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Abstract Angiotensin (Ang) II is not only generated in the
circulation by renin and angiotensin-converting enzyme
(ACE) but also is produced locally in numerous organs
including kidney, vessels, heart, adrenal gland, eye, testis,
and brain. Furthermore, widely distributed mast cells have
been shown to be a production site. Local Ang II
production process is commonly termed the result of a
“tissue” renin–angiotensin system (RAS). Because pharma-
cological experiments do not easily allow targeting of
specific tissues, many novel findings about the functional
importance of tissue RAS have been collected from
transgenic rodent models. These animals either overexpress
or lack RAS components in specific tissues and thereby
elucidate their local functions. The data to date show that in
most tissues local RAS amplify the actions of circulating
Ang II with important implications for physiology and
pathophysiology of cardiovascular diseases. This review
summarizes the recent findings on the importance of tissue
RAS in the most relevant cardiovascular organs.
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Introduction

Since its discovery in 1898 [1] and subsequent work
thereafter spanning more than half a century, the renin–
angiotensin (Ang) system (RAS) was thought to be a
hormone system by which the kidney influences systemic
cardiovascular regulation. Reacting to changes in renal
perfusion pressure, tubular salt content, and the renal
sympathetic nerve activity, the juxtaglomerular (JG) cells
of the kidney release active renin into the circulation. In the
blood, the aspartyl protease proteolytically cleaves the
liver-borne angiotensinogen (AOGEN) to form the inactive
decapeptide Ang I. The angiotensin-converting enzyme
(ACE) further removes two C-terminal amino acids thereby
generating Ang II. ACE is a sessile zinc-containing metal-
loproteinase on endothelial cells. The pulmonary endothe-
lium is a particularly rich source of ACE (Fig. 1). Ang II
has two receptors, AT1 and AT2, expressed in many
cardiovascular and other tissues. Both receptors belong to
the G-protein-coupled receptor class with seven transmem-
brane domains. The AT1 receptor confers most classical
actions of the peptide such as vasoconstriction, aldosterone
release from the adrenal zona glomerulosa, salt retention in
the renal proximal tubules, and stimulation of the sympa-
thetic nervous system via receptors in the brain. In rodents,
which carry two isoforms of the AT1 receptor, AT1A and
AT1B, the AT1A receptor mediates most of these actions.

In addition to the classical RAS components, several new
participants have been discovered in recent years. A homolog
of ACE, ACE2, was discovered and shown to degrade Ang II
yielding Ang-(1-7) (Fig. 2) [2, 3]. Santos et al. discovered
that theMas proto-oncogene is a receptor for this peptide and
that the ACE2–Ang-(1–7)–Mas axis is counter-regulating the
abovementioned cardiovascular actions of the classical RAS
[4, 5]. Furthermore, a protein has recently been discovered,
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which binds and activates renin and prorenin in tissues, the
(pro)renin receptor or (P)RR [6, 7]. The physiological role of
these new RAS components is not completely resolved, but,
as outlined below, they probably exert considerable impact
on local Ang II generation and effect mediation in tissues.

The RAS has been a therapeutic target for cardiovascular
diseases since the discovery of the ACE inhibitor captopril
about 30 years ago [8]. Later, antagonists for the AT1 receptor
were developed [9] and joined the ACE inhibitors as very
efficient antihypertensive agents (Fig. 1). Very recently,
inhibitors of the rate-limiting enzyme in the RAS, renin, were
approved for clinical use [10]. The efficiency of these drugs is

partially based on the fact that they not only inhibit the
classical RAS in the circulation but also local RAS in tissues
[11–14]. In this short update, we will only summarize the data
of the last decades and will add some novel aspects, which are
mostly based on experiments with transgenic animal models
with altered RAS components in single tissues.

Kidney

The first place to surmise a tissue RAS is the kidney because
the kidney is the source of the initiating enzyme of the cascade,

Fig. 2 The new renin–angiotensin system (RAS). The newly discovered components of the RAS, such as angiotensin-(1-7), ACE2, Mas, and
(P)RR are shown in red
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renin. When the substrate AOGEN and the second enzyme
ACE were found to be expressed within the kidney, a local
generation of Ang II with physiological importance became a
foregone conclusion [15, 16]. Furthermore, early studies
detected renin and its messenger RNA (mRNA) [17] outside
of the JG cells in the proximal tubules and even in the
collecting duct. At these sites, renin is not primarily implicated
in the regulation of circulating Ang II levels. Intrarenal Ang II
generation is very effective and, under positive feedback
control at these renal sites, causes higher local concentrations
of the peptide than in the circulation [18–20]. Ang II has
numerous functions within the kidney. Besides effects in renal
development [21], knockout mice lacking AT1 receptors have
shown that Ang II regulates glomerular blood flow, tubular
sodium reabsorption, and renin secretion. The local RAS in
the kidney may be of high relevance for blood pressure
regulation as an amplifier of circulating Ang II actions. In
elegant experiments, Crowley et al. [22, 23] showed that AT1
receptors in the kidney are relevant for baseline blood pressure
regulation and even more importantly for hypertension
induced by Ang II infusion. Bilaterally nephrectomized mice
transplanted with one kidney lacking AT1A receptors hardly
reacted to chronic Ang II infusion with a blood pressure
increase, in contrast to mice lacking AT1A receptors in all
tissues except in a transplanted kidney. These mice developed
the same increased blood pressure levels as wild-type (trans-
planted control) mice. Furthermore, the local kidney RAS
may be pivotal for renal damage caused by hypertension. We
recently showed that mice lacking intrarenal AOGEN
synthesis developed less hypertensive damage in the kidney
than control mice [24]. Accordingly, mice generating more
renal Ang II, either by a transgenic human RAS [25] or by
local overexpression of rat AOGEN [26], develop high
blood pressure and ample renal injury.

Müller, Luft, and their associates recently shed light on
mechanisms involved in Ang II-induced target-organ damage.
Using our double-transgenic rat model expressing the human
RAS [27], they found that Ang II elicits an inflammatory and
immunological response, which leads to interstitial fibrosis,
glomerulosclerosis, albuminuria, and finally renal failure [28,
29]. The novel (P)RR protein is implicated in renin- and
prorenin-mediated organ damage, both related to and inde-
pendent of Ang II [6]. The (P)RR is able to activate bound
prorenin, thereby facilitating local Ang II generation, but also
initiates extracellular-related kinase signaling on its own. The
(P)RR has been implicated in the pathogenesis of hypertensive
and diabetic kidney damage. Ichihara and coworkers have
presented compelling evidence involving a peptide inhibiting
the interaction of prorenin with (P)RR. They found that their
“decoy” peptide could blunt renal damage induced by diabetes
and hypertension [30, 31]. Nevertheless, these data require
confirmation in the light of the fact that (P)RR has additional
essential functions in cellular physiology [7, 32].

Vascular wall

Almost 40 years ago, Ganten et al. [33] were able to show
that renin can be released from splanchnic vessels. Further
studies detected AOGEN mRNA and protein in the vessel
wall and documented the local generation of Ang II [34].
By direct action on AT1 receptors in vascular smooth
muscle cells, Ang II increases vascular tone and blood
pressure. However, this classical concept has recently been
challenged by the use of T-lymphocyte-deficient mice,
which showed a blunted pressor response to low-dose Ang
II infusion. These findings by the Harrison laboratory
suggest that immune cells may be involved in the local
actions of the peptide on vascular tone [35]. Moreover,
these mice did not develop the vascular dysfunction and
damage normally observed after Ang II infusion. When
these data can be confirmed, we will have to accept the fact
that the effects of Ang II on the vascular wall are partially
mediated by AT1 receptors on T-cells and probably other
immune cells. By personal communication, we know that
the Müller–Luft laboratory has made similar observations
in mice lacking dendritic cells (personal communication).

ACE2, its product Ang-(1-7), and Mas have all been
found in the vascular wall [36]. The postulate that (P)RR is
responsible for uptake of renin from the circulation into the
vessel wall was supported by us in experiments employing
a transgenic rat model overexpressing this protein in
vascular smooth muscle cells. These (P)RR transgenic
animals showed an increased accumulation of prorenin in
vessels and elevated blood pressure [37, 38]. Ang-(1-7) is
generated in the vascular wall from Ang II by ACE2 and
interacts with Mas on endothelial cells [4, 39]. As we could
recently show using Mas-deficient mice, this interaction
improves endothelial function and reduces blood pressure
[40]. Thus, the ACE2–Ang-(1-7)–Mas system is counter-
acting the classical RAS in the vessel wall. Moreover, using
an animal model overexpressing the AT1 receptor only in
endothelial cells, Ramchandran et al. [41] demonstrated that
Ang II can also act as a vasodilator, when interacting with
AT1 on these cells. A similar effect had already been shown
for AT2 receptors earlier. Thus, the net cardiovascular effect
of angiotensin metabolism in the vascular wall depends on
the relative expression of classical and novel components of
the RAS in endothelial and smooth muscle cells.

Heart

Local Ang II production in the heart has been observed
about 20 years ago [42, 43]. While cardiac AOGEN and
ACE expression was unequivocally shown, the expression
of renin is disputed. In bilaterally nephrectomized pigs,
cardiac renin activity was reduced to minute amounts,
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which argues against local renin expression [44]. Probably,
(P)RR or other renin binding proteins are responsible for
the uptake of the enzyme from the circulation into the heart
where it initiates Ang II generation [45]. Another source of
renin may be mast cells which carry and release renin from
their granules and which invade the heart in particular after
myocardial infarction. Mast-cell-derived renin was found to
be pivotal for activating a cardiac RAS leading via AT1A
receptors to increased local norepinephrine release via
cardiac neurons. The result was malignant rhythm
disturbances [46].

Cardiac fibroblasts and myocytes express AT1 and AT2
receptors. Ang II was found to exhibit growth-promoting
effects in the heart more than 30 years ago [47].
Furthermore, in the heart [48], these effects were thought
to be most relevant by inducing hypertrophy and fibrosis.
An interplay between AT1 and AT2 receptors in the heart
has been described [49]. However, recent evidence suggests
that this paradigm must be revised [50]. In the experiments
with transplanted AT1A-deficient kidneys already men-
tioned above, the extent of cardiac hypertrophy correlated
solely with the blood pressure of the transplanted mice and
not with the presence or absence of AT1A receptors in the
heart [23]. Moreover, in most transgenic animal models
with increased generation of Ang II locally in the heart,
either by overexpression of AOGEN, ACE, or a protein
releasing the peptide, no hypertrophy was detected, as long
as the animals remained normotensive [51–53]. However,
in some cases, increased fibrosis and an augmented
hypertrophic response to increased afterload was reported
[51, 52]. The same was true for some, but not all,
transgenic rat and mouse models overexpressing the AT1
receptor in cardiomyocytes [54, 55]. Some cardiac AT1
overexpression models developed cardiac hypertrophy, if
an interaction with the epidermal growth factor receptor
(EGFR) was possible [56–58]. Furthermore, in hyperten-
sive mice lacking local AOGEN generation in the heart,
cardiac hypertrophy and fibrosis was attenuated [24]. How
can these data be reconciled into a “unifying theory” about
Ang II and cardiac hypertrophy? Probably, locally produced
Ang II alone is not sufficient for hypertrophy but it maybe
for fibrosis induction. Pressure-induced cardiac hypertro-
phy appears to require an interaction between Ang II and
the EGFR. In this pathway, AT1B or AT2 receptors may
compensate for the absence of AT1A. This role of the
cardiac RAS may explain the therapeutic effectiveness of
RAS inhibitors in the amelioration of hypertensive end-
organ damage often exceeding their efficacy in blood
pressure control in patients.

Another component of the classical RA(A)S, aldoste-
rone, has gained therapeutic interest in particular in cardiac
diseases. Mineralocorticoid receptor antagonists turned out

to decrease the risk after myocardial infarction [59, 60].
The underlying pathophysiological mechanisms, however,
are not yet completely understood.

Brain

The concept of tissue RAS in general was coined after the
discovery of local Ang II generation in the brain [61, 62].
However, the identity of the synthesizing enzyme as being
true renin is still under discussion and other enzymes have
been postulated to be responsible for Ang II generation in
the brain [63].

Due to the blood–brain barrier, most Ang II receptors,
which are expressed at multiple sites in the brain, cannot be
reached by circulating Ang II. To activate these sites, Ang
II needs to be synthesized from locally expressed AOGEN
by brain-derived ACE and renin. Exceptions are the
circumventricular organs (CVO), where a fenestrated
endothelium allows the sensing of the hormonal status in
the circulation including the systemic Ang II levels by AT1
receptors expressed there in high amounts. Activation of
these receptors leads to increases in blood pressure, thirst,
and salt appetite.

However, there is now increasing evidence that the
transduction of the signals from the CVO to physiological
outputs such as release of vasopressin or activation of the
sympathetic nervous system requires a local RAS in areas
of the brain inside the blood–brain barrier. Concordantly,
transgenic mice with increased Ang II generation only in
the brain became hypertensive and exhibited increased salt
appetite [64–66]. Even more convincing were studies in
which Ang II generation was specifically decreased in the
brain. Transgenic rats expressing an antisense RNA against
AOGEN only in astrocytes, TGR(ASrAOGEN), were
suitable tools for studying this issue [67]. The animals
showed reduced blood pressure, sympathetic nervous
system activity, and vasopressin release, as well as a
blunted response to increased circulating Ang II [67–69].
In a more sophisticated approach, the groups of Sigmund
and Davisson generated mice expressing human AOGEN in
the whole brain except the subfornical organ (SFO). The
investigators locally injected an adenovirus, which deleted
the AOGEN transgene [70]. These animals showed a
blunted pressor response to intracerebroventricular human
renin infusion, indicating that the SFO is of pivotal
importance for the central pressor effect of Ang II. When
in transgenic animals carrying human renin and human
AOGEN, the local expression of AOGEN in the SFO was
ablated in the same way; water intake decreased. This
observation provides evidence that this brain region is also
essential for the drinking control exerted by Ang II [71].
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Adrenal gland

Forty years ago, renin and later its mRNA was discovered
in the adrenal gland [72, 73]. The gland already begins to
express renin in high amounts during embryogenesis in
parallel to the kidney [74]. In contrast to the heart (see
above), adrenal renin concentration is even upregulated
after bilateral nephrectomy, indicating independence of the
adrenal RAS from the systemic one [75]. The functions of
the adrenal RAS may include modulation of aldosterone
secretion in conjunction with the circulating Ang II. This
conclusion is supported by the drastically altered steroido-
genesis in TGR(mREN2)27 rats with a stimulated adrenal
RAS in the presence of normal plasma Ang II levels [76,
77]. Interestingly, the adrenal gland expresses also a
cytoplasmic form of renin called renin A [78, 79]. When
the renin A isoform is overexpressed in transgenic rats,
aldosterone synthesis is stimulated [80]. The adrenal RAS
may serve as an amplification system for the effects of the
circulating RAS on steroidogenesis because Ang II can
induce renin release from adrenocortical cells [81].
Furthermore, a role of Ang II in adrenal development is
implicated by the early embryonic expression of renin in
this organ [82], but as yet no conclusive evidence was
provided. However, growth-promoting, but probably not
proliferative, effects of the locally generated Ang II are of
major importance for the adjustment of the size of adrenal
glomerulosa to physiological needs [83].

Conclusions

The local generation of Ang II has been demonstrated for all
tissues relevant for cardiovascular control. These tissue RAS
play important roles in the functional regulation of the
respective organs mostly conveying and amplifying the effects
of circulating Ang II. Thereby, they modulate cardiovascular
parameters and influence—mostly accelerate—the pathogene-
sis of cardiovascular diseases. Thus, tissue RAS form the basis
for the understanding of the extraordinary therapeutic efficien-
cy of drugs inhibiting the RAS, such as ACE inhibitors, AT1
antagonists, and the newly developed renin inhibitors.
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