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Abstract Dynamin 2 (DNM2) mutations cause autosomal
dominant centronuclear myopathy, a rare form of congen-
ital myopathy, and intermediate and axonal forms of
Charcot–Marie-Tooth disease, a peripheral neuropathy.
DNM2 is a large GTPase mainly involved in membrane
trafficking through its function in the formation and release
of nascent vesicles from biological membranes. DNM2
participates in clathrin-dependent and clathrin-independent
endocytosis and intracellular membrane trafficking (from
endosomes and Golgi apparatus). Recent studies have also
implicated DNM2 in exocytosis. DNM2 belongs to the
machinery responsible for the formation of vesicles and
regulates the cytoskeleton providing intracellular vesicle
transport. In addition, DNM2 tightly interacts with and is
involved in the regulation of actin and microtubule net-
works, independent from membrane trafficking processes.
We summarize here the molecular, biochemical, and
functional data on DNM2 and discuss the possible

pathophysiological mechanisms via which DNM2 muta-
tions can lead to two distinct neuromuscular disorders.
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Abbreviations
PI4,5P2 phophatidylinositol 4,5-bisphosphate
PI3,4,5P3 phophatidylinositol 3,4,5-triphosphate
PI3,4P2 phophatidylinositol 3,4-bisphosphate
PI4P phophatidylinositol 4-monophosphate
PI3P phophatidylinositol 3-monophosphate
LPA lysophosphatidic acid
GLUT4 glucose transporter 4
TGN trans-Golgi network
BAR Bin1/Amphiphysin/RVS167

Dynamin 2 (DNM2) belongs to a superfamily of large
GTPases, including three classical dynamins and several
dynamin-like proteins, which are involved in a wide range
of cell functions [1]. The importance of DNM2 was
emphasized in 2005 with the demonstration of DNM2 gene
mutations causing two distinct human diseases [2, 3]. Our
purpose is to review the molecular and functional data on
DNM2 to highlight the pathophysiological hypotheses in
DNM2-related diseases. Knowledge of the dynamins
mainly comes from studies of the neuronal dynamin 1
(DNM1). However, we have focused this review on DNM2
since several studies have demonstrated notable differences
between DNM1 and DNM2 [4–7].
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DNM2 gene organization and isoforms

DNM2, one of three classical dynamins, was identified in
rat liver and brain cDNA libraries [4, 8]. A human
homologue was thereafter identified by screening of a
fibroblast library [9]. The human transcript (3.6 kilobases)
is ubiquitously expressed, with higher abundance in heart
and skeletal muscle [9]. Human DNM2 is encoded by the
DNM2 gene located on the short arm of chromosome 19
(19p13.2). The gene is composed of 22 exons in a 114-
kilobase region. Four major isoforms are expressed by the
DNM2 gene using a combination of two alternative splice

sites (Fig. 1a). Exons 10 and 10bis have the same length
(139 base pairs encoding the amino acids 399–445 in the
middle domain) and are alternatively spliced. In addition,
the exon 13bis (12-base pair length) can be spliced leading
to the translation of proteins of 866 or 870 amino acids
(Fig. 1) without or with the GEIL sequence at position 516–
519 in the C-terminal part of the middle domain (MD). The
four major isoforms have been shown to be expressed in a
panel of rat tissues including brain, heart, kidney, liver,
lung, pancreas, and testis [10]. The human tissue expression
pattern is unknown, but we have shown expression of the
four isoforms in skeletal muscle and peripheral nerve [11].

Fig. 1 DNM2 gene organization and mutations. a Schematic
organization of the human DNM2 gene showing alternative splicing.
Asterisks indicate the seven exons in which disease-associated
mutations have been identified. Exons were colored relative to the
encoded protein domain illustrated in (b). The combination of the two
alternative splice sites leads to the translation of four DNM2 isoforms.
Isoforms 1, 2, 3, and 4 are also known as isoforms aa, ba, ab, and bb,
respectively. b Schematic representation of DNM2 showing the five
protein domains and the position of the 19 disease-associated
mutations. CMT-mutations are indicated in green and CNM-
mutations in red. The two regions of variation (at positions 399-445

and 516-519) between the four isoforms were indicated in the MD by
black lines. In black are indicated the sites of post-translational
modifications (phosphorylation, nitrosylation, and cathepsin L cleav-
age). The CMT-mutation G358R is located in the cathepsin L cleavage
site. In blue are indicated the DNM2 constructs with point mutations
or small deletions overexpressed in vitro [60]. Insert in b: Position of
the CNM- and CMT-mutations on the 3D structure of the PH domain
(accession number 63660 in the NCBI 3D structure database). The N-
terminal part of the domain, bearing CMT-mutations and only one
CNM mutation, is composed of β-sheets involved in the interaction
with membrane phosphoinositides
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Specific functions of these isoforms will be discussed
below.

DNM2 structure and regulation

The 98 kDa DNM2 is a large GTPase composed of a N-
terminal GTPase domain, an MD, a pleckstrin homology
domain (PH), a GTPase effector domain (GED), and a C-
terminal proline rich domain (PRD; Fig. 1b). The catalytic
GTPase domain is responsible for GTP binding and
hydrolysis, whereas the MD is involved in DNM2 self-
assembly [12] and in GTP hydrolysis-induced conforma-
tional change of the protein [13]. The PH domain interacts
with membrane phosphoinositides and therefore is involved
in the targeting of dynamin to membranes [14]. The DNM2-
PH domain displays phosphoinositide binding affinity
following the order: PI4,5P2≈PI3,4,5P3≈PI3,4P2>PI4P≈
PI3P, and DNM2 oligomerization appears crucial for high
affinity [15]. The GED probably participates in the self-
assembly of DNM2 and acts as a GTPase-activating protein
[16]. The PRD contains multiple Src homology 3 (SH3)
binding motifs and mediates multiple protein–protein inter-
actions (Table 1). A general model of dynamin intramolec-
ular interaction was proposed, in which the GTPase domain,
MD and GED interact to drive self-assembly and the PH
domain mediates interaction with membrane lipids [1].

In vitro at high ionic strength, DNM2 is in monomer–
tetramer equilibrium. At low ionic strength, DNM2 self-
assembles into higher-order aggregates leading to a drastic
increase in GTPase activity [17, 18]. Microtubules or
phospholipid vesicles, especially those containing
PI4,5P2, also induce self-assembly and increase DNM2
GTPase activity [5, 17, 19]. Purified from baculovirus,
GTP-bound and GDP-bound monomer DNM2 has Kd
values of 13.2 and 7.1 µM, respectively, with GTPase
activity of 37 nmol/mg/min. When in an oligomeric state,
the GTPase activity of DNM2 markedly increased and Kd
values decreased [20]. When compared with small
GTPases, DNM2 exhibits a relatively low affinity for
GTP (Km=12 µM) but high intrinsic rates of GTP
hydrolysis.

DNM2 activity is regulated by post-translational modifi-
cations. DNM2 becomes phosphorylated on Tyr231 (MD)
and Tyr597 (PH domain) through Src-mediated phosphoryla-
tion, leading to albumin endocytosis [21]. In contrast,
dopamine leads to the dephosphorylation of DNM2 by
increasing protein phosphatase 2A activity, necessary for
dopamine-induced Na+K+-ATPase endocytosis [22]. S-nitro-
sylation of Cys86 (GTPase domain) and Cys607 (PH
domain) by nitric oxide (NO) increases GTPase activity
and endocytosis [23]. In a mouse model of kidney disease,
cathepsin L induction leads to the cleavage of the cytoplas-

mic DNM2 at positions 355–360 (Fig. 1b) [24]. Sever et al.
identified a cathepsin L cleavage site at positions 355–360 in
the middle domain (Fig. 1b). Actin network is then
reorganized in renal podocytes leading to filtration impair-
ment and proteinuria [24]. It remains to be determined
whether such proteolytic regulation occurs only in patholog-
ical context and in other tissues. Finally, it was demonstrated
that Ca2+ inhibits DNM2 GTPase activity (IC50=150 µM)
and receptor-mediated endocytosis in Hela cells [25]. This
may have physiological importance in excitable cells like
neurons and muscle fibers.

It is still largely unknown how DMN2 expression is
regulated. In rat, DNM2 is up-regulated during normal
pancreatic development after birth [26] but not in the liver
[8] or the brain [27]. In mouse, treatment with opioid
agonist results in increased DNM2 protein content in the
spinal cord [28] whereas opioid antagonist decreases
DNM2 abundance [29]. These changes in the level of
DNM2 expression are inversely correlated with opioid
receptor density at the plasma membrane, suggestive of
feed-back regulation.

DNM2 function

Endocytosis DNM2 has been implicated in the formation of
clathrin-coated pits (Fig. 2) [17]. In the cytosol, DNM2
forms a complex with sorting nexin 9 (SNX9) and fructose-
1,6-bisphosphate aldolase [30]. Phosphorylation of SNX9
releases aldolase from the SNX9–DNM2 complex which is
now competent for membrane targeting [30, 31]. DNM2
anchorage to the membrane occurs via interaction with
PI4,5P2 membrane phosphoinositide [32] and BAR domain
proteins, amphiphysin 1, amphiphysin 2, and SNX9
(Table 1) in curved sites of the membranes. DNM2 forms
an oligomer helical structure around the neck of the nascent
vesicles [17], and GTP hydrolysis is associated with the
release of the vesicles. Interestingly, DNM2 co-localizes
with clathrin before and during the internalization of the
coated vesicle [6] suggesting that DNM2 plays also a role
during the maturation of clathrin-coated pits [33].

DNM2 is also involved in clathrin-independent endocy-
tosis by its participation in the formation of the phagosomes
and caveolae [34, 35]. Predescu et al. described a protein
complex, including DNM2, intersectin, and SNAP-23 that
was important for the internalization of caveolae [36]. In
caveolae, DNM2 also interacts with endothelial nitric-oxide
synthase (eNOS) in bovine aortic endothelial cells [37]
where DNM2 may regulate eNOS activation and the NO
signaling cascade [37, 38]. DNM2 also participates in coat-
independent endocytosis processes, i.e., micropinocytosis
and macropinocytosis, by which fluid droplets and specific
membrane components are internalized [39, 40].
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Table 1 Direct or indirect interactions with DNM2

Name OMIM Site of interaction in DNM2 Function Reference

Abp1 610106 nd Endocytosis-actin bridge [52, 95]

Amphiphysin 1 600418 PRD Membrane trafficking [14, 96]

Amphiphysin 2 601248 PRD Membrane trafficking [14, 97]

Annexin VI 114070 nd Membrane trafficking [98]

Aquaporin 2 107777 nd Aquaporin trafficking [99]

Arc 612461 PH AMPA receptor trafficking [100]

CAP 605264 nd Actin remodeling during endocytosis [101]

β-catenin 116806 nd Blood–testis barrier integrity [102]

Caveolin-1 601047 nd Endocytosis [73, 103, 104]

CBL 165360 nd Actin remodeling during endocytosis [105]

CIP4 604504 nd GLUT4 trafficking [106]

Complexin I 605032 nd Acrosome formation and/or exocytosis [107]

Complexin II 605033 nd Acrosome formation and/or exocytosis [107]

cortactin 164765 PRD Actin assembly–endocytosis [53, 54, 104]

c-Src 124095 PRD Cell signaling and membrane trafficking [108]

eNOS 163729 nd NO production–cell signaling [37, 109]

Ese1 602191 PRD Endocytosis [110]

FAK 600758 PRD Focal adhesion disassembly [58]

FBP17 606191 PRD Actin reorganization during endocytosis [111, 112]

Grb2 108355 PRD Receptor internalization and signaling [108, 113, 114]

IL-5Rα 147851 nd IL-5 signaling pathway and trafficking [115]

Jak2 147796 nd IL-5 signaling pathway [115]

JAM-A 605721 nd Blood–testis barrier integrity [102]

Kalirin 12 604605 GTPase Membrane trafficking [116]

KDR 191306 nd Receptor signaling and expression [117]

LYN 165120 PRD IL-5 signaling pathway [108, 115]

MLK2 600137 PRD Actin (filipodia and membrane ruffles) [118]

Myosin 1E 601479 PRD Receptor-mediated endocytosis [119]

N-cadherin 114020 nd Blood–testis barrier integrity [102]

Nef – MD / GED HIV-1 entry [120]

Nostrin 607496 PRD eNOS trafficking [121]

N-WASp 605056 nd Actin remodeling [56]

Occludin 602876 nd Blood–testis barrier integrity [102]

p85 171833 PRD [108]

PDEγ 180073 nd Cell signaling [122]

PLCγ 172420 PRD [108]

PLD2 602384 nd Cell signaling [123]

Shank 1 604999 PRD Postsynaptic membrane turnover [124]

Pyk2 601212 nd Podosome dynamics [125]

Shank 2 603290 PRD Postsynaptic membrane turnover [124]

SNX9 605952 PRD Membrane remodeling–actin dynamics [126, 127]

SNX18 – PRD Endosomal trafficking [127]

SNX30 – PRD Membrane trafficking? [127]

Syndapin 2 604960 PRD Vesicle formation from the TGN [45]

Syndecan-4 600017 PH Actin-stress fibers and focal adhesion sites [62]

Tks5/FISH – PRD Cell signaling [128]

TULA 605736 nd EGFR trafficking [129]

Vav1 164875 PRD T cell activation by actin remodeling [130]

β-tubulin 191130 PRD [14]
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Intracellular membrane trafficking DNM2 is targeted to the
Golgi apparatus where it is predominantly localized in the
trans-Golgi network (TGN) [41]. Anti-DNM2 antibody
injection and over-expression of DNM2 mutants impair
vesicle formation from the TGN [42, 43]. Association of
DNM2with cortactin and syndapin 2 is required for trafficking
of nascent vesicles from the TGN [44, 45]. DNM2 is also
found at the clathrin-coated buds of early endosomes [46] and
in late endosomes in Hela cells, located to the tubulo-
vesicular appendices [47]. In these two cases, interfering
DNM2 mutant impairs the recycling of components from the
endosomal system towards the plasma membrane or TGN
[46, 47]. These data highlight the role of DNM2 in the
secretory pathway and in the sorting of cell components from
the Golgi apparatus and endosomal compartment.

Exocytosis DNM2may participate in endocytosis–exocytosis
coupling as suggested in mouse pancreatic β-cells [48].

However, a role for DNM2 in exocytosis alone has been
reported. During cell-mediated killing by natural killer (NK)
cells, DNM2 co-localizes with lytic granules after NK cell
activation and is required for fusion of the granules with the
plasma membrane [49]. Similarly in macrophages, focal
exocytosis is blocked after anti-DNM2 antibody microinjec-
tion [50], and DNM2 GTPase activity regulates the fusion of
secretory vesicles at the plasma membrane [51]. Further
studies will be necessary to precisely identify the molecular
role played by DNM2 in the exocytosis machinery.

Actin network Actin-based dynamic processes are crucial
for late-stage endocytosis and vesicle formation, and
DNM2 interacts with the actin-binding proteins Abp1
(actin-binding protein 1) [52] and cortactin [53, 54]. Abp1
is an Src kinase which provides a physical bridge between
the endocytosis machinery and the cortical actin network,
and cortactin is a component of the clathrin-mediated

Table 1 (continued)

Name OMIM Site of interaction in DNM2 Function Reference

γ-adaptin 603533 PRD [14]

γ-tubulin 191135 MD Centrosome cohesion [65]

ZO1 601009 nd Blood–testis barrier integrity [102]

Abp1 actin-binding protein, CAP CBL-associated protein, CBL Cas–Br–M murine ecotropic retroviral transforming sequence homolog, CIP4
cdc42 interacting protein-4, eNOS endothelial nitric-oxide synthase, Ese1 EH domain and SH3 regulator of endocytosis 1, FAK focal adhesion
kinase, FBP17 formin-binding protein 17, Grb2 growth factor receptor-bound protein 2, IL-5Rα α subunit of the interleukin 5 receptor, Jak2
Janus kinase 2, JAM-A junctional adhesion molecule A, KDR kinase insert domain receptor also known as: vascular endothelial growth factor
receptor-2, MLK2 mixed-lineage kinase 2, Nef accessory protein of the HIV-1, N-WASp Wiskott Aldrich syndrome protein, PDEγ inhibitory γ
subunits of the retinal cGMP phosphodiesterase, PLCγ phospholipase C gamma 1, PLD2 phospholipase D2, SNX9 sorting nexin 9, Tks5/FISH
tyrosine kinase substrate 5/five SH3 domains, TULA Cbl- and ubiquitin-interacting protein T-cell ubiquitin ligand, Vav1 Rho family guanine
nucleotide exchange factor Vav1, ZO1 Zonula occludens 1

Fig. 2 DNM2 cellular
functions. Representation
of the multiple cellular local-
izations reported for DNM2
(in red)EE early endosome, LE
late endosome
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endocytosis machinery. However, interaction between
DNM2 and the actin cytoskeleton may have another
cytoskeletal role such as in the formation of membrane
tubules and protrusions. Furthermore, a recent study
showed the crucial function played by the DNM2-
cortactin complex in the global organization and remodel-
ing of the actomyosin cytoskeleton [55]. In addition,
DNM2 is present in cortical ruffles and lamellipodia, both
important in cell migration [10, 53]. The supramolecular
complex including DNM2, cortactin, and Arp2/3 mediates
the reorganization of actin allowing lamellipodia formation
at the leading edge of migrating cells [56]. Disruption of
DNM2 functions by DNM2-K44A mutant or small inter-
fering RNA (siRNA) inhibits the formation of lamellipodia
[57]. Similarly, under PDGF stimulation, DNM2 is con-
centrated within the leading ruffles of migrating fibroblasts
where it co-localizes with cortactin [53]. To allow cell
migration, DNM2 participates in disassembly of focal
adhesions, as well as β-integrin internalization at the rear
of the cell [58, 59]. Additionally, DNM2 is enriched in
specialized membrane protrusions such as podosomes and
invadipodia. Podosomes represent attachment sites between
cells and substratum [60], and invadipodia are focalized
matrix degradation sites [61]. Inhibition of DNM2 dimin-
ishes the amount of such structures [61]. It has also been
shown that DNM2 regulates the formation of actin-stress
fibers by interaction with the cell surface heparin sulfate
proteoglycan syndecan-4 [62]. Expression of DNM2-
mutant, truncated for the PRD domain mediating interac-
tion with cortactin, increases the number of actin-stress
fibers, which is associated with abnormal cell shape [53].

Microtubule network and MTOC DNM2 interacts with
microtubules [17, 63], and the binding region was located
to the PRD [5, 64]. It was shown that down-regulation of
DNM2 by siRNA increases the amount of acetylated
tubulin, a more stable form of tubulin in microtubules and
reduces their growing capacity [63], suggesting that DNM2
may regulate the polymerization–depolymerization equilib-
rium of microtubules. Through its interaction with micro-
tubules, DNM2 appears involved in Golgi apparatus
cohesion [63]. Moreover, DNM2 has been identified as a
component of the centrosome, the main microtubule
organizing center (MTOC), where it binds to γ-tubulin
[65]. The centrosome consists of a pair of centrioles
embedded in a filamentous pericentriolar matrix, where γ-
tubulin is essential for microtubule nucleation. The function
played by DNM2 at the centrosome is still unknown, but
DNM2 silencing by siRNA suggests a role in centrosome
splitting [65]. Likewise, participation of DNM2 in all the
phases of mitosis has also been reported. DNM2 is detected
in the two MTOC during early prophase, along the mitotic
spindle during metaphase and in the spindle midzone

region during anaphase and early telophase [66]. Thereaf-
ter, DNM2 is accumulated at the intracellular bridge where
the final separation occurs. The time required for separation
of the two daughter cells is longer in DNM2 knock-out
cells [40]. Taken together, these data suggest that DNM2
may regulate microtubule-dependent processes by acting on
microtubule dynamics and organization.

Apoptosis In order to establish a stable Hela cell line over-
expressing DNM2 isoform 2, Fish et al. have reported a
significant cell toxicity in dividing cells [67]. The cytotoxicity
occurred via induction of apoptosis by a p53-dependent
mechanism. Similar results were gained in vascular smooth
muscle cells [68]. The capacity to trigger apoptosis appears
DNM2-specific as DNM1 over-expression does not induce
apoptosis [67]. The GTPase domain of DNM2 is crucial to
induce apoptosis [69]. In addition, a point mutation (p.
I684K) in the DNM2 GED enhances the apoptosis induction
by the wild-type DNM2 suggesting that GED negatively
regulates this DNM2 function [69]. Mitochondria are key
players in apoptosis and, interestingly, DNM2 has been
detected in isolated mitochondria from bovine lymphoblas-
toid BL-3 cells [70]. However, to our knowledge, such
localization has not been reported in other cell lines or
tissues. DNM2 also regulates the apoptosis-inducing Fas–Fas
ligand pathway by facilitating the transport of Fas from the
trans-Golgi network to the plasma membrane [71].

Specific functions of DNM2 isoforms In a cultured rat
epithelial cell line (clone 9), both DNM2 isoforms 1 and 3
show punctuate labeling of clathrin heavy chain-positive or
heavy chain-negative structures, but only isoform 1, with
the GEIL sequence in the MD, appears located to the Golgi
apparatus [10]. These data suggest a role for the GEIL
sequence in targeting to the Golgi apparatus. However, cell-
type specificity probably exists, as isoforms without the
GEIL sequence were also shown to be targeted to the Golgi
apparatus in MDCK cells [43], 3T3L1 adipocytes [72], and
fibroblastoid-like cells derived from mouse embryonic stem
cells [40]. Nevertheless, this possible differential localiza-
tion argues for distinct functions. Indeed, in clone 9 cells,
the K44A mutants of isoforms 2 and 4 are able to inhibit
fluid-phase endocytosis, whereas the mutant forms of
isoforms 1 and 3 do not [39] and are also more potent
inhibitors of clathrin-mediated endocytosis. Similarly, in a
hepatocyte cell line, the K44A-isoform 1 inhibits caveolae-
dependent internalization, but not the other K44A mutant
isoforms [73]. In fibroblastoid-like cells derived from
mouse embryonic stem cells, isoforms 2 and 4 are the
most efficient at rescuing export from the Golgi in DNM2
knock-out cells [40]. Altogether, these data suggest a
preferential involvement of isoforms 1 and 3 in clathrin-
and caveolae-dependent endocytosis, whereas isoforms 2
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and 4 participate in uncoated endocytosis and trafficking
from the Golgi apparatus. However, cell-type specificity
also occurs as the four isoforms exhibit a similar subcellular
distribution in 3T3L1 adipocytes, and dominant negative
mutants of each isoform similarly affect basal and insulin-
stimulated GLUT4 trafficking [72].

DNM2 and human diseases

Mutations in the DNM2 gene cause rare forms of the
Charcot–Marie-Tooth peripheral neuropathy (CMT) [2, 74–
77] and autosomal dominant centronuclear myopathy
(CNM) [3, 11, 78–80]. The 19 reported heterozygous
mutations affect only the MD, the PH domain, and the
GED (Fig. 1b). DNM2-related CNM is a slowly progres-
sive congenital myopathy characterized by frequent cen-
trally located nuclei in muscle fibers. The most common
clinical features are delayed motor milestones, facial and
generalized muscle weakness, ptosis, and ophthalmoplegia
[81]. Nevertheless, the severity of DNM2-CNM is variable,
ranging from severe neonatal to mild late-onset forms.
DNM2-CMT is a peripheral neuropathy characterized by
progressive muscle weakness and atrophy. DNM2 muta-
tions can cause axonal CMT (CMT2) and dominant
intermediate CMT (DI-CMT-B). In some CMT patients,
neuropathy is associated with neutropenia [2, 75, 77] but
this association has not been described in DNM2-CNM
patients. Clinical overlap could exist in some patients [81],
but the majority of patients are affected by a tissue-specific
disorder. No clear genotype–phenotype relationship can be
generated, except for the de novo mutations located in the
C-terminal part of the PH domain, which are all associated
with a severe neonatal CNM phenotype [98]. In these
patients, the phenotype progressively improves, suggesting
compensatory mechanisms.

More recently, the DNM2 gene has been described as a
susceptibility gene for late-onset Alzheimer disease [82],
and DNM2 expression was found to be decreased in the
brains of these patients [83]. Cognitive impairments have
been reported in some CNM patients harboring the p.
E368Q [78], p.R465W [84; Family 1], and p.R369Q [84;
Families 2 and 3] DNM2 mutations. Future studies will be
necessary to determine the prevalence of central nervous
system involvement in DNM2-related diseases.

Pathophysiological hypotheses

The DNM2 mutations identified so far in CNM and CMT
are heterozygous missense mutations or small deletions
(Fig. 1). We have shown that DNM2 transcript, protein

expression, and localization are normal in fibroblasts from
CNM patients [3, 11]. These data are in agreement with
DNM2 mutants having a dominant negative effect, result-
ing in a loss of function of DNM2 in endocytosis [11] or in
microtubule-related functions [63] (see below).

Membrane trafficking and signaling pathway hypothesis In
addition to the DNM2 mutations in autosomal dominant
CNM, mutations in the BIN1 gene encoding amphiphysin 2,
a partner of DNM2 in the endocytic process, cause the
autosomal recessive form of the disease [85]. This suggests
that endocytic impairment is a potential pathomechanism of
autosomal CNM. Indeed, impairment of clathrin-mediated
endocytosis was reported in cultured cells expressing CNM-
or CMT-DNM2 mutants [2, 11, 63]. Among these studies,
one CMT-mutant was unable to block the uptake of
transferrin, a marker of clathrin-mediated receptor endocyto-
sis [63]. Nevertheless, the transferrin-containing compart-
ment was not located to the perinuclear region after 30 min
of incubation showing that its intracellular trafficking was
impaired by the CMT-mutant. The crucial question which
remains to be explored is how a defect in endocytosis can
alter the cell function, especially in a tissue-specific manner.
On one hand, inhibition of DNM2-dependent trafficking
may lead to a decrease in receptor stimulated signaling as
shown for the MAPK ERK1/2 pathway [11]. On the other
hand, DNM2 mutations may lead to a prolonged half-life of
various proteins at the cell surface due to a defect in protein
removal, as shown for the GLUT4 glucose transporter [72].
A deregulation of glucose transport in patients with DNM2
mutations could have a strong impact on muscle fibers given
their high glucose consumption.

To date, the impact of disease-associated DNM2 mutants
on other DNM2-dependent membrane trafficking processes,
especially in endosomal and Golgi pathways, has not been
studied. We cannot exclude a participation of these pathways
in the pathomechanisms of DNM2-related disorders.

Cytoskeleton impairment and its putative role on nuclear
positioning In DNM2-CNM, the majority of patients
harbor a mutation in the MD, which is essential for the
centrosomal localization of DNM2 and for its interaction
with γ-tubulin [65]. Previous results in skin fibroblasts
indicate that transfected GFP-DNM2-mutants fail to cor-
rectly target to the centrosome, suggesting that DNM2
mutations might cause CNM by interfering with centroso-
mal functions [3]. In addition, CMT-related DNM2 mutants
can disorganize the microtubule cytoskeleton [2], and one
particular CMT-mutant was shown to impair microtubule-
dependent membrane transport [63]. In addition to their
roles in intracellular trafficking, the microtubule and actin
networks regulate cellular architecture including nuclear
positioning [86, 87]. Thus, cytoskeletal impairment may
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play a role in the abnormal central location of the nuclei in
the muscle fibers in CNM. In CMT, DNM2 mutations
could also induce a destabilization of the microtubule
network leading to abnormal axonal transport and protein
trafficking, a pathophysiological mechanism described
previously in various forms of CMT [88].

T-tubule hypothesis in CNM The X-linked recessive form of
CNM (also called XLMTM for X-linked myotubular myop-
athy) is due to mutations in the MTM1 gene encoding the
myotubularin, and the autosomal recessive and dominant
CNMs result from mutations of amphiphysin 2 and DNM2,
respectively [89]. The muscle specific isoform of amphiphy-
sin 2 is concentrated at T-tubules in mouse and drosophila
and is involved in the organization of this plasma membrane
invagination acting in excitation–contraction coupling [90,
91]. Myotubularin is also located to the T-tubules in mouse
[92] and zebrafish [93], and knock-down of myotubularin in
these species leads to disorganization of the T-tubule system,
reduction in Ca2+ release from the sarcoplasmic reticulum,
and defect in excitation–contraction coupling [93, 94]. In
addition, abnormal localization of T-tubule markers was
shown in muscle biopsies from BIN1-CNM and MTM1-
CNM patients [85, 93], suggesting that an excitation–
contraction coupling impairment due to T-tubule dysfunction
could be a common pathomechanism leading to muscle
weakness in CNMs. Future studies are necessary to explore
this hypothesis in the DNM2-CNM in which no morpholog-
ical abnormalities of the T-tubule system have been reported
to date.

Concluding remarks and open questions

Given the numerous distinct functions in which the
ubiquitously expressed DNM2 is involved, the identifi-
cation of pathophysiological mechanisms will be a
challenge. The phenotypes encountered in CNM and
CMT patients could be due to impairment of the various
functions of the protein. To date, there is no explanation
for the tissue-specific impact of the DNM2-mutations in
human diseases. DNM2 is engaged in numerous protein–
protein interactions (Table 1), but these interactions in
muscles and nerves are largely unexplored. Another
unresolved question is whether each particular mutation
can similarly affect the functions of the four DNM2
isoforms. Finally, whereas some data emerge on the
impact of disease-related DNM2 mutations on the micro-
tubule network, their impact on the actin cytoskeleton is
totally unknown. Future developments of animal models
will certainly be useful to better determine the main
functions of DNM2 in vivo, especially in skeletal muscle

and nerves where membrane trafficking displays unique
cell length dependent characteristics.
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