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Abstract The choices for blood vessels to undergo angio-
genesis or stay quiescent are mostly determined by the
status of tissue oxygenation. A major link between tissue
hypoxia and active angiogenesis is the accumulation of
hypoxia-inducible factor (HIF)-α subunits which play a
major role in the transcriptional activation of genes en-
coding angiogenic factors. HIF-α abundance is negatively
regulated by a subfamily of dioxygenases referred to as
prolyl hydroxylase domain-containing proteins (PHDs)
which use O2 as a substrate to hydroxylate HIF-α subunits
and hence tag them for rapid degradation. Under hypoxic
conditions, HIF-α subunits accumulate due to reduced
hydroxylation efficiency and form transcriptionally active
heterodimers with HIF-1ß to activate the expression of
angiogenic factors and other proteins important for cellular
adaptation to hypoxia. Angiogenesis is regulated by a com-
bination of at least two different mechanisms. The paracrine
mechanism is mediated by non-endothelial expression of
angiogenic factors such as vascular endothelial growth
factor (VEGF)-A, which in turn interact with endothelial
cell surface receptors to initiate angiogenic activities. In
the autocrine mechanism, endothelial cell themselves are
induced to express VEGF-A, which collaborate with the
paracrine mechanism to support angiogenesis and protect

vascular integrity. Because of critical roles of PHDs and
HIFs in regulating angiogenic activities, studies are under-
way to assess their candidacy as targets for angiogenesis
therapies.

Keywords Angiogenesis . Hypoxia inducible factors .

Ischemia . HIF-1α . HIF-2α . PHD2 . Prolyl hydroxylases .

Vascular development

Introduction

In most normal adult tissues, the endothelium is quiescent,
and blood vessels do not undergo significant growth. Such
a status is conditional to adequate tissue oxygenation,
which varies between 30~50 mmHg (4~6.5% of one
atmospheric pressure) depending on specific tissue types
[29, 99]. These values are significantly below the normal
oxygen partial pressure in ambient room air and hence are
often referred to as physiological hypoxia. Tissue oxygen
content may fall further below physiological hypoxia levels
for a variety of reasons. For example, oxygen consumption
outpaces supply in rapidly expanding embryonic tissues,
thus leading to developmental hypoxia which plays a key
role in the development of the vascular system. In adult
tissues, occlusion of coronary arteries results in cardiac
tissue hypoxia and heart attack. While physiological
hypoxia does not typically promote vascular growth, a
further reduction in tissue oxygen tension may trigger
angiogenesis.

Expression of angiogenic molecules in oxygen deficient
tissues is mostly due to the accumulation of hypoxia-
inducible factors (HIFs), which are heterodimeric tran-
scription factors of α and ß subunits. HIFs activate the
transcription of a long list of genes encoding a diverse set
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of proteins, such as glycolytic enzymes, erythropoietin,
and VEGF-A. Oxygen-dependent regulation of HIF-α
abundance is mediated by a subfamily of dioxygenases,
including PHD1, PHD2, and PHD3 (prolyl hydroxylase
domain-containing proteins) [6, 23, 42], and a polyubi-
quitination and proteasomal degradation mechanism that
rapidly degrades hydroxylated HIF-α [44, 46, 72]. Since
molecular oxygen is a substrate to prolyl hydroxylase
domain-containing proteins (PHDs), reduced oxygen
content in a hypoxic environment favors HIF-α accumu-
lation due to poor hydroxylation reactions.

This review focuses on the regulation of angiogenesis by
changes in tissue oxygen levels. Specifically, the following
topics will be discussed: (1) how fluctuations in tissue
oxygen levels are detected by intracellular mechanisms; (2)
how tissue hypoxia regulates the expression of angiogenic
molecules; (3) mouse models for the study of oxygen
sensing mechanisms and angiogenesis; and (4) oxygen
sensing and pathological angiogenesis.

Oxygen sensing mechanisms

Prolyl hydroxylase domain-containing proteins

PHDs form a subfamily of 2-oxoglutarate (2-OG)/Fe(II)-
dependent dioxygenases that are evolutionarily conserved
from worms to mammals [6, 23]. While Caenorhabditis
elegans or Drosophila melanogaster each has a single PHD
enzyme, three PHD isoforms, including PHD1, PHD2, and
PHD3, are present in mammalian cells [6, 23]. PHDs are
often referred to as egg laying nine (EGL-9 or EGLN) due
to the fact that the PHD prototype was first discovered as a
protein encoded by the EGL-9 locus in C. elegans; they are
also called "HIF prolyl hydroxylases (HPH)" or "proline-4
hydroxylases for HIF-α (P4H-HIF)" based on their main
functions [37]. A fourth HIF-α hydroxylase, P4H-TM, has
also been identified recently [51]. However, this enzyme is
distinct from PHDs in two respects: (1) it is a transmem-
brane protein in the endoplasmic reticulum, whereas all
three PHDs are soluble enzymes and (2) P4H-TM amino
acid sequence is more closely related to collagen hydrox-
ylase than to PHDs, although its substrate specificity is
more similar to PHDs and does not hydroxylate collagen
[51].

PHDs hydroxylate specific proline residues in the so-
called oxygen-dependent degradation (ODD) domain of
HIF-α, which encompasses a region of about 200 amino
acid residues in the C-terminal half [40]. However, the
ODD domain contains two separate prolyl hydroxylation
sites (e.g., P402 and P564 in human HIF-1α), each of
which is present in the conserved sequence motif LXXLAP
and is hydroxylated independently [70].

The PHD hydroxylase activities are mostly controlled
by the availability of co-factors and substrates, including
Fe(II), O2 and 2-OG [23, 37, 80, 95]. Because cytosolic
concentrations of these molecules are influenced by a
variety of cellular events, it is not surprising that PHD
hydroxylase activities are also regulated by multiple mech-
anisms (Fig. 1). For example, reactive oxygen species
(ROS), which often originate from dysfunctional mitochon-
dria, may oxidize Fe(II) to Fe(III) and inhibit hydroxylase
activity [80]. Similarly, lack of ascorbate (vitamin C) may
also suppress PHD hydroxylase activity due to the essential
role of ascorbate in reducing Fe(III) to Fe(II). Increased
cytosolic presence of 2-OG analogs such as succinate, often
due to defective mitochondrial functions, may also reduce
PHD activity by inhibiting normal interaction between
2-OG and PHDs [95]. Mitochondria also inhibit PHD
activities by consuming large amounts of O2 and therefore
reducing cytosolic O2 concentration [7, 31, 33, 47].

The oxygen concentrations in normal tissues fluctuate
around 60 μM [29, 99], which is far below the Km values
of all three PHDs (230~250 μM) [37], suggesting that
PHDs are only partially active even in normal tissues. The
fact that physiological O2 concentration is far below Km
values ensures that PHD activity is sensitive to fluctuations
in O2 concentrations. Consequently, any further decreases
in O2 concentration from physiological values would
effectively suppress PHD hydroxylase activities and trigger
significant HIF-α accumulation.

Factor inhibiting HIF

Factor inhibiting HIF (FIH) is also a dioxygenase that
contributes to intracellular oxygen sensing. Instead of
regulating HIF-α abundance, FIH inhibits the transcriptional
activity of HIF-α by oxygen-dependent hydroxylation of a
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Fig. 1 Regulatory mechanisms of PHD hydroxylase activities.
Factors or processes with positive effects on PHD hydroxylase
activities are shown in green, whereas those with inhibitory effects
are shown in red
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specific asparagine residue in HIF-α transcription activation
domain [53, 64, 102]. For example, hydroxylation at Asn
851 in human HIF-1α prevents its interaction with CBP/
p300, a transcriptional coactivator important for HIF
activity [53, 64]. Although Asn 851 hydroxylation does
not affect the formation of HIF-αß heterodimers, lack of
CBP/p300 interaction inactivates HIF transcription activity.

Hypoxia-inducible factors

Hypoxia-inducible factors are heterodimers between an α
subunit and HIF-1ß [22, 46]. Of note, HIF-1ß also plays a
role in the nuclear translocation of aryl hydrocarbon
receptor (AhR) which is important for detoxification of
aryl hydrocarbon compounds, a function that has no
apparent relevance to hypoxia signaling [90]. For its role
in heterodimerization with and nuclear translocation of
AhR, HIF-1ß is also referred to as aryl hydrocarbon
receptor nuclear translocator (ARNT).

While HIF-1ß is insensitive to oxygen, HIF-1α and HIF-
2α are rapidly degraded via PHD catalyzed hydroxylation.
Initial siRNA mediated knockdown of different PHD
isoforms indicated that HIF-1α hydroxylation was mostly
mediated by PHD2, but subsequent studies indicated that
this preference was at least partially due to the fact that
PHD2 was more abundantly expressed than other PHD
isoforms [3, 4]. Nonetheless, partial substrate selectivity
does exist, wherein HIF-1α is more efficiently hydroxylat-
ed by PHD2 whereas HIF-2α is a better substrate for PHD1
and PHD3 [3].

Although hydroxylated HIF-α subunits undergo VHL-
dependent polyubiquitination and proteasomal degradation
[44, 72], at least two conditions ensure that there is a basal
level presence of HIF-α in normal tissues: (1) HIF-1α and
HIF-2α are constitutively transcribed and translated, while
activation of several signaling pathways may further boost
their expression levels [55, 108, 118] and (2) PHDs are
only partially active in normal adult tissues due to below
suboptimal cytosolic O2 concentrations. The persistence of
basal level HIF-α proteins may be important for normal
physiological logical functions.

Different HIF-α genes are differentially transcribed in
different cell types, although their expression profiles are
partially overlapping. In general, HIF-1α mRNA is broadly
present throughout most tissues, although protein accumu-
lation is subject to regulation by local oxygen levels [58].
In contrast, HIF-2α is mostly expressed in endothelial cells
during embryonic development, and for this reason it is also
referred to as endothelial PAS domain protein [22]. In adult
tissues, HIF-2α expression is also more restricted than HIF-
1α, although it is expressed in a number of non-endothelial
cell types as well, including hepatocytes, lung epithelial
cells and kidney interstitial cells [12, 88, 93].

The broad expression pattern of HIF-1α is consistent
with a role in mediating the paracrine mechanism of
angiogenesis. In brief, HIF-1α accumulation in non-
endothelial cells triggers the expression of angiogenic
factors such as VEGF-A, which initiate angiogenesis by
interacting with their endothelial cell receptors. In contrast,
HIF-2α is more predominantly expressed in endothelial
cells in most tissues, suggesting that HIF-2α plays a major
role in adapting ECs to tissue hypoxia. There is, however,
no absolute division between the roles of HIF-1α and HIF-
2α. HIF-1α may also play roles in endothelial cells, at least
under certain conditions, whereas HIF-2α may also play a
role in paracrine signaling during angiogenesis [50, 88].

Much less is known about HIF-3α. In contrast to HIF-
1α and HIF-2α, HIF-3α is upregulated by hypoxia at the
transcriptional level [34]. HIF-3α protein can be hydroxyl-
ated by PHDs and undergoes VHL-dependent polyubiquiti-
nation, but oxygen-dependent degradation has not been
directly demonstrated [73]. The heterodimer between HIF-
3α and HIF-1ß only has very low transcriptional activity
and is not known to be involved in angiogenesis. In
addition, alternative splicing of HIF-3α primary transcript
generates several variants, some of which lack the
transcriptional activation domain and form transcriptionally
inactive heterodimers with HIF-1ß [65, 66]. Thus, HIF-3α
alternative splicing isoforms may act as competitive
inhibitors that block heterodimer formation between HIF-
1ß with other α isoforms.

Interesting, there is a negative feedback mechanism
wherein HIF-1α limits its own accumulation under hypoxia
by upregulating the expression of PHD2 and PHD3 [16, 17,
74, 101]. This mechanism may be important to prevent
excessive HIF-α accumulation under hypoxia, but is also
thought to play a crucial role in allowing rapid clearance of
HIF-α upon tissue reoxygenation [16]. The relationship
between PHDs, HIFs, and the expression of angiogenic
molecules is schematically explained in Fig. 2.

Regulated expression of angiogenic molecules

HIF-1α and HIF-2α both activate the expression of genes
important for angiogenesis as well as other processes, but
some level of selectivity does exist. While both can activate
the expression of target genes important for angiogenesis
and erythropoiesis, only HIF-1α activates the expression of
glycolytic genes [39]. On the other hand, HIF-2α but not
HIF-1α activates the expression of Oct-4 which is
important for the maintenance of pluripotency of stem cells
during development [15]. Discussion in this section will
focus on angiogenic genes (Table 1).

Among hypoxia-induced angiogenic genes, some are
bona fide HIF target genes and are regulated by direct
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interactions between HIF and a DNA sequence motif on HIF
target genes referred to as hypoxia response elements (HRE).
Examples of these genes include VEGF-A [26], VEGFR-1/
Flt-1[27, 105], erythropoietin (EPO) [75, 96], and eNOS [14,
117]. However, there are also many HIF-inducible genes that
are not known to contain HRE. Examples in this category
include fibroblast growth factor (FGF) 2, placental growth
factor (PLGF), platelet-derived growth factor (PDGF)-B,

angiopoietin (ANGPT)-1 and 2, and ANGPT receptor Tie-2
[18, 49]. While some of these genes may carry yet un-
identified HRE and therefore are actually direct HIF targets,
others are probably indirectly induced by transcription factors
which themselves are directly or indirectly HIF-induced.

HIF-1α and HIF-2α display some selectivity over dif-
ferent angiogenic target genes. For example, while VEGF-
A expression can be induced by both HIF-1 and HIF-2,
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Fig. 2 Relationship between oxygen availability and the expression of
angiogenic molecules (VEGF-A and VEGF receptor-2 as examples).
HIF-1α, HIF-2α and HIF-1ß are shown as half ovals, and
corresponding heterodimers are shown as their combinations. Oxygen
induces HIF-1α and HIF-2α degradation by PHD dependent
hydroxylation, followed by VHL-mediated recruitment of hydroxylated

HIF-α subunits E3 polyubiquitin ligase complex and subsequent
degradation in proteasomes. HIF-α escapes degradation due to hypoxia,
they form heterodimers and activate the transcription of VEGF-A and
VEGF receptors. Both HIF-1 and HIF-2 contribute to VEGF-A
expression, but only HIF-2 is known to activate the expression of
VEGFR-2

Table 1 Hypoxia-induced angiogenic proteins

Angiogenic genes Induction by hypoxia HRE (or HBS) Induction by HIF-1α Induction by HIF-2α

VEGF-A + + + +

VE-Cadherin − + − +

Epo + + + +

Flt-1 + + + +

Flk-2 Vary (HBS) − +

PLGF Vary ? ? −
eNOS + + − +

Tie-2 + ? − +

Angiopoietin-1 Vary ? Vary ?

Angiopoietin-2 Vary ? Vary ?

ORP150 + ? ? ?

COX-2 + + + ?

PDGF-B Vary ? Vary ?

IGF-1 + ? Vary ?

MMP-9 + ? ? ?

EC-VEGF + + ? ?

Vary indicating different responses in different cell lines or tissues, HBS stands for HRE-like binding site, ? represents not determined
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upregulation of VEGFR-2/Flk-1 appears to be mediated by
HIF-2α but not HIF-1α [48]. HIF-2α dependence might be
due to the presence of HIF-2 binding site (HBS) in Flk-1
promoter instead of a typical HRE found in most HIF-1
responsive genes [48]. The dependence of Flk-1 expression
on HIF-2α may have physiological relevance, because both
HIF-2α and Flk-1 are most abundantly expressed in
endothelial cells (although with a few exceptions such as
hepatocytes which expresses HIF-2α but not Flk-1). In
addition to differential HIF-1α and HIF-2α expression in
different cell types, the accumulation of the same HIF-α
isoform in different cell types may also have differential
regulatory effects. For example, HIF-1α accumulation in
retinal tissues led to increased expression of VEGF-A,
PDGF-B, PLGF, ANGPT (angiopoietin)-1 and 2, but similar
HIF-1α accumulation in cardiomyocytes only increased
the expression of VEGF-A and PLGF [49].

Effects of hypoxia on vascular cells

Endothelial cells

Hypoxia may have complicated effects on cultured endo-
thelial cells (ECs). Moderate hypoxia (e.g., 5% oxygen)
promotes proliferation, survival, migration, and vascular
network formation via increased expression of VEGF-A,
eNOS, and other angiogenic molecules [77, 85]. On the
other hand, more severe hypoxia may cause increased EC
apoptosis, partly due to NFκB-dependent suppression of
Bcl-2 expression and stabilization of p53 [71, 100]. In living
tissues, hypoxia both directly affects ECs by modulating
endothelial gene expression and indirectly by paracrine
mechanisms wherein expression of angiogenic factors in
non-endothelial cells regulates EC functions [56, 68]. It is
interesting to note that EC-derived VEGF-A plays a unique
role by activating intracellular VEGFR-2 signaling before it
is secreted [56]. Intracellular VEGF-A/VEGFR-2 signaling
plays a critical role in maintaining EC viability and vascular
integrity, a conclusion supported by the finding that EC-
specific knockout of VEGF-A resulted in EC apoptosis and
loss of vascular integrity [56].

Vascular smooth muscle cells

Moderate hypoxia induces vascular smooth muscle cells
(VSMCs) proliferation, in part by inducing the expression
of cyclooxygenase (COX)-2 and PDGF-ß receptor [54, 97],
but severe hypoxia causes apoptosis [61]. Besides altered
proliferation and survival properties, VSMCs exposed to
hypoxia may be less adhesive to extracellular matrix
proteins, a change that is associated with HIF-1α-mediated
inhibition of FAK phosphorylation [13]. Reduced VSMC

adhesion to extracellular proteins in the basement mem-
brane may favor angiogenesis, because disassociation of
VSMCs (or other mural cells such as pericytes) from the
basement membrane is thought to be a necessary condition
to allow the protrusion of the underlying ECs to form new
sprouts. VSMC properties are also regulated by a list of
molecules whose relationships to the oxygen sensing
mechanism are yet unclear. One example of these mole-
cules is Ephrin B2, which support the association of
VSMC-like mural cells to endothelial cells [25].

Macrophages

Hypoxic tissues express a number of extracellular factors
that are capable of recruiting monocytes, including chemo-
attractant protein-1 (MCP-1) [8], colony-stimulating factor
(CSF)-1 [11], tumor necrosis factor-α (TNF-α) [36],
stromal-derived factor (SDF)-1 [110], and VEGF-A [19].
Once recruited to hypoxic tissues, monocytes differentiate
into macrophages and promote angiogenesis by several
mechanisms: (1) secretion of metalloproteases, which degrade
extracellular matrix proteins and activate latent angiogenic
factors such matrix bound VEGF-A by proteolytic cleavage
[45]; (2) expression and secretion of angiogenic factors;
and (3) amplification of hypoxia responses by secreting a
short peptide of 39 amino acid residues (PR39) which
enters cytoplasm of resident cells and interferes with HIF-
α degradation [59].

Regulation of angiogenesis by oxygen sensing
mechanisms

Role of HIF-1 and HIF-2 in vascular development

In mouse embryos, sites of HIF-1α protein accumulation
correlates with VEGF-A expression, suggesting a role of
HIF-1α in embryonic expression of VEGF-A [58]. Mouse
embryos lacking HIF-1α or ARNT do not survive beyond
embryonic days 9.5 to 10.5 due to poor angiogenesis,
defective neural tube development, and death of mesen-
chymal cells [43, 67, 91]. The association of multiple
defects with HIF-1α or ARNT deficiency was consistent
with the requirement of HIF-1α and ARNT in many
different cell types. The consequences of HIF-2α knockout
varied depending on mouse strains. In 129 SvJ background,
loss of HIF-2α interfered with the progression of the
initial embryonic vascular network into mature vascular
trees [18, 81]. However, in other strain backgrounds, HIF-
2α knockout does not result in obvious vascular defects
[12, 92, 107].

Unlike HIF-1α and HIF-2α, HIF-3α only has low tran-
scriptional activity, and is not known to have a proangiogenic
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role [115, 116]. Mice lacking HIF-3α are viable, although
a number of post-natal defects were found including
enlarged right ventricle and defective lung remodeling
[116]. In fact, HIF-3α may inhibit angiogenesis because
some alternative splicing isoforms lack transcriptional
activation domain and compete against HIF-1α and HIF-
2α for HIF-1ß heterodimerization. In the cornea, for
example, a truncated HIF-3α isoform (inhibitor of PAS,
or IPAS) has a demonstrated role as an angiogenic in-
hibitor and is critical to the maintenance of the avascular
status of the cornea [65]. Since the HIF-3α promoter is
upregulated by hypoxia, the avascular (and hence hypoxic)
nature of the cornea sustains itself by upregulating the
transcription of the HIF-3α gene [66].

Consequences of HIF-α stabilization

Oxygen-insensitive HIF-1α, engineered by proline to alanine/
glycine mutations in the ODD domain, have been expressed
in mouse tissues by different approaches including transgene
expression of mutant cDNA or infection with adenoviral
expression vectors [21, 35, 49, 79, 111]. When expressed in
the dermis, retina, myocardium, or skeletal muscles, stabi-
lized HIF-1α accumulated to high levels, significantly
increased VEGF-A expression, and led to active angiogen-
esis [21, 35, 79, 111]. Increased angiogenesis was also
induced by transgenic overexpression of similarly mutated
HIF-2α in dermal and hepatic tissues, but concurrent
overexpression of both HIF-1α and HIF-2α was more
effective in activating angiogenesis than by either of them
[50].

While transgenic overexpression or delivery of exoge-
nous VEGF-A often leads to the formation of unstable
and leaky blood vessels that fail to recruit pericytes and
VSMCs, blood vessels induced by the expression of stabilized
HIF-α were apparently normal, even though HIF-α accumu-
lation upregulated VEGF-A levels [21, 79, 111]. It is not
known for certainty why HIF-α accumulation did not prevent
VSMC recruitment; however, one possible explanation is
that HIF-α also induces the expression of a repertoire of
angiogenic factors in addition to VEGF-A, including factors
that promote VSMC/pericyte recruitment such as angiopoie-
tins and PDGF-B [49]. Another possible reason is HIF-α
accumulation induces all different VEGF-A isoforms where-
as transgenic overexpression or delivery of exogenous
VEGF-A typically involves VEGF-A165 isoform alone.

Role of VHL and PHDs in angiogenesis

VHL or PHD2 deficient embryos die in utero during
midgestation due to placental defects [28, 104]. In contrast,
PHD1 and PHD3 knockout embryos are apparently normal.

Differential requirements for different PHDs are consistent
with the fact that PHD2 is much more abundantly expressed
than other PHD isoforms. PHD2 or VHL null embryos do
not display apparently increased angiogenic activity, even
though HIF-1α and HIF-2α levels are significantly elevated
[28, 104]. One probable reason is that angiogenesis is
already happening at a near maximal pace during normal
embryogenesis so that any additional HIF-α accumulation
has relatively insignificant impact. In contrast to embryonic
phenotypes, VHL or PHD2 deficiency in adult mice led to
significantly increased angiogenesis [32, 87, 103]. These
findings suggest that VHL or PHD2 play essential roles in
maintaining the quiescent nature of adult blood vessels.

Role of tissue hypoxia in pathological angiogenesis

Angiogenesis due to tissue expansion

During the development of atherosclerotic plaques, rapid
proliferation of VSMCs and accumulation of macrophages
increase metabolic demand and oxygen consumption,
resulting in local tissue hypoxia within plaques [41]. These
conditions induce angiogenic growth of microvessels from
vasa vasorum into plaques, forming a vicious cycle wherein
plaque expansion induces angiogenesis but vascularization
of the plaque further exacerbates its expansion by facilitat-
ing the infiltration of macrophages through newly formed
blood vessels [76]. Consistent with a role of HIF-1α and
VEGF-A in plaque angiogenesis, these proteins were found
to be co-localized in atherosclerotic plaques [112].

Hypoxia in arthritis synovium is mostly caused by the
high metabolic rate associated with tissue expansion and
the presence of large numbers of infiltrated leukocytes. As
in other hypoxic tissues, high levels of HIF-1α in arthritis
synovium activate the expression of various proangiogenic
genes and induce angiogenesis [38, 84]. It has been
proposed that inhibition of angiogenesis in arthritic tissues
may reduce metabolic activities and therefore shrink the
synovium tissue mass [24].

Angiogenesis in tumor tissues is induced by tumor tissue
hypoxia as well as high level expression of angiogenic
growth factors directly contributed by oncogenic activation
of various signaling pathways. HIF-α accumulation in tumors
is triggered not only by hypoxia, but also by a number of
other mechanisms including transcriptional and translational
upregulation in response to oncogenic activation of various
signaling pathways [60]. In addition, hypoxia-independent
HIF-α stabilization also occurs, often due to loss of p53 or
accumulation of succinate [89, 95]. Thus, in addition to
hypoxia, various other oncogenic alterations may also
directly contribute to tumor angiogenesis. Details of the role
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of hypoxia in tumor angiogenesis are reviewed in another
article in this issue.

Angiogenesis due to poor perfusion

Wounded tissues are typically hypoxic and actively
express angiogenic factors. Besides resident cells, infiltrat-
ed neutrophils, mast cells, lymphocytes, and macrophages
also express high levels of angiogenic factors and promote
angiogenesis [69]. Applications of PHD inhibitors L-
mimosine (L-Mim) and N-carboxymethylamid (S956711)
or competitive peptides corresponding to the conserved
HIF-α hydroxylation sites were found to stimulate angio-
genesis [113, 114]. Delivery of stabilized HIF-1α to dermal
wounds by a peptide-based technology also effectively
enhanced angiogenesis and vascular maturation [109].

In another example of angiogenesis induced by poor
tissue perfusion, rupture of atherosclerotic plaques in
coronary arteries leads to the formation of thrombi which
clog coronary circulation and cause myocardial ischemia
and infarction. HIF-1α accumulation and VEGF-A expres-
sion are both increased in the early phase of ischemia or
infarction development [57]; however, persistent oxygen
deficiency may result in widespread cell deaths and there-
fore hinder the expression of angiogenic factors. Several
studies demonstrated that introduction of HIF-1α over-
expression vectors into myocardial tissues or inhibition of
HIF-1α degradation by RP39 promoted angiogenesis and
facilitated cardiac repair [59, 98].

Re-vascularization of ischemic myocardial tissues may
occur by a combination of two mechanisms. One is angio-
genic sprouting from bordering healthy cardiac tissues, and
the other is the recruitment of myeloid-derived circulating
endothelial cell progenitors [52, 78]. In addition, myeloid-
derived cells in the circulation may also provide a source to
pericytes that help stabilizing newly formed microvessels.
Recent studies indicate that the recruitment of endothelial
and pericyte progenitors from the circulation may bemediated
by VEGF-A and SDF-1/CXCL12, respectively [30].

Poor perfusion also contributes to retinopathy of prema-
turity (ROP). ROP is a side effect resulting from oxygen
therapy for premature infants and starts with rapid obliter-
ation of retinal microvessels upon oxygen exposure. When
patients are returned to ambient room air, poor perfusion
resulting from significant microvessel losses leads to retinal
tissue hypoxia and activates angiogenesis. However, both
the quality and spatial location of the resultant microvessels
are abnormal: they are unstable and leaky due to failed
recruitment of pericytes, and are often present as protrusions
into the vitreous cavity. These abnormalities suggest that
even though hypoxia can be an inducer of normal angiogen-
esis, it can also be an inducer of abnormal neoangiogenesis.

The exact reasons behind these differential effects are not
well understood, but different levels of oxygen deficiency
and specific tissue environments might be contributing
factors.

The mechanisms underlying ROP have been studied
extensively in mice. Excessive induction of VEGF-A
expression is undoubtedly important [2, 86], but erythro-
poietin also plays a significant role [75]. Recently, it has
been shown that suppression of PHD activities with chemical
inhibitors may reduce capillary loss during oxygen treatment
[94]. Another promising approach is to promote the
recruitment of circulatory endothelial progenitor cells during
oxygen treatment, so that capillary damage by oxygen can be
repaired in a timely fashion. In mouse ROP models, delivery
of exogenous insulin-like growth factor (IGF)-binding protein
(IGFBP)-3 protected retinal vessels by pericyte recruitment
[10], whereas knockout of the Igfbp-3 gene worsened
capillary loss in the retina [62].

Angiogenesis due to other genetic and pathological events

Individuals carrying germline mutation in one of the VHL
alleles are highly susceptible to a second VHL mutation in
somatic cells, resulting in the development of benign vascular
tumors such as hemangioblastomas in the central nervous
system [63]. Although vascular tumors are generally benign,
excessive proliferation of leaky retinal blood vessels can lead
to blindness. In addition to vascular tumors, VHL deficiency
is associated with several other tumor types such as renal
cell carcinoma and pheochromocytoma, which are highly
malignant [63]. VHL point mutation is also associated with
polycythemia [63]. Vascular diseases due to PHD mutation
have not been reported; however, PHD2 mutation is also
associated with polycythemia [82, 83].

Hyperglycemia in diabetic patients also significantly
modifies vascular properties and trigger retinopathy. Initially,
microvessel damages occur due to hyperglycemia-induced
apoptosis of capillary pericytes and endothelial cells, resulting
in poor perfusion and retinal tissue hypoxia [20]. Large
amounts of vasoactive molecules such as VEGF-A are
induced by HIFs which accumulate in hypoxic retinal tissues
and initiate angiogenesis, resulting in the formation of
abnormal microvessels that are leaky and tortuous due to
lack of pericyte association [1].

The relationship between diabetes and angiogenesis is
complicated. Even though hyperglycemia may trigger
neoangiogenesis by first damaging existing blood vessels
and therefore result in tissue hypoxia, elevated levels of
reactive oxygen species under diabetic conditions may
hinder angiogenesis by disruptive modification of HIF-1α
[5, 9]. Such complications may contribute to poor angio-
genesis in diabetic foot ulcers.
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Concluding remarks

PHD-dependent hydroxylation of HIF-α subunits and their
consequent degradation is probably the most fundamental
mechanism responsible for the maintenance of the quies-
cent status of adult blood vessels. A corollary of this
statement is that HIF-α accumulation due to reduced PHD
hydroxylase activity in hypoxic tissues is probably the most
common trigger of angiogenesis. These conclusions are
supported by a large number of studies indicating that HIF
deficiency significantly interferes with angiogenesis where-
as excessive accumulation of HIF-α due to PHD2 defi-
ciency promotes angiogenesis. Different PHD and HIF-α
isoforms are differentially involved in angiogenesis.
Among all three PHDs, PHD2 is most critically involved
in angiogenesis due to the fact that it is the most abundantly
expressed isoform. On the other hand, conditions other than
PHD hydroxylase activity, such as loss of p53, may also
promote HIF-α accumulation and angiogenesis. As with
PHD isoforms, different HIF-α isoforms may also have
non-identical roles, although partially overlapping functions
are also likely. HIF-1α is the most broadly expressed
isoform and has a major role in mediating paracrine
mechanisms of angiogenesis, whereas HIF-2α plays a
major role in endothelial cells by activating the expression
of endothelial cell receptors for angiogenic factors. How-
ever, roles of HIF-2α in non-endothelial cells and role of
HIF-1α in endothelial cells have also been reported [88,
106]. Another level of complication is differential con-
sequences of HIF-α accumulation in different tissues, with
the formation of normal and healthy blood vessels in some
tissues but unstable and leaky vessels in others. Thus,
detailed investigation for the role of HIF-α in different
tissues will be important to aid the development of effective
angiogenesis (or anti-angiogenesis) therapies.
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