAMP possibly followed by
activation of protein kinase A (PKA). This pathway plays
a predominant role in sensitization of nociceptors and
mediates the action of well-known algesic agents, such as
prostaglandins and bradykinin [24-26], which cause
phosphorylation of key ion channels such as TRPV1 and
Na, 1.8 via PKA [27, 28] (Fig. 1). However, whether a
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cAMP-PKA pathway contributes to G-/GM-CSF-induced
hyperalgesia has yet to be addressed.

Another well-investigated mechanism of nociceptor
sensitization is the activation of phospholipase C down-
stream of G-protein-coupled receptors or receptor tyrosine
kinases [9, 11]. This leads to the breakdown of phospha-
tidyl inositol 4,5-bisphosphate, which subsequently
increases membrane levels of diacylglycerol and cytosolic
levels of inositol 1,4,5-trisphosphate followed by activation
of PKC. All of these signaling components are involved in
sensitization of pain-related ion channels, such as TRPV1
[29-31]. Moreover, PKC can increase membrane levels of
TRPV1 by stimulating membrane insertion [32] (Fig. 1). In
hematopoietic cells, the PLC-PKC pathway is activated by
G-/GM-CSF [33-36], suggesting that G-/GM-CSF may
also stimulate this pathway in nociceptive neurons. In
particular, the isoform PKC-¢ seems to be solely essential
for function in human bone marrow cells [37]. Interestingly
the same isoform, PKC-¢, is critical for sensitization of
TRPV1 and Na,1.8 in nociceptors [29, 38, 39]. However,
the role of PLC-PKC signaling in G-/GM-CSF-induced
hyperalgesia still remains to be investigated. The cAMP
binding protein Epac has been reported to link the cAMP/
PKA and PLC/PKC pathways [40, 41]. Whether this
important form of cross-talk between these two key pathways
in nociceptor sensitization comes about following G-/GM-
CSF exposure in chronic pain states is not known. Further-
more, G-CSF is able to activate kinases of the Src family [42,
43]. Src kinases have been shown to sensitize TRPV1 [10].
This creates another likely link between colony-stimulating
factor signaling and sensitization of nociceptors.

Addressing precise mechanisms via which G-/GM-CSF
signaling potentiates pain and nerve remodeling may be
important in understanding the mechanisms of cancer pain
and their therapeutic modulation. For example, it will be
interesting to address which nociceptive mediators and ion-
channel transducers are modulated by G-/GM-CSF signal-
ing in sensory neurons and whether the repertoire of
activated signaling components is different in sensory
neurons versus hematopoietic cells. Indeed, this could
represent one way to enable targeting G-/GM-CSF recep-
tors on pain-sensing nerves devoid of side effects on the
hematopoietic system, such as neutropenia.

The role of G-/GM-CSF in bone morphology
and bone pain

G-CSF and GM-CSF are widely used in clinical practice for
their stimulating properties on proliferation and release of
myeloid lineage cells into the blood stream [8]. Clinical
indications for therapy with these colony-stimulating
factors include prevention and treatment of neutropenia
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associated with myelosuppressive chemotherapy, reconsti-
tution after bone marrow transplantion and mobilization of
hematopoietic progenitor cells for transplantation of
peripheral blood progenitor cells. Numerous clinical studies
have documented adverse drug reactions upon clinical
usage of G-CSF and GM-CSF, the most frequent and
acutely harmful adverse event being intense bone pain.
Reported frequencies reach up to 90% [44-46], making
bone pain a serious problem of a therapy with G-/GM-CSF.
The findings of a role for G-/GM-CSF receptors expressed
on sensory neurons in nociceptor sensitization can directly
account for this poorly understood clinical observation [6].
Additional potential mechanisms arise from studies focus-
ing on the effect of G-CSF on bone metabolism. While
long-term application of G-CSF may lead to osteoporosis
[47], short-term effects on bone metabolism are less clear.
One study demonstrated decreased serum levels of osteo-
calcin and increased levels of bone-specific alkaline
phosphatase following short-term (5 days) G-CSF applica-
tion in healthy blood progenitor cell donors [48]. This
particular regulatory pattern of bone metabolism parameters
has been described in patients with osteolytic bone
metastases [49]. Osteolytic bone metastases are well known
to cause pain partly by activation of osteoclasts and local
acidosis [50]. Furthermore, bisphosphonates, a class of
drugs inhibiting osteoclast activity, can ease bone
metastases-induced cancer pain [51]. Thus, changes in
bone metabolism induced by G-CSF may represent a
bone-specific mechanism by which G-CSF causes bone
pain, in addition to direct effects on sensory neurons as
described recently [6]. This concept is in line with the
findings that tumor-derived G-CSF plays a crucial role in a
mouse model of cancer pain induced by osteolytic bone
metastases [6].

Implications for G-/GM-CSF signaling in inflammatory
pain states

In addition to a role in cancer biology, G-/GM-CSF
signaling has been implicated in the modulation of immune
function. G-CSF and GM-CSF are locally released follow-
ing tissue injury [52] or inflammation [53] and diverse
functions have been ascribed to them in modulating local
and systemic inflammatory responses [5]. Furthermore, G-/
GM-CSF may locally contribute to inflammatory pain by
directly sensitizing peripheral nerves. Indeed, G-CSF and
GM-CSF levels are elevated in wound exudates of women
having undergone caesarean delivery [52]. Interestingly,
analgesic consumption during the first 24 h after surgery
was found to be inversely proportional to G-CSF levels in
the wound exudate [52], suggesting that CSF signaling is
indeed functionally linked to exaggerated pain in humans.
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G-CSF and GM-CSF may also contribute to opioid-
induced hyperalgesia, i.e. heightened pain sensitivity
after chronic use of opioids. One study demonstrated
that cytokine skin levels, including G-CSF, and pain
sensitivity are elevated in a mouse model of post-
incisional pain following long-term application of mor-
phine [54]. These results may be explained on a
mechanistic basis by sensitization of peripheral nerves by
colony-stimulating factors. In rheumatoid arthritis, a
systemic inflammatory disorder characterized by joint
pain, G-CSF and GM-CSF levels are also highly elevated
[55-57]. G-CSF and GM-CSF are implicated in the
pathogenesis of rheumatoid arthritis [58—-60] and are consid-
ered as promising therapeutic targets [61].

Cross-talk between G-/GM-CSF and other immune
modulators of pain

A very interesting and relevant aspect in the context of
tumor—nerve interactions constitutes the potential cross-talk
between hematopoietic growth factors and several of the
previously identified paracrine mediators of cancer pain and
immune disorders. These include cytokines, such as tumor
necrosis factor o (TNF-o) and interleukins [62], as well as
peptides such as endothelin. For example, TNF-«, a
prominent mediator of cancer pain [63-65], is known to
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Fig. 3 Representation of potential local effects of G-CSF and GM-
CSF in the micromilieu of bone metastases in the context of cancer
pain. G-CSF and GM-CSF are released by tumor cells and
inflammatory cells and can act on peripheral endings of dorsal root
ganglion neurons to produce sensitization, which is perceived as
exaggerated pain (hyperalgesia). Furthermore, G-CSF and GM-CSF
can evoke nerve remodelling (hypertrophy, sprouting of sensory
nerves). Additionally, G-CSF and GM-CSF can recruit and stimulate
inflammatory cells and induce bone resorption by osteoclasts.
Inflammatory cells themselves sensitize peripheral nerve fibers by

strongly stimulate the release of several hematopoietic
growth factors, including G-CSF and GM-CSF [66]. In
turn, GM-CSF is known to synergistically enhance
interferon-induced secretion of TNF-« from monocytes.
Interestingly, GM-CSF and TNF-« synergize in enhancing
the secretion of other cytokines, such as interleukin 1 (IL-1)
[67]. That these interactions are clinically relevant is
suggested by the observation that GM-CSF, interferons as
well as diverse interleukins have been co-detected in
synovial effusions of patients with rheumatoid arthritis
[68]. The production of IL-1«x, IL-1f3 as well as TNF-« by
human mononuclear cells is stimulated by GM-CSF [69]
and in turn, IL-1 and TNF-a additively increase the
production of G-CSF and GM-CSF at the mRNA level in
human fibroblasts [70].

Endothelin 1 has gained a very prominent position in the
pathophysiology of cancer pain and is amongst the few
targets which have found its way from the bench to the
bedside in the context of the treatment of cancer pain [71].
It is interesting to note that GM-CSF potentiates the
production and release of endothelin 1 from human
monocytes, suggesting that this might be another mecha-
nism via which cancer pain can be potentiated [72].
Interestingly, a chemokine called the CC chemkokine L2
(CCL2), also known by the name MCPI1, is known to be
upregulated in splenic T lymphocytes of tumor-bearing
animals by the concurrent production of GM-CSF by tumor

hyperalgesia

cytokines (e.g. TNFa)
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release of proinflammatory cytokines (e.g. TNF-«, interleukins and
endothelins), which may also contribute to nerve remodelling.
Furthermore, osteoclasts can contribute to peripheral sensitization, in
particular by release of protons. The proliferation of some types of
tumor cells can be stimulated by local G-CSF and GM-CSF. In turn,
tumor cells can contribute also indirectly to the sensitization of
primary afferent nerve fibers by stimulating osteolysis and the local
inflammatory response. Thus, hematopoietic growth factors may serve
as central players in cancer pain via diverse, parallel mechanisms
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cells [73]. CCL2 immunoreactivity is present in tumors and
high levels of CCL2 peptide have been reported in
microperfusates from tumors. Interestingly, CCL2 directly
sensitizes sensory nerves and leads to the upregulation of
voltage-gated calcium channels, which may contribute to
tumor-induced pain in the fibrosarcoma cancer model [74].
A summary of potential roles of G-CSF and GM-CSF in the
cross-talk between tumor cells, inflammatory cells and
sensory nerves in the context of bone cancer pain is given
in Fig. 3.

Therapeutic implications

In the light of the cross-talk described above, it is very
likely that synergistic associations between multiple paracrine
mediators, which are present in the microenvironment of
tumors and nerves, can contribute to tumor—nerve-immune
interactions and to the pathogenesis of cancer-induced pain.
Combination therapies targeting hematopoietic growth factor
receptors and the above-mentioned peptides and chemokines
therefore hold a high level of promise in the clinical
management of cancer pain. In this regard, it is interesting to
note that clinical trials are currently under way with various
ligands and antagonists and chemokine receptors; further-
more, the elucidation of the crystal structure of the GM-CSFR
complex holds promise for developing small molecule drugs
which inhibit GM-CSFR-mediated functions in context of
tumor—nerve interactions [75]. One antagonist of the GM-
CSF receptor, E21R [76], has already been tested in clinical
trials for the treatment of solid tumors [77]. The effects of
E21R on cancer pain, however, were not investigated. In the
light of evidence from the studies discussed above, it seems
worthwhile including pain as another parameter to be tested
in future clinical studies.

Conclusions

Recent evidence indicates that hematopoietic growth
factors, which are secreted at high levels in the microen-
vironment of tumors, are capable of sensitizing pain-
sensing nerves in the vicinity of tumor cells and thereby
evoking exaggerated sensitivity to tactile stimuli in tumor-
bearing mice. Complex interactions occur between hema-
topoietic growth factors and other known mediators of
nerve sensitization, such as interleukins, TNF-o« and
endothelins, which promote pain hypersensitivity in dis-
eased tissue. Taken together with reports on high levels of
G-/GM-CSF in patients with rheumatoid arthritis, this
indicates that intervention of G-/GM-CSF signaling may
hold promise in the treatment of debilitating pain associated
with cancer and rheumatoid arthritis.
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