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Abstract Stem cells are self-renewing multipotent pro-
genitors with the broadest developmental potential in a
given tissue at a given time. Normal stem cells in the adult
organism are responsible for renewal and repair of aged or
damaged tissue. Adult stem cells are present in virtually all
tissues and during most stages of development. In this
review, we introduce the reader to the basic information
about the field. We describe selected stem cell isolation
techniques and stem cell markers for various stem cell
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populations. These include makers for endothelial pro-
genitor cells (CD146/MCAM/MUCI18/S-endo-1, CD34,
CD133/prominin, Tie-2, Flk1/KD/VEGFR2), hematopoietic
stem cells (CD34, CD117/c-Kit, Scal), mesenchymal stem
cells (CD146/MCAM/MUCI8/S-endo-1, STRO-1, Thy-1),
neural stem cells (CD133/prominin, nestin, NCAM), mam-
mary stem cells (CD24, CD29, Scal), and intestinal stem cells
(NCAM, CD34, Thy-1, CD117/c-Kit, Flt-3). Separate section
provides a concise summary of recent clinical trials involving
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stem cells directed towards improvement of a damaged
myocardium. In the last part of the review, we reflect on the
field and on future developments.

Keywords Autoimmune disease - G-CSF - Graft vs.
host reaction - Stem/progenitor cell - Trans-differentiation

Abbreviations

AGM aorta—gonad—mesonephros
BCRP1 breast cancer resistance proteinl
BM bone marrow

CABG coronary artery bypass graft

CNS central nervous system

CSC cardiac stem cell

ESC embryonic stem cells

Flk1 fetal liver kinase-1

G-CSF granulocyte-colony stimulating factor

GM-CSF  granulocyte-macrophage-colony stimulating
factor

HLA human leukocyte antigen

HSC hematopoietic stem cell

LVAD left ventricular assist device

LVEF left ventricular ejection fraction

MAPC multipotent adult progenitor cells

MRF myogenic regulatory factor

MSC mesenchymal stromal cell

NCAM neural cell adhesion molecule

NSC neuronal stem cells

NYHA New York Heart Association

PB peripheral blood

Scal stem cell antigen 1

SP side population

ucC umbilical cord

VEGFR2 vascular endothelial growth factor receptor 2

Introduction—adult stem cells and their surface
markers

Adult stem cells are clonogenic, self-renewing, and plurip-
otent cells with a plasticity to differentiate into cell types of
the particular tissue in which they reside and often to trans-
differentiate into different types of tissues [1]. The
tremendous proliferative potential of these cells may lead
to the development of cancer if the control of their
differentiation, and/or proliferation, and/or apoptotic pro-
gram is impaired [2]. Stem cell activity has been demon-
strated in many tissues/organs, but the exact location of
these adult stem cells is not always clear because of a
current lack of well-defined organ-specific stem cell
markers. Adult stem cells are usually located in a specific
cellular niche, and niche microenvironment determine the
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status of stem cell activation, thus ensuring a balance
between maintenance of the stem cell pool and production
of progenitor cells engaged in tissue differentiation [3]. The
identification and selection of stem cells within a given
tissue/organ largely relies on the presence of specific cell
surface markers (Table 1). Other identification methods
include the ability of certain stem cells to exclude fluo-
rescent dyes (rhodamine 123, Hoechst 33342) and DNA
label retention as well as their ability to form colonies and
differentiate into certain lineages as seen in mesenchymal/
stromal stem cells. Dye exclusion techniques permit
selection of a “side population,” and this is facilitated by
the ABCG2 gene product, also named breast-cancer-
resistant protein (BCRP1) [4]. This member of the family
of ABC transporters has been shown to be a positive
selection marker of pluripotent cells from various adult
tissue sources. However, ABCG2 is neither unique to nor
ubiquitously expressed in all stem/progenitor cells [5].
Another way to identify slowly cycling adult stem cells is
DNA label retention. Quiescent stem cells retain the DNA
label for much longer than dividing cells where the DNA
label is diluted with each cell division [6]. In the following
paragraphs, we will characterize at greater detail the various
stem cells populations, their therapeutic potential, and
existing isolation techniques.

Growth and isolation of stem cells and tests to confirm
stem cell presence

The trans-differentiation potential of adult stem cells and
their capacity for tissue renewal and damage repair has
attracted much attention from biotechnologists and clini-
cians [7], and the isolation and in vitro maintenance of
stem cells have immense importance in applied biology.
Although flow cytometric separations of stem cells or
positive and negative selections using magnetic beads
tagged with antibodies targeting specific markers on the
surface of stem cells are used routinely now in many
applications, alternative approaches for stem cell identifi-
cation have been proposed based on the specific behavior
of individual stem cells. One of these approaches exploits
stem cell homing characteristics [8]. These and other
principles were proven to be effective in isolating stem
cells for research and biological applications. Taking
hematopoietic stem cells (HSCs) as an example, we will
provide an overview of some of these important isolation
techniques, which could also be applied to various other
stem cells.

Isolation of stem cells by flow cytometry In flow cytometry,
a mixture of cells tagged by appropriate fluorochrome-
labeled stem cell markers is passed through a laser beam.
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Table 1 Commonly used markers to identify adult stem cells in different tissues
Marker Synonym Significance Literature
Endothelial progenitor cells
CD146 MCAM, MUCIS, S-endo-1 Integral membrane protein expressed on endothelial [115]
precursor cells and circulating endothelial cells
CD34 Cell surface protein on bone marrow cells, HSCs, endothelial [115]
progenitor and muscle stem cell
CD133 Prominin [116]
Tie-2 Receptor for angiopoietin on endothelial progenitor cells and HCS [115]
Fetal liver kinase-1 Flk1, KDR VEGFR2 Endothelial cell surface receptor protein that identifies [117]
endothelial cell progenitor
Hematopoetic stem cells
CD34 Cell surface protein on bone marrow cells, HSCs, endothelial [24, 25]
progenitor and muscle stem cell
c-Kit CD117, YB5.B8 Cell surface receptor on bone marrow cell types that identifies HSC, [15, 25]
hematopoietic progenitor cells and mesenchymal stem cell (MSC)
Stem cell antigen Scal, Ly-6A/E Cell surface protein on bone marrow (BM) cell, indicative of [118]
HSC and MSC
Mesenchymal stem cells
CDl146 MCAM, MUCI18, S-endo-1 Cell surface protein found on bone marrow fibroblasts [118]
STRO-1 antigen Cell surface glycoprotein on subsets of bone marrow stromal [119]
(mesenchymal) cells
Thy-1 Cell surface protein on HSC, MSC [120]
Neural stem cells
CD133 Prominin Cell surface protein that identifies neuronal stem cells [21]
Nestin Marker for NSC in the CNS and in culture [121]
Neuronal cell adhesion molecule NCAM Cell surface molecule that promotes cell-cell interaction; [122]
NSC migration; primitive neuroectoderm formation
Breast stem cells
CD24 CD29 Cell surface proteins on mammary repopulating units in mice [123]
Stem cell antigen Scal, Ly-6A/E Cell surface protein on human mammary repopulating units [124]
Intestinal stem cells
NCAM Marker for liver and pancreas stem cells [125]
CD34 Marker for liver and pancreas stem cells [126]
Thy-1 Marker for liver and pancreas stem cells [126]
c-Kit Marker for liver and pancreas stem cells [126]
Flt-3 Marker for liver and pancreas stem cells [126]

The cells scatter the fluorescence which provides informa-
tion on the cell morphology, composition of surface
proteins, DNA content, and cytoplasmic processes. The
advantage of flow cytometry is the speed of the flow that
allows quick processing of large population of cells.
Cytometric analysis goes one step further and allows cell
sorting [9], a process that breaks the fluid stream containing
the cells into droplets by piezoelectric perturbation. It is
then possible to deflect a selected droplet with precise
timing on a charge given to the stream as it passes through
an electric field. Droplets containing the (stem) cells of
interest are deflected in the electric field and collected [10].

Immunomagnetic-beads-based isolation method Immuno-
magnetic beads coated with specific antibodies are used
either for isolation or depletion of various types of cells.
Positive or negative cell isolation can be performed

depending on the nature of the cell surface markers and
its specific application. Positive cell isolation amends itself
to any downstream application after removal of the beads.
Negative cell isolation is the method of choice to ensure
that cells of interest remain unaffected. Cells with multiple
cell surface markers can be isolated by the combination of
negative and positive cell isolation [11]. Such technologies
based on immunomagnetic beads are currently in use in two
major clinical applications: (1) CD34-positive stem cell
isolation and (2) in vitro T cell isolation and expansion for
clinical trials in novel adoptive immunotherapy [12].

Other techniques Various other stem cell isolation tech-
niques have been proposed and tested in recent years. Stem
cell isolation by acoustic standing waves (acoustophoresis)
in microfluidic channels is one of such methods where
controlled acoustic waves were used within a fluid flow
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column with antinodes and nodes maintained in different
flow layers of the channel, allowing fluid components to
differentially migrate to areas of preferred acoustic inter-
action [13]. Acoustophoresis allows particles and cells to be
driven towards the node or anti-node of a standing wave
that depends on the characteristics of density and com-
pressibility [14].

Isolation of HSCs HSCs are highly enriched in the
population characterized by low or undetectable levels of
the lineage markers found on mature hematopoietic cells
(B220, CD3, CD4, CDS, CD8, Mac-1, GR-1, Terl19, and
NK1.1) and by high levels of c-Kit and Sca-1 [15].
Furthermore, differential expression of SLAM receptors
(CD150, CD244, and CD48) on HSC and more restricted
multipotent hematopoietic progenitors allows further, more
distinct selection. Highly purified HSCs are CD150",
CD244", and CD48 , while multipotent hematopoietic
progenitors are CD244", CD150, and CD48 . In the
course of further differentiation/commitment, they become
CD48", CD244", and CDI150  [16, 17]. Thus, sorting
bone-marrow-derived cells according to the above criteria
is a relatively simple and practical way of stem cell
enrichment. Another approach to isolating stem-cell-
enriched populations is based on the ‘dye-efflux’ proper-
ties of proliferating HSCs. Due to high expression of
ABCG2 transporter, HSCs rapidly efflux the DNA dye
Hoechst 33342. Cells maintaining an efficient efflux of
the dye can be identified by flow cytometry, and cells that
efflux the dye are referred to as ‘side population’ or SP
cells when visualized on dot plot [4].

Growth and validation for stem cell presence Like other
mammalian cells, stem cells are also grown and maintained
at 37°C in humidified cell culture incubators under a 5%
CO, atmosphere. The media requirements vary among
individual stem cell types, and it is essential not to induce
differentiation of the cultured stem cells. HSCs are obtained
from bone marrow aspirates, placental, or umbilical cord
blood, and their high growth rate makes them prone to
differentiation in culture. Bone marrow origin stem cells are
grown in culture media supplemented with serum [18],
while HSCs usually require a co-culture system containing
fibroblast feeder layers that support growth and differentia-
tion. The change of cytokine conditions in such culture
systems affects the differentiation of stem cells [19]. The
effects of specific culture conditions and speed of differen-
tiation varies among different stem cell populations. Bone
marrow stromal cells attach to culture dishes and continue to
grow slowly for weeks before differentiation [20]. Neural
stem cells from fetal or adult brain tissue can grow
suspended in culture medium without any additional serum
supplements [21].
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Validation of the presence of stem cells in a culture
system with histochemical methods, antigenic markers, and
morphogenetic studies are primarily dependent on the
surface morphology and immuno-phenotype of the stem
cells of interest. For in vitro studies, cytogenetic analysis or
RT-PCR-based methods are commonly applied.

Hematopoietic stem cells

HSCs are among the best characterized adult stem cells and
the only stem cells being routinely used in the clinics.
HSCs are able to renew themselves or differentiate into
precursors which produce specialized hematopoietic cells,
including lymphocytes, dendritic and natural killer cells,
megakaryocytes, erythrocytes, granulocytes, and macro-
phages [22]. Cells in the hematopoietic hierarchy have
different multi-potentiality, differentiation and self-renewal
capacities, and are able to cope with the high demand for
continuously producing large numbers of blood cells. The
first progeny of HSCs are multipotent progenitors which
retain the ability to differentiate into all hematopoietic
lineages but show a lower capacity to proliferate [23].
Multipotent progenitors are more abundant than HSCs and
differentiate into oligopotent progenitors, which in turn
give rise to more lineage-committed precursor cells.

During sequential differentiation, stem cells present
various antigenic characteristics which are associated with
their properties and function. These antigens allow for the
definition of stem cell subpopulations and permit clinicians
to improve the outcome of HSCs transplantation by increas-
ing the purity of HSCs product used in allo-engraftments.
Human HSCs express CD34 surface antigen (CD34"),
which is commonly used as a marker in clinical settings
to identify and quantify the population of progenitor cells to
be infused [24, 25]. Scientists have been trying to narrow
the subset of progenitor cells by defining a set of markers
that are more consistently expressed on these cells. Human
HSCs are known to exhibit CD34", Thyl®, CD38!", C-
kit °, CD105", Lin~ phenotype [25, 26]. However, there is
not a general agreement on the association between any
combination of these antigenic properties and function of
stem cells.

Sources of HSCs HSCs can be isolated from bone marrow
(BM). BM also accommodates stromal cells, mesenchymal
stem cells, and variably mature blood cells and their
progenitors. HSCs constitute only a small fraction of BM
population (1 in 10* to 1 in 10® of BM nucleated cells) [27].
HSCs can also be isolated from peripheral blood (PB)
where they can be found in small numbers [27, 28].
Stimulation with mobilizing agents, including cytokines
such as G-CSF alone or in a combination with GM-CSF
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and/or other agents, dramatically increases the release of
HSCs from BM to PB [28]. This allows collecting a high
number of progenitor cell types, which constitutes an
important improvement in engraftment success and effec-
tive repopulation with neutrophils and platelets [24].
Another important source of HSCs for clinical purposes is
umbilical cord (UC)/placenta blood. Its therapeutic use has
become popular after successful applications of UC-derived
HSCs in children with Fanconi anemia [29]. A practical
constraint with HSCs collected from UC blood is their
limited quantity, which is predominantly due to the low
blood volume obtained from these tissues. The low UC
stem cell dosage of approximately 10% of the amount of
marrow transplants is adequate for transplants in children
and low-weight patients but delivers too few stem cells for
use in most adults with a recommended dose of more than
2.5x10° CD34" cells per kilogram body weight [24]. In
addition to their quantity, HSCs collected from UC and PB
differ in some other characteristics (Table 2). In general,
HSCs obtained from tissues at earlier developmental stages
have greater capacity for self-replication and long-term
growth in vitro [30] and show different homing and surface
properties [31]. Nonetheless, it is currently unclear whether
these variations have any clinical significance. In animal
models, HSCs can also be obtained from the fetal
hematopoietic system including aorta—gonad—mesonephros
(AGM), liver and spleen, which provide useful sources of
stem cells for experimental purposes.

Heart and muscle stem cells and potential
for regeneration of the heart muscle

Satellite cells, the muscle stem cells, were first described by
Mauro [32] in 1961 as committed precursor cells residing in
skeletal muscle. Upon an injury, the basic role of these cells
is to restore skeletal muscle function. An inflicted stress
may stimulate these cells to transform into myoblasts by the

Table 2 Comparison of BM with two other sources of HSC

activation of myogenic regulatory (transcription) factors
(MRF) [33]. Quiescent (satellite) cells appear to be negative
for MRF, but during activation, their expression is
upregulated (MyoD, Myf5, myogenin, MRF4) [33]. More-
over, some transcripts transform to alternatively spliced
isoforms when satellite cells start to proliferate (CD34"
from truncated to a full-length form, MNF{3 to MNFx)
[34]. MRF are first expressed during early embryogenesis
when myoblasts are formed (prior to cardiac-specific cells),
and in case of muscle injury, they appear about 6 h after
injury [33]. Following proliferation, differentiation and
multi-fusion, myoblast cells form new myotubes that
become finally differentiated muscle fibers [35]. This
potential of myoblasts and satellite cells for regeneration
of heart muscle was first explored in a preclinical trial using
a dog heart model of cryoinjury [36]. Myoblasts or satellite
cells may give rise to both self-renewing muscle-type-
specific populations of myogenic stem cells and to pro-
genitor muscle cells.

In rodents, a stem cell population was initially identified
as muscle SP that could reconstitute hematopoiesis [37].
The analysis of the transcriptional profile of this SP
population obtained from skeletal muscle revealed that
these cells shared transcripts with embryonic stem cells
(ESC) and overlapped with bone marrow SP in almost half
of all transcripts [38]. Recent studies have shown that the
majority of obtained SP cells were positive for Scal (stem
cell antigen 1), CD31, and CD45 [39]. FACS sorting of these
rodent cells resulted in the identification of three subpopu-
lations with different myogenic and hematopoietic potential
and distinct proliferative and regenerative capacities.

Since the heart has a low regenerative capacity, efforts
have been undertaken to restore its function after, e.g.,
ischemic or non-ischemic damage. Its own modest regen-
erative potential (possibly only by ~1% renewal per year)
can be either provided by circulating multipotential stem
cells [40] or cardiac progenitor stem cells residing in
specific heart niches [41]. Putative human cardiac stem and
progenitor cells (hCSCs) are now distinguished into four

PB/G-CSF

UC blood

Advantage Easier, less aggressive collection

High number of progenitor cells

Faster engraftment

Faster neutrophil, platelet, immune system recovery
Less frequency of donation-associated risks
Administration of mobilizing agents is required

Higher risk of chronic GVHD in allografts

Disadvantage

Easy to collect without any risk for the donor

Less restriction for HLA compatibility

Lower rate of GVHD

Better accessibility from UC blood banks for unrelated transplantations
Can be stored for years

Limited supply

Low number of progenitor cells, inadequate for transplant in adults
Slower engraftment

Unable to provide additional cells in case of need for second transplant

PB/G-CSF Peripheral-blood-derived HSC treated with G-CSF
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main resident cardiac cell types characterized by c-Kit,
Scal (rodents), MDR-1, and Isl-1 markers [42]. Divided
into primary and secondary heart fields (according to the
heart development), these cells may reconstitute main
structural elements of the myocardium such as cardiomyo-
cytes, endothelial and conductive cells [43], and/or post-
natal cardiac progenitors. First and second heart field
progenitors express common mesodermal markers: Oct4,
Mesp, Bry, Nkx2.5, while Isl-1 belongs exclusively to the
second field characteristics giving rise to all previously
mentioned cells, while the first heart field progenitors may
differentiate only into cardiac conductive and cardiac
muscle cells. Attempts to multiply in vitro hCSCs for
possible heart regeneration are ongoing [44]. The most
ambitious aim would be to practically utilize totipotent stem
cells, and preclinical studies in rodents are well advanced
with application of in vitro differentiated cardiomyocytes
and/or genetically pre-programmed pluripotent cells [45].
Yet it seems that at the present stage, the numbers of cells
obtained in this way are low and inadequate for clinical
trials [46].

Despite advances in pharmacological treatment, organ
transplantation and cardiac devices (LVAD), data from the
Framingham Heart Study indicate that the survival of
patients who were diagnosed with heart failure is still poor
[47]. Stem cells, including myoblasts, seem to ideally suit
for autologous transplantation, and more than ten clinical
trials involving myoblast transplantation have so far been
performed (Table 3). Several features favor myoblasts as
the first target for treatment of an ischemic myocardium: (1)
Autologous origin excludes adverse immune responses; (2)
relatively low plasticity due to their progenitor commitment
reduces the risk of teratoma formation as observed with
totipotent cells; (3) myoblasts have a relatively high
proliferation potential, although there could still be better

Table 3 Clinical trials involving myoblast transplantation

candidates among muscle-derived-stem cells; and (4)
myoblasts are relatively resistant to ischemic conditions.
Table 3 summarizes current clinical trials involving
myoblast transplantation. The majority of the trials are at
stage I/I[; no proper control groups were assigned (except
for the MAGIC trial). A vast majority of the trials were
conducted at the opportunity of other surgical interventions
(CABG or LVAD implantations), which makes it difficult to
evaluate the beneficial effect of myoblasts alone and which
resulted in the premature termination of the expensive
MAGIC trial, with statistical power in over a hundred
patients being compromised by multifactorial assessment of
CABG operations. Nonetheless, at least three major issues
overcome a general pessimistic view over the current stage
of stem cells interventions in the failing heart: (a) heart
hemodynamic parameters improved and correlated with
higher numbers of myoblasts implanted; (b) autologous
myoblasts appeared to be safe and feasible candidate cells,
although the arrhythmia episodes associated in a majority
of the trials required the concurrent cardioverter/defibrillator
implantation [48].

Cells with myogenic (contractile) potential can be
considered as the better alternative to bone-marrow-derived
stem cells, which can only be harvested in low quantities,
do not possess contractile properties, and only have
transitory benefits [49]. Although myoblasts do not remain
in the myocardium infinitely, their beneficial effect on the
ejection fraction (LVEF), which begins 3—6 months after
implantation and may last until almost 2 years (Kurpisz,
unpublished), has been observed in most of the trials. This
holds a promise for repetitive dosing of myoblasts using a
low invasive percutaneous approach. Such data are already
available from preclinical trials in rats and pigs [50]. The
cell homing inside the myocardium seems to be sufficient
when using either a percutaneous or an intramyocardial

Approach Patient No. Results Reference

Intramyocardial, adjunct to CABG 10 (no controls) LVEEF increased, improved NYHA class [127]

Intramyocardial, adjunct to LVAD implantation 5 (no controls) Myofibers parallel to host myocardial fibers, [128]
increased blood vessel density

Intramyocardial, adjunct to CABG 10 (no controls) LVEF and regional wall motion increased [129]

Percutaneous 9 (no controls) LVEF improved in 6 out of 9 cases [130]

Intramyocardial, adjunct to CABG 18 (no controls) LVEF regional wall motion and viability increased [131]
improved NYHA class, reduction of scar size

Intramyocardial, adjunct to CABG 11 (no controls) LVEF, regional wall motion and viability increased [132]

Percutaneous 5 (no controls) LVEF and regional wall motion increased [133]

Intramyocardial, adjunct to CABG 18 (no controls) LVEF and viability increased, engraftment of myoblasts [134]

or LVAD implantation

Percutaneous 6 (plus controls) LVEF increased, improved NYHA class [135]

Intramyocardial, adjunct to CABG, allogeneic 2 (no controls) LVEF increased [136]

Intramyocardial, adjunct to CABG 120 (plus control)  Reduction of LV remodeling, LVEF increased at high dose [48]

@ Springer



J Mol Med (2008) 86:1301-1314

1307

approach [51]. A long-term survival of myoblasts within
the myocardium has been recently demonstrated with pro-
angiogenic gene modifications, for example, with VEGF-
transduced myoblasts in rats [52]. Their functionality may
also be improved by connexin 43 overexpression [53].
Finally, different types of stem cells can be combined at
progenitor-committed stages, thus greatly enhancing the
therapeutic outcome [54] and ultimately leading to the
rejuvenation of the whole organ.

Adult stem cell plasticity and the implications
for regenerative medicine

Cell-based therapy may in the nearer future represent a new
strategy to treat a wide array of clinical conditions. The use
of adult stem cells as opposed to human embryonic stem
cells for therapy avoids ethical problems and has two
additional advantages: (a) Adult stem cells can be isolated
from patients, and this overcomes the problem of immuno-
logical rejection and (b) the risk of tumor formation is
greatly reduced as compared to the use of embryonic stem
cells [55].

While pluripotency and plasticity are considered proper-
ties of early ESC, adult stem cells are traditionally thought
to be restricted in their differentiation potential to the
progeny of the tissue in which they reside. When parts of an
organ or tissue are transplanted to a new site, the trans-
planted tissue maintains its original character. Similarly,
when dissociated cells from an organ or tissue are cultured,
they also tend to maintain their original phenotype. Despite
losing some of their differentiation properties, they do not
acquire differentiated characteristics of a different cell
lineage. However, a remarkable plasticity in differentiation
potential of stem cells derived from adult tissues was

Fig. 1 Diagram illustrating
plasticity of bone-marrow-
derived cells

Hematopoietic ) / )‘

recently suggested [56] (Fig. 1). In 1998, Ferrari et al. [57]
first reported that mouse bone-marrow-derived cells give
rise to skeletal muscle cells when transplanted into
damaged mouse muscle. Thereafter, transplanted bone
marrow cells were reported to generate a wide spectrum
of different cell types, including hepatocytes [58], endothe-
lial, myocardial [59, 60], neuronal, and glial cells [61].
Moreover, HSC can produce cardiac myocytes and endo-
thelial cells [62], functional hepatocytes [63], and epithelial
cells of the liver, gut, lung, and skin [64]. Mesenchymal
stromal cells (MSC) of the bone marrow can generate brain
astrocytes [65]. Enriched stem cells from adult mouse
skeletal muscle were shown to produce blood cells [66, 67].
In most of these plasticity studies, genetically marked cells
from one organ of an adult mouse apparently gave rise to
cell type characteristics of other organs following trans-
plantation, suggesting that even cell types once thought to
be terminally differentiated are far more plastic in their
developmental potential than previously thought. A critical
aspect of the observation of adult stem cell plasticity is that
in order for plasticity to occur, cell injury is necessary [68].
This suggests that microenvironmental exposure to the
products of injured cells may play a key role in determining
the differentiated expression of marrow stem cells [69].
The events underlying stem cells plasticity could relate
to a variety of mechanisms such as dedifferentiation, trans-
differentiation, epigenetic changes, and/or cell fusion. Re-
routing of cell fate may result from the multistep process
known as dedifferentiation where cells revert to an earlier,
more primitive phenotype characterized by alterations in
gene expression pattern which confer an extended differ-
entiation potential (Fig. 2). In urodele amphibians, cell
dedifferentiation is a common mechanism resulting in the
functional regeneration of complex body structures
throughout life, including limbs, tail, and even spinal cord

——+ Fusion

True transdifferentiation

-

Mesenchymal
stromal cells

Skeletal
myocytes

Cardiomyocytes

Pancreatic p-cells Neural & glial cells

Hepatocytes

@ Springer



1308

J Mol Med (2008) 86:1301-1314

Terminally
differentiated cells

e

MNuclear mixing and Stable

resolution heterokaryon
(polyplaid)
TRANSDIFFERENTIATION DE-DIFFERENTIATION CELL FUSION

Fig. 2 Diagram illustrating the different mechanisms of cell fate switching in adult stem cells

[70]. Recent studies on the plasticity of murine myotubes
[71] and other cells derived from adult tissues suggest that
dedifferentiation may also be possible in mammals [72]. At
the molecular level, MSX1 has been identified as a possible
factor involved in dedifferentiation processes in both
urodele and human cells [71, 73]. The small molecule,
reversine, can induce murine myogenic lineage-committed
cells to become multipotent mesenchymal progenitor cells
that can proliferate and re-differentiate into bone and fat
cells [74]. Epigenetic cell changes are probably involved
and may be mediated by signals received from the injured
cells. The identification of signals that induce dedifferentia-
tion of somatic cells are key to elucidating the molecular
mechanism of this phenomenon and may ultimately provide
effective tools for the in vivo regeneration of mammalian
tissues. Recent studies favor a model of continuous stem
cell differentiation at the level of progenitor cells with
dynamic transcriptional regulation of stem cell cycle phases
and chromatin alterations associated with cell cycle transit
[69]. In this model, stem cells represent a highly flexible
ever-changing cell system in which the potential and
characteristics of the stem cell are continually and revers-
ibly changing with the cell cycle until a terminal differen-
tiating stimulus is encountered at a cycle-susceptible time
[69]. In this asynchronous stem cell population, there would
always be a small percentage of cells receptive or primed
for a specific differentiation (or de-differentiation) induc-
tion at any particular time.

Another mechanism put forward to explain stem cell
switch to a novel phenotype is a process known as trans-
differentiation (Fig. 2). Cells may differentiate from one
cell type into another within the same tissue or develop into
a completely different tissue without acquiring an interme-
diate recognizable, undifferentiated progenitor state. Recent
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studies show clearly that bone-marrow-derived cells can
colonize a wide variety of tissues in the body of a host [75,
76]. Although derived from the embryonic mesoderm, the
developmental potential of bone marrow cells is not
restricted to this germ layer, but these cells have also been
shown to populate tissues of ectodermal and endodermal
origin [77]. Both mesenchymal stem cells and bone-
marrow-derived cells can give rise to a wide array of non-
hematopoietic cell types such as astrocytes and neurons in
the brain [61, 78], cardiac myocytes in models of infarction
[60], skeletal muscle [57], and hepatocytes [79]. However,
the reported frequencies of colonization are low, and it is
unlikely that there is much repair of organ damage by bone
marrow in the normal individual.

Despite examples of trans-differentiation events of adult
stem cells being reported, these findings are still controver-
sial. Most of the reports could not be confirmed in sub-
sequent investigations [80], and to date, trans-differentiation
has never been conclusively demonstrated in any experi-
mental setting. In every case, differentiation from a rare
population of stem cells has never been excluded, or “trans-
differentiation” events turned out to be misinterpretations
caused by cell fusion resulting in nuclear reprogramming
and changes in cell fate [81, 82] (Fig. 2). It is now
recognized that adult stem cells from bone marrow may
fuse with cell of the target organ. So far, bone-marrow-
derived cells were shown to form fusion heterokaryons with
liver, skeletal muscle, cardiac muscle, and neurons [83].
There is evidence that such fused cells become mono-
nucleated again, either by nuclear fusion or by elimination of
supernumerary nuclei [82, 84]. Fusion and nuclear transfer
experiments demonstrated that genes previously silenced
during development could be reactivated by cytoplasmic
factors modulating the epigenetic mechanisms responsible
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for the maintenance of a specific state of cell differentiation.
However, nuclear transfer experiments demonstrate that the
capacity of cells to successfully reprogram diminishes with
increasing developmental progression of the donor nuclei.
Despite this limitation and the low frequency, cell fusion
may be considered as a potential avenue for tissue repair.

In addition to the aforementioned phenomena of cell fate
switching, the presence of a rare population of pluripotent
primitive stem cells may also explain the acquisition of an
unexpected phenotype. Recently, non-hematopoietic cell
populations from bone marrow and umbilical cord blood
were enriched by in vitro culture and demonstrate to have
the potential to differentiate into derivatives of all three
germline layers with meso-, endo-, and ectodermal charac-
teristics [85, 86]. Known as multipotent adult progenitor
cells (MAPC), these cells contribute to most, if not all,
somatic cell lineages, including brain, when injected into a
mouse blastocyst [87]. Interestingly, while MAPC express
Oct4, a transcription factor required for undifferentiated
embryonic stem cells maintenance [88] at levels approach-
ing those of ESC, MAPC do not express two other
transcription factors known to play a major role in ESC
pluripotency, Nanog and Sox2 [89]. This particular expres-
sion profile may contribute to the fact that the use of ESC,
but not MAPC, carries the risk of generating tumors. Thus,
MAPC are a promising source of autologous stem cells in
regenerative medicine. Their low tumorigenicity, high
regenerative plasticity, and optimal immunological com-
patibility are essential assets for the successful transplanta-
tion of MAPC-derived tissue-committed cells without
immune-mediated rejection [90].

Bone marrow transplantation as a clinical example of
regenerative medicine HSCs were primarily used in the
treatment of patients with hematological malignancies.
During the course of treatment, patient’s cancerous cells
are first destroyed by chemo/radiotherapy and subsequently
replaced with BM or PB/G-CSF transplant from a human
leukocyte antigen (HLA)-matched donor [91]. Allogeneic
marrow transplants have also been used in the treatment of
hereditary blood disorders including aplastic anemia, (3-
thalassemia, Wiskott—Aldrich syndrome and SCID, as well
as inborn errors of metabolism disorders such as Hunter’s
syndrome and Hurler’s syndrome [92-96].

During the therapy of hematological malignancies,
autologous PB/G-CSF HSCs are collected prior to the
treatment and reinfused into the patients after the course of
the aggressive chemotherapy. With a similar approach,
autologous HSCs may be used to reprogram immune
system and reconstitute non-autoreactive immune cells as
a treatment for autoimmune disorders. The problem using
auto-engrafts to rescue HSC population in cancer treatment
is that patient’s cancerous cells may be inadvertently

collected and reinfused back into the patients along with
the stem cells.

HSC transplants are also used as a therapeutic strategy
against various types of solid tumors [97]. Graft-versus-
tumor effect of allogeneic HSC transplants seems to be a
result of an immune reaction between donor cytotoxic T
cells and patient’s malignant cells [98].

HSCs have the ability to generate cell types other
than blood cells. Circulating HSCs are able to reside in
distant tissues and participate in regeneration process by
trans-differentiating into non-hematopoietic cells such as
hepatocytes [15], skeletal muscle and cardiac myocytes
[59, 60], neurons [99], and epithelial cells [64]. The exis-
tence of pluripotent stem cells, which are reprogrammed in
the new microenvironment and differentiate into the cell
types of the tissue to which they were recruited, has
significant implications for regenerative medicine. How-
ever, the potential plasticity of HSCs are disputed by
several reports of failure to show trans-differentiation [56]
as well as other perplexing possibilities such as technical
problems and the possible existence of several types of
non-hematopoietic stem cells in BM [100].

Over the past two decades, HSCs have also been targeted
for ex vivo gene therapy as a vehicle to transfer a modified
gene in autologous settings [101]. This approach provides a
promising alternative treatment for various inherent and
acquired human diseases and may provide an alternative to
currently still risky allogeneic HSC transplants.

Closing remarks

Since the beginning of the basic stem cell research in
1960s, scientists have been facing serious challenges with
identifying true stem cells and proliferating and maintaining
them in culture. For example, the scarcity of HSCs along
with their morphological resemblance to other PB or
marrow cell types in culture makes isolation and purifica-
tion of stem cells difficult. Surface biomarkers currently
used to define HSCs do not appear to be exclusively
expressed on stem cells. This leads to the isolation of a
heterogeneous population of cells that were mistakenly
assumed as true stem cells. Self-renewal capacity of stem
cells is an important property of these cells. Stem cells that
maintain this property and do not differentiate into their
progeny can provide an unlimited source of cells for both
therapeutic and research applications.

Self-renewal divisions of stem cells are rare events in
BM; HSCs replicate themselves slowly with an average
turnover time of 30 days in adult BM [102]. This self-
replication is also hard to induce in vitro, which altogether
hinders the study of self-renewal and differentiation of stem
cells, influencing factors and signaling involved in these
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processes and, subsequently, further targeted manipulation
of these pathways. In addition to these technical difficulties,
various functional assays being used by researchers make
the comparison and meta-analysis of data obtained from
different studies inapplicable. Furthermore, many of the
studies on stem cells including in vivo experiments have
been conducted in animal models, and the true relevance
and reliability of the results in the human remains to be
determined.

One of the major challenges with HSC transplants is
failure to engraft, which is mediated by donor T cells as a
result of graft-versus-host disease. The lack of assays to
selectively deplete the anti-host alloreactive T cells ex vivo
and to separate graft versus host disease from beneficial
effect of ‘graft versus tumor’ results in increased morbidity
and mortality associated with HSC transplants. In addition,
variability of HSC migration by mobilizing agents in
different patients and the serious side effects and toxicity
caused by some of them in donors require further
development of methods to overcome cell dose barrier in
HSC transplants [103]. Moreover, the absence of unrelated
HLA-matched donors for many patients in need of HSC
transplants and the high incidence of relapse of underlying
diseases in transplant recipients are important challenges
remained to be addressed in future attempts to improve the
clinical outcome of HSCs-based therapies.

HSC/BM transplantation has been the lifesaver and a
critical element of anticancer therapies, particularly in
leukemias. Nowadays, however, other less toxic therapeutic
options emerged. Tremendous progress has been made in
the area of therapeutic antibodies [104, 105]. A more
integrated approach is being taken to detect new targets for
the treatment of cancer and other diseases [106, 107]. New
proteins and peptides have recently been discovered that
have cancer (semi-)selective properties [108—110]. Entirely
new concepts that connect cell death, cell survival, and cell
proliferation have been developed that warrant new targets
[111]. Targeted therapies, with the epidermal growth factor
receptor pathway as the best example gain importance
[112], and finally, “traditional” chemotherapy approaches
are being further developed so that new generations of
chemotherapeutic drugs would become available [113].

Nevertheless, the therapeutic potential of adult stem cells
as powerful tools in tissue regeneration and engineering has
been recognized, and intense efforts are ongoing to harness
and direct adult stem cell plasticity. Understanding the basic
molecular mechanisms underlying cell fate switching of
adult stem cells will be an essential contribution to ensuring
their safe use in regenerative medicine. In the near future, it
will most likely be possible to transplant genetically
modified stem cells that carry a set of genes critical for,
e.g., trans-differentiation, that are under externally regulated
promoters [114] and, depending on the therapeutic require-

@ Springer

ments, direct their differentiation into desired cell popula-
tions. Even more “clinically friendly” systems may be
developed where pharmacologic “small molecules” will be
used to directly influence the trans- or re-differentiation
potential of therapeutically applied adult stem cells both
prior and after their administration into patient’s body.
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