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Mitochondrial fission and fusion and their roles in the heart
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Abstract Mitochondria are dynamic organelles that usually
exist in extensive and interconnected networks that undergo
constant remodeling through fission and fusion. These
processes are governed by distinct sets of proteins whose
mechanism and regulation we are only beginning to fully
understand. Early studies on mitochondrial dynamics were
performed in yeast and simple mammalian cell culture
models that allowed easy visualization of these intricate
networks. Equipped with this core understanding, the field
is now expanding into more complex systems. Cardiac cells
are a particularly interesting example because they have
unique energetic and spatial demands that make the study
of their mitochondria both challenging and potentially very
fruitful. This review will provide an overview of mitochon-
drial fission and fusion as well as recent developments in
the understanding of these processes in the heart.
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Introduction

Mitochondria have been observed in cells since early light
microscopic studies could visualize subcellular structures. From
their earliest identification, theywere known to occur in different

shapes and sizes, ranging from long thread-like structures to
smaller grain-like structures [1–3]. Shortly after these initial
observations, recordings in living cells showed that mitochon-
dria are in constant motion and are capable of changes in both
shape and size. Throughout the years, efforts have been made
to characterize this dynamic network in different cell types and
diseases, but it was not until recently that the machinery
responsible for these processes has come to light, ushering in a
resurgence of interest in this incredible system.

The mitochondrial network is governed by the processes
of fission and fusion, which are mediated by two distinct
groups of proteins (which will be discussed in depth below;
Fig. 1). These processes are known to be essential:
knocking out the protein components of the fission and
fusion machinery causes a lethal phenotype [4, 5]. But the
underlying question of why these organelles are so dynamic
continues to be of great interest. It was discovered early on
that this dynamic network serves as a means of distribution
of mitochondrial DNA (mtDNA) to the progeny of both
yeast and mammalian cells [6, 7]. This function of the
fission/fusion processes is highlighted by experiments
demonstrating that a loss or dysfunction of these proteins
can result in a decrease or total loss of mtDNA from cells
[8–11]. The dynamic network may also act as a distribution
system for other molecules and act in the process of
mitochondrial quality control [12, 13]. As the centers of
oxygen consumption in the cell via oxidative phosphoryla-
tion, mitochondria sustain a tremendous amount of oxidative
damage to the molecules of mtDNA, lipids, and proteins over
the course of their lifetimes. It is thought that by circulating
mitochondria through a dynamic network, the damaged
mitochondria will be able to repair and replenish their DNA,
lipids, and proteins from the healthy pool [12, 13]. This
hypothesis is substantiated by the fact that blocking fission in
cells results in the accumulation of oxidized proteins [14]
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and that in the absence of OPA1 in flies there is a large
increase in ROS production [15, 16]. In wild-type cells,
overly damaged mitochondria are excluded from the network
by the requirement of membrane potential and pH gradient
for normal mitochondrial fusion [17, 18] and can be
degraded by autophagy [14]. This method of maintaining a
healthy mitochondrial population through fission and fusion
of the network allows for tight regulation and modulation of
the system and helps explain why the proteins that govern
these processes are so important to cellular survival.

The protein machinery

Since the initial work in the field of mitochondrial dynamics
was performed in yeast, flies, worms, and mammals, there are
several differing names for the fission and fusion proteins
(Table 1). The primary conserved fusion proteins are called
mitofusins (Mfn1 and Mfn2) and Opa1 in mammals and Fzo1
and Mgm1 in yeast. The major fission proteins are Drp1, Mff,
and hFis1 in mammals and Dnm1, Mdv1, and Fis1 in yeast.
Mfn1/2, Opa1, and Drp1 are all large GTPases that are known
to have the properties of self-assembly and assembly-
stimulated GTP hydrolysis. Their homo- and heteromeric
assembly causes formation of the structures that are respon-
sible for the mechanics of membrane fusion and fission.

Mitochondrial fusion

Lipid bilayer fusion events are complicatedmolecular processes
that are difficult to characterize, and this is confounded by the

double membrane structure of the mitochondria. Fzo was the
first described essential fusion proteinwhen it was characterized
inDrosophila in 1997 as a regulator of mitochondrial fusion in
sperm development [19]. This was followed by the discovery
of yeast (Fzo1) and mammalian (Mfn1/2) orthologs in 1998
and 2001, respectively [20, 21]. With the identification of
these proteins across a large range of species, it became
apparent that a common fusion mechanism had been
conserved throughout eukaryotic evolution.

Outer membrane fusion

Mitofusins reside in the outer mitochondrial membrane (OMM)
and are the proteins that are primarily responsible for OMM
fusion. They are large GTPases with two membrane-spanning
domains that orient both the N- and C-termini in the cytosol
[22]. Both the cytosolic C-terminal coiled-coil and GTPase
domains are required for fusion [4, 17, 23]. Mfns interact to
tether mitochondria for fusion and act in both cis (Mfn
molecules on the same mitochondria) and trans (Mfn
molecules on different mitochondria) manners to form
oligomeric structures [17, 24, 25]. The need for trans-
interactions was demonstrated by elegant in vitro fusion assays
that demonstrated mitochondria from wild-type and Fzo1
mutant yeast were not capable of fusing together [17]. In
mammals, it has been recorded that the mitochondrial tethering
capabilities of Mfn1 and Mfn2 differ [4], and the ratio of these
two proteins in different cell types may help explain the wide
variety of mitochondrial network phenotypes cells [26].

Mutations in Mfn2 protein are the primary cause of the
disease Charcot-Marie-Tooth type 2A (CMT2A), an inherited
neuropathy [27, 28]. Disease-causing mutations in Mfn2

Fig. 1 Schematic of the
fusion and fission processes
and major proteins involved in
mammalian cells
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cause an impairment of the fusion capabilities of Mfn2 and
result in cells with fragmented and often aggregated
mitochondria [29]. These mutations cause the formation of
dysfunctional Mfn2 homo-oligomers, but can form functional
hetero-oligomers with Mfn1 [29]. However, these Mfn2
mutations cause disease despite the background of wild-
type Mfn1 in CMT2A patients. It is thought that affected
cells in CMT2A have a particular dependence on Mfn2,
likely due to the low expression of Mfn1. This idea is
supported through work in the cerebellum showing that
Purkinje cell development is dependent on Mfn2 levels in
the presence of low endogenous levels of Mfn1 [30].

The expression of Mfn2 is regulated by both transcriptional
and posttranslational methods. One of the regulators of
mitochondrial biogenesis, peroxisome proliferator-activated
receptor γ coactivator-1β, is known to control the expression
ofMfn2 [31], as is the related peroxisome proliferator-activated
receptor δ [32]. This regulation is also controlled by exercise to
aid in the maintenance of mitochondria in muscles during this
stress [33, 34]. Posttranslational modification to Mfns can also
control protein abundance. Both Fzo1 and the Mfns have been
shown to undergo proteolytic degradation by both proteasome-
dependent and proteasome-independent processes. The Mfns
in Drosophila [35, 36] and mammals (Tanaka and Youle,
unpublished) appear to be substrates of Parkin, an E3 ubiquitin
ligase implicated in mitochondria quality control. Fzo1 in yeast
is also controlled by ubiquitination and degradation in a
pathway including Mdm30 as a regulator of ubiquitination [37,
38]. Further characterization of when and how these mito-
chondrial OMM fusion proteins are regulated and how they in
turn modulate the structure of mitochondria within the cell is
essential to our basic understanding of these organelles and
their role in disease.

Inner membrane fusion

Fusion of the mitochondrial inner membrane (IMM) is
controlled by a different large GTPase: Mgm1 in yeast and

Opa1 in mammals [39, 40]. Both proteins have multiple
isoforms that are present as either IMM or intermembrane
space (IMS) proteins and are products of complex
proteolytic processing [8, 41]. In yeast, a fraction of
Mgm1 is constitutively cleaved by PCP1 [8], while the
mammalian counterpart Opa1 is cleaved by Yme1 [42–44].
Both full-length and cleaved forms of Mgm1 are required
for efficient fusion, and the ratio between these forms is
critical [8]. For a thorough review of this proteolytic
maintenance and alternate processing upon decreases in
membrane potential, see [45]. In an analogous manner to
Fzo1, in vitro fusion assays have also shown that Mgm1
functions in both cis and trans manners [46]. In addition,
these assays revealed the distinct nature of OMM and IMM
fusion events. IMM fusion defects can result in single
OMM structures enclosing multiple IMM-bound matrices
[17], implying that in order to efficiently fuse mitochondria,
distinct membrane fusion events must occur at the
interfaces of both membranes (Fig. 1). Though the OMM
and IMM fusion events are separable, it is likely that some
proteins confer their synchronous regulation. In yeast,
Ugo1 is a likely candidate for this role. It has been shown
to be essential for fusion [47] and to bind both Mgm1 and
Fzo1 [48]. Unlike Mgm1 and Fzo1, Ugo1 is not required on
both fusing membranes and is thus not involved in tethering
the mitochondria together [49], but is required as a partner
for the regulation of other fusion components. There is no
identifiable ortholog of Ugo1 in mammalian cells, but it is
predicted that some protein fills a similar role.

As with the fusion machinery of the OMM, Opa1 mutation
causes human disease, optic atrophy type 1 (Opa1). This
disease was characterized before the underlying genetic
mutation was discovered to be the gene encoding a large
GTPase that was a mitochondrial protein involved in fusion
(Opa1) [40, 50]. It is now understood that disease-causing
mutations in this protein result in mitochondrial fission and
several other functional defects [15, 16, 51]. The disease is
caused by haploinsufficiency, explaining how a mild defect

Table 1 Essential mitochondrial fission and fusion proteins

Human protein Yeast
protein

Fly
protein

Worm
protein

Function Reference

Fusion Mfn1/Mfn2 Fzo1 FZO FZO-1 Outer membrane fusion [10, 19–21]

Opa1 Mgm1 OPA1 EAT-3 Inner membrane fusion [39, 40, 93, 94]

- Ugo1 - - Coordination of inner and
outer membrane fusion events

[47]

Fission Drp1 (also known as Dlp1) Dnm1 DRP1 DRP-1 Constriction of membranes for fission [53, 55, 95]

- Mdv1 - - Targeting/scaffold for Drp1/Dnm1 [67]

- Caf4 - - Targeting/scaffold for Drp1/Dnm1 [66]

hFis1 Fis1 FIS1 FIS-1/2 Targeting/scaffold for Drp1/Dnm1 [59, 61]

Mff - - - Scaffold/adapter protein [68]
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does not cause more widespread deficits. However, why
retinal ganglia cells are so dependent on mitochondrial
fusion remains to be understood. It has also been observed
that Opa1+/− mice have an increased number of autophaga-
somes in their retinal ganglion cells, implying a defect in not
only fusion, but mitochondrial quality control may contribute
to this disease [52].

Mitochondrial fission

Another large GTPase is primarily responsible for mitochon-
drial fission, Drp1 in mammals and Dnm1 in yeast. Both
proteins are known to self-assemble and form large oligomeric
structures. In yeast, Dnm1 localizes in puncta caused by this
self-assembly in the cytosol and on the OMM and is enriched
on the mitochondria in areas of constriction [53, 54]. In
mammalian cells, Drp1 is more diffusely localized in the
cytosol, but is also enriched at constriction sites of mitochon-
drial division [55]. Dnm1 forms structures similar to dynamin:
curved filaments in the GDP-bound state and spirals in the
GTP-bound state [56]. These spirals of GTP-bound Dnm1
form at the constriction sites of mitochondria, and the
formation of these spirals on liposomes in vitro is sufficient
to cause the constriction of liposomes [57]. Drp1 self-
assembles as well, but into smaller diameter circular/spiral
structures [55, 58]. Knocking out either Dnm1 or Drp1 results
in an elongated mitochondrial phenotype, confirming their
roles in mitochondrial fission [5, 54].

Another protein that appears to be required for mitochon-
drial fission is Fis1 [59–61]. In both yeast and mammals, this
mitochondrial OMM protein has a short C-terminus in the
IMS and an N-terminus exposed to the cytosol [59, 62]. At
least in yeast, this protein appears to be the mitochondrial
receptor for Dnm1 as it is required for the proper association
of Dnm1 with the mitochondrial membrane [59]. Over-
expression of Fis1 results in small fragmented mitochondria
[61, 62], but these results could be a consequence of
overexpression. The structure of this protein is helix-rich and
contains two tetratrico-peptide repeat motif folds [63, 64].
These structures suggest several interfaces with which Fis1
may bind to other fission proteins and act as a scaffold for
assembly of the fission machinery. Aside from Dnm1, Fis1
has been shown to bind to Mdv1 and Caf4 in yeast [65].
Mdv1 and Caf4 are also required for mitochondrial fission
[66, 67], but there are no identified correlates to these proteins
in mammalian cells, raising the question of whether Fis1 is
playing the same scaffolding role for Drp1 in mammalian
cells as in yeast. However, the OMM protein Mff has recently
been shown to be required for fission in mammals where it
could be playing a similar scaffolding role [68].

Unlike mitochondrial fusion, there are no recognized
inner membrane proteins in yeast or mammals involved in

fission. Interestingly, primitive algae and Dictyostelium
retain a bacterial division homologue, FtsZ, in the matrix
of mitochondria that is required for fission [69–71].
Although the current model is that the constrictions of
Drp1 apply to both OMM and IMM and result in the
concurrent fission of both membranes, it is possible that
some IMM proteins are needed to facilitate the formation of
constriction sites or mediate the location of these sites
relative to mtDNA nucleoids.

Mitochondrial fission and fusion in the heart

Unlike yeast or most of the mammalian cell lines used to
study mitochondrial morphology, cardiac cells have unique
spatial constraints in the myofilament-dominated cytosol.
The mitochondria in heart cells are packed tightly either
between the myofibrils (interfibrillar, Fig. 2a) or between
the myofibrils and the cell membrane (subsarcolemmal,
Fig. 2b) [72]. This fact, coupled with the difficulties in
culture and transfection of myocytes, has made the study of
fission and fusion very difficult in adult heart cells.
Mitochondria in adult cardiac cells do not form the large
mitochondrial networks that are present in some other cell
types, but rather form distinct electrical units. While these
cells express all the necessary proteins for mitochondrial
dynamics, catching mitochondria in the act of fission or
fusion has proven an elusive challenge. Since heart
mitochondria have such a heavy load of oxidative phos-
phorylation, and thus oxidative damage, it stands to reason
that maintenance of a healthy mitochondrial network by
fission and fusion is essential in these cells. While recent
efforts have not allowed the direct observation of fission or
fusion in adult heart cells, current research suggests that
there may be roles for these processes in both healthy and
diseased hearts.

Early studies of the mitochondria in cardiac cells were
focused mainly on their size and morphology, and how
disease or dysregulation could affect these properties. It
was observed that with various treatments or disease, heart
cells accumulated either abnormally large or abnormally
small mitochondrial populations [73–76]. This implies that
the mitochondria in adult cardiomyocytes are not entirely
static and, at least in the case of extreme stresses, can
undergo some forms of fission/fusion. Several groups have
more recently shown the existence of dynamic mitochon-
dria in both neonatal cardiac myocytes and cultured cells
lines of cardiac lineage [77–80]. These are both cells that
express cardiac-specific proteins, but are easier to culture
and observe than adult cardiomyocytes. However, these cell
types lack the well-organized sarcomeres that are present in
adult cells and therefore do not have a similar dense
packing and structural arrangement of their mitochondria.
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These distinctions between HL-1, neonatal cardiomyocytes,
and adult cardiomyocytes make the findings of fission and
fusion in these cells less directly applicable to the adult cell
phenotype. However, skeletal muscle cells do have a
similar dense packing to heart cells, and recent work by
Chen et al. [9] revealed an important role for Mfns in
maintaining mtDNA mass and fidelity in these cells. They
also showed that loss of Mfn1/2 results in muscle atrophy,
respiratory deficiency, and an attempt at compensation
through mitochondrial proliferation. This study indicates
that in densely packed skeletal muscle cells, Mfns play
important roles in mitochondrial maintenance.

To study whether mitochondrial fission and fusion play a
role in heart cells, Beraud et al. [78] recently studied the
dynamics of mitochondria in both adult and non-beating HL-1
cells using confocal microscopy techniques. Although the
mitochondria in adult cells exhibit some movements, these
mitochondria remain electrically distinct from one another and
did not appear to form a network. Using the dye MitoTracker
GreenTM to mark all of the mitochondria (independently of
membrane potential), they observed the fluorescent centers of
these mitochondria constantly making small movements, but
not fusing together.

Though Beraud et al. were unable to observe fusion or
fission of mitochondria in healthy adult heart cells, there is
emerging evidence that these processes exist and play some

important role in disease. Several different groups have
recently found that there are changes in the proteins
involved in fission and fusion in various forms of heart
disease. Chen et al. [81] found that a high-coronary ligation
model in adult rats caused a decrease in levels of the fusion
protein Opa1 and a fragmentation of mitochondria in heart
cells (as observed by EM). They went on to use H9c2 cells
(another cardiac myogenic cell line) to show that ischemia
can cause a loss of Opa1 protein which also corresponds to
a fragmented mitochondrial phenotype. If Opa1 is overex-
pressed in these cells prior to ischemia induction, the
mitochondrial network is partially preserved. This group
also observed that in human patients with ischemic
cardiomyopathy (ICM), there is a loss of Opa1 protein
and a fragmented mitochondrial phenotype in heart cells.
These results imply that ischemia can affect the stability or
production of Opa1 protein and suggest that Opa1 could
play a role in the pathology of ICM. Another group recently
showed that the mutations in the fission protein Drp1 result
in elongated mitochondria, reduced levels of oxidative
phosphorylation proteins, decreased cardiac ATP, and cause
a form of dilated cardiomyopathy in mice [82].

Similar to the Opa1 finding above, Ong et al. [80] also
recently observed that ischemia will cause fragmentation of
mitochondria in a cardiac-derived cell line (HL-1). Following
2 h of ischemia, they observed almost exclusively cells with

Fig. 2 Electron microscopy of
adult canine heart. a Subsarco-
lemmal mitochondria can be
observed pressed between the
myofilament proteins and the cell
membrane. b Interfibrillar
mitochondria are packed densely
between bundles of the myofila-
ment contractile apparatus. Given
these spatial constraints, large
mitochondrial networks and
fission/fusion events have been
difficult to observe in live cardiac
cells. White scale bars represent
0.5 μm. EM images courtesy of
Geoffrey Hesketh
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fragmented mitochondria. However, if they overexpressed a
dominant negative form of the fission protein Drp1
(Drp1K38A), this ischemia-induced fission almost entirely
disappeared. They showed that overexpression of the fusion-
inducing proteins Mfn1, Mfn2, or Drp1K38A protected these
cells from death caused by ischemia and increased the time
until mitochondrial permeability transition pore (MPTP)
opening, whereas overexpression of the fission protein hFis1
resulted in a higher percentage of cell death during ischemia.
These experiments imply that in cardiac-derived cells,
modulation of mitochondrial phenotype can change the ability
of these cells to resist the stress of ischemia. They went on to
show that a Drp1 inhibitor, mdivi-1 [83], can protect against
mitochondrial fragmentation, MPTP opening, and ischemia-
induced cell death in both HL-1 cells and cultured adult rat
cardiomyocytes. More importantly, this fission inhibitor was
shown to act in vivo by reducing the myocardial infarct size in
mouse hearts following 30 min of regional ischemia (followed
by 120 min of reperfusion). In other cell types, several groups
have shown that tipping the balance of fission/fusion toward
fusion not only produces elongated mitochondria but also
induces a protection against apoptosis [84]. It would appear
that mdivi-1 is performing a similar function in the heart. The
authors also show that mdivi-1 causes elongation of the
mitochondria in vivo by using electron microscopy to
determine the length of mitochondria as compared to the
length of the adjacent sarcomeres. This length measurement
may not be entirely accurate as it is made based only on the
two-dimensional area of the mitochondria provided by the
tissue sectioning for microscopy. However, it does display that
there is a stark difference in shape between the control and
mdivi-1-treated hearts, with the mdivi-1 treatment resulting in
generally larger mitochondria. Overall, Ong et al. show that
mdivi-1 can act as a cardioprotective or preconditioning agent:
a drug that, when given prior to ischemia, can protect the heart
(or other tissue) from damage. There has been great interest in
preconditioning and its mechanisms over the past few years as
researchers attempt to gain an understanding of how to protect
the human heart in the context of surgery and disease [85, 86].
Several of the known pharmaceutical preconditioning agents
are known to have effects on the mitochondria (for a review,
see [87]), but to date, mdivi-1 seems to be the first to have
direct effects on mitochondrial morphology. Other agents are
known to preserve mitochondrial function or structural
integrity during ischemia. For example, nitric oxide (NO)
has been studied for years for its roles in cardioprotection; as a
preconditioning agent, downstream signal of ischemic pre-
conditioning and posttranslational modification of protein
thiol groups (S-nitrosylation, S-NO) [88]. NO and S-NO have
also been implicated in mitochondrial morphology control via
inhibitory S-NO of Drp1 [89, 90], though this finding and its
effects remain controversial [91]. This NO-mediated regula-
tion of Drp1 has also been observed in myoblasts and is

critical for myogenic differentiation [92]. It is tempting to
speculate that the results of the study by Ong et al. on mdivi-1
and the known actions of NO imply an overarching theme: that
the preservation of an elongatedmitochondrial phenotype is the
basis for myocardial protection. Although, toomuch elongation
is clearly detrimental to myocytes as the recent paper from
Ashrafian et al. [82] indicates that mutations in Drp1 and
permanent elongation of cardiac mitochondria result in heart
failure. The balance of fission and fusion that maintains
normal mitochondrial morphology is essential, and in the
cardiac cell, perturbations of this balance can result in either
cardioprotection or failure.

Conclusions

Mitochondria exist in most cell types not as the small ovals
that appear in textbooks but as a rich and dynamic network.
Through the actions of multiple proteins, mitochondria fuse
and divide to maintain the health of this network. In the
adult heart, there is some controversy over the size and
interconnectedness of the mitochondria, but studies are
starting to show that there is at least some evidence for
fission and fusion. Future studies are required to prove that
these processes do occur in adult myocytes, and how and
why these processes are dysfunctional in disease.
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