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Abstract Obesity and type 2 diabetes are the most
prevalent metabolic diseases in the western world. Alarm-
ingly, the cluster of pathologies characteristic of obesity-
induced disease have started to emerge in children, a
phenomenon that up until a decade ago was inconceivable.
Hence, the development of new strategies to treat ‘metabolic
disease’ is most warranted. Growing evidence suggests that
during type 2 diabetes, a state of chronic low-grade inflam-
mation exists in metabolically active tissues such as the liver,
adipose tissue and skeletal muscle. This inflammation is
often secondary to lipid accumulation in insulin-responsive
tissues. Recent studies have focused on the therapeutic
potential of ciliary neurotrophic factor (CNTF). CNTF is a
pluripotent neurocytokine and, has shown promise as a
potential anti-obesogenic therapy. CNTF acts both centrally
and peripherally, mimics the biological actions of leptin
while overcoming “leptin resistance”, remains effective even
after termination of therapy if administered centrally, and
appears to reduce inflammatory signaling cascades associat-
ed with lipid accumulation in liver and skeletal muscle. The
advantages and disadvantages of CNTF as a therapeutic
strategy to alleviate obesity-associated diseases will be
highlighted in this review.
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It is now estimated that 10% of the world’s population are
overweight or obese. Alarmingly, there has been a 75%
increase in adult obesity in the last 25 years [1]. In the
USA, 20 states have obesity prevalence rates of 15 to 19%,
29 have rates of 20 to 24%, and one has a reported rate of
more than 25%. Of major concern, the phenomenon of
being overweight or obese is now a significant problem in
children, and the incidence is continuing to climb [2].
Rather than using therapeutic intervention, the promotion of
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lifestyle changes, which include exercise and a healthier
diet, should be implemented to treat childhood obesity. An
abundant number of disorders directly correlate with
obesity. These include glucose intolerance, dyslipidemia,
and insulin resistance which may ultimately culminate in
pancreatic beta cell failure and type 2 diabetes. There are
many current pharmacological drugs to treat the obesity-
related disorder type 2 diabetes. These include: (1)
thiazolidinediones (TZDs), which function as ligands for
the peroxisome proliferator-activated receptor-γ, nuclear
receptors controlling adipocyte metabolism, and differenti-
ation; (2) biguanides, which decrease endogenous glucose
production via activation of the fuel sensing kinase 5′-AMP
activated protein kinase (AMPK), and (3) sulfonylureas,
which stimulate insulin secretion. When patients no longer
respond to these treatments, insulin is prescribed to control
hyperglycemia and arrest the development of diabetic
complications [3]. However, the current therapeutic strate-
gies have many disadvantages, not the least being weight
gain, particularly when TZDs and insulin are administered.
Therefore, the “holy grail” of identifying a drug that is
capable of concomitantly decreasing body weight while
enhancing insulin action has remained elusive.

Leptin—the obesity breakthrough or not?

When the adipocyte-derived protein leptin and its receptor
were first characterized [4–6], it offered an entirely new
paradigm in the therapeutic control of obesity because its
discovery established a link between a circulating molecule
and modification of feeding behavior centrally. More than
10 years on, it is now known that so-called “leptin
resistance” occurs in obese subjects [7]. The reasoning for
“leptin resistance” is still not fully clear; however, two
mechanisms are believed to be at play. Firstly, transport of
leptin across the blood–brain barrier may be dysfunctional
[8]. Moreover, the second appears to be related to defective
signaling through the long isoform of the leptin receptor
(LRb). Research from Yoshimura et al. [9] and Hilton and
colleagues [10] identified a novel cytokine inducible
compound, termed suppressor of cytokine signaling
(SOCS-3), that negatively regulated leptin signaling and
lead to leptin resistance [11, 12]. In mice that have
haploinsufficiency of SOCS3, leptin sensitivity is in-
creased, and these mice are protected from diet-induced
obesity [11]. When SOCS3 was selectively ablated in
proopiomelanocortin (POMC) expressing neurons of mice,
leptin sensitivity was enhanced [13]. This study conclu-
sively demonstrated that POMC-expressing neurons are a
major target of leptin and assist in mediating leptins’
beneficial effects. It has been clearly established that
phosphorylated Tyr985 of LRb binds SOCS-3 which

contributes to the attenuation of LRb signaling. In a recent
study by Bjornholm et al. [14], homologous recombination
was adopted to replace the WT LRb in mice with a receptor
that possesses a mutation at Tyr985 (Tyr → Leu), resulting
in a lack of SOCS-3 binding. Interestingly, mice, homolo-
gous for the mutation displayed reduced feeding and
adiposity and an increased sensitivity to exogenous leptin.
Unexpectedly, the phenotype was particularly evident in
female mice. Interestingly, in independent studies, hetero-
zygous SOCS-3-deficient and brain SOCS-3-deficient
females displayed a more robust leptin-sensitive response
compared to males [11, 12]. The increased estrogen levels
in females may be the mediator of these effects, as estrogen
is known to interact with identical signaling molecules as
leptin in the hypothalamus to control energy homeostasis
[15]. These results substantiate that the mutation of Tyr985
prevents the activation of an inhibitory Tyr985 dependent
LRb signal. It is well documented that leptin mediates a
majority of its effects in the central nervous system by
reducing the activation of 5′AMP-activated protein kinase
(AMPK). In muscle cells that overexpress SOCS3, leptin
can no longer activate AMPK and its downstream target
acetyl-CoA carboxylase β (ACCβ), which fails to suppress
ACC β activity. This ultimately prevents the increase in
fatty acid oxidation [16]. It is clear, therefore, that in these
systems, SOCS-3 transpires to negate the effects of leptin
resulting in leptin resistance (Fig. 1a). As both human and
rodent obesity are characterized by increased SOCS-3
[17, 18] and dysfunctional leptin signaling [19, 20], the use
of leptin as an antiobesity therapeutic may not be an
attractive option [21]. However, gp130 receptor ligands, in
particular, ciliary neurotrophic factor (CNTF), may provide
an avenue for circumventing leptin resistance, as CNTF is
known to have “leptin-like” effects in obesity [7].

Ciliary neurotrophic factor/glycoprotein 130 (gp130)
receptor signaling

Approximately, a quarter of a century ago, CNTF was
identified as a factor which promoted survival of chick
ciliary ganglion neurons [22]. Ten years later, CNTF was
purified and cloned from sciatic nerves [23, 24]. In addition
to its pro-survival functions [25], CNTF encourages the
differentiation of sympathetic neurons and glial progenitor
cells into astrocytes. To mediate its effects, CNTF binds the
CNTF receptor (α receptor; Fig. 1b). This event then leads
to heterodimerization of glycoprotein 130 (gp130) and the
leukemia inhibitory factor receptor (LIFR; β receptors).
Both gp130 and the LIFR enable downstream signaling
through the Janus kinase/signal transducer and activator of
transcription (JAK/STAT) pathway [26]. Of critical biolog-
ical significance is the fact that CNTF may also utilize the
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interleukin-6 receptor (IL-6R) as an α-receptor ([27];
Fig. 1c). Another gp130 ligand, interleukin-6, has also
been the topic of much research relating to obesity;
however, this review will focus on CNTF-mediated effects
on obesity-related disorders. It is important to note differ-
ences between CNTF and IL-6 binding epitopes. Both
IL-6 and CNTF each possess three binding epitopes.

Interleukin-6 may bind the IL-6R at the site I epitope and
gp130 at the site II and III epitopes. In contrast, CNTF
may bind either the IL-6R or CNTFR at the site I epitope,
gp130 at site II, and the LIFR at the site III epitope [28].

Expression of the CNTF receptor-α (CNTFR) is most
abundant in the tissue of the nervous system; however, it is
expressed in numerous peripheral tissues including skeletal

Fig. 1 CNTF and leptin signaling pathways involved in regulating
Jak/Stat signaling and the negative effects of SOCS-3 expression. (a)
When leptin binds the leptin receptor b (LRb), Jak2 also binds LRb at
its intracellular binding domain and is phosphorylated. This, in turn,
phosphorylates STAT3 which is bound to Tyr1138 of the LRb. STAT3
acts as a critical transcription factor for SOCS-3 and other STAT3-
dependent genes in the nucleus. When SOCS-3 protein expression
increases, it inhibits leptin signaling by binding to the LRb at its Src
homology phosphatase-2 (SHP2) domain (Tyr985) to inhibit JAK
tyrosine kinase activity. CNTF can signal by firstly binding the
CNTFRα (b) or IL-6Rα (c). After recruitment of the LIFRβ and

gp130β receptors, JAK/STAT signaling occurs on the intracellular
domains of the LIFRβ and gp130β receptors. As with the LRb,
SOCS-3 can inhibit JAK/STAT signaling on the LIFRβ and gp130β
receptor, by binding the SHP2/Tyr974 and SHP2/Tyr759 binding sites
of each receptor, respectively. It is currently hypothesized that CNTF
may overcome SOCS-3 inhibition because the gp130β receptor has
three additional STAT-3 binding sites compared to the LRb. In
addition, it is known that the C-terminal SOCS box recruits ubiquitin
transferases to mediate the degradation of receptor Jak complexes.
Adapted from [67] and [68]
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muscle [25, 29]. The CNTFR-α expression levels in both
cultured preadipocytes/mature adipocytes and adipose
tissue in vivo will be discussed in detail later in this review.
Interestingly, in skeletal muscle, the CNTFR is consider-
ably lower in expression when compared with the IL-6Rα
[16]. Direct effects of CNTF in skeletal muscle include
dedifferentiation of human myoblasts into multipotent
progenitor cells [30]. In addition, CNTF promotes muscle
strength [31]. It was first discovered that CNTF possessed
antiobesogenic characteristics when amytrophic lateral
sclerosis patients were treated with CNTF in an effort to
attenuate disease progression [32]. Remarkably, CNTF-
treated patients underwent marked weight loss. Since this
study, a vast number of rodent studies have further
substantiated the antiobesogenic properties of CNTF and
the human recombinant variant of CNTF, Axokine®
(CNTFAx15) [25].

Direct effects of CNTF action on the brain

Gloaguen et al. [33] reported that the CNTFRα and the
LRb were co-localized in the hypothalamic region of the
brain involved in the regulation of energy balance. In
addition, systemic administration of both CNTF and leptin
activated genes in the arcuate nuclei, suggesting that both
cytokines were capable of anorexogenic neuronal signaling.
Moreover, they found that administration of CNTF in leptin
resistance models of obesity, namely, ob/ob, db/db, and
high-fat-fed mice, resulted in reduced feeding, body weight,
and insulin levels. Lambert et al. [34] also demonstrated
that CNTFAx15 reversed the obese phenotype in leptin-
resistant rodent models and importantly failed to induce
fever which quite often occurs with cytokine treatment [35].
Interestingly, subsequent studies have reported the presence
[36, 37] or absence [16] of fever or increases in pro-
inflammatory gene expression after treatment with CNTF
or CNTFAx15.

In the study by Lambert et al. [34], mice maintained a
decreased body weight after the CNTF treatment was
discontinued. It has only become evident in the last 2 years,
exactly how CNTF or CNTFAx15 prevented weight gain
after the cessation of treatment. It has been shown that
centrally administered CNTF leads to proliferation of cells
in the hypothalamus of mice [38]. In proof-of-principle
experiments, administration of the mitotic blocker cytosine-
β-D-aribinofuranoside with CNTF prevented hypothalamic
neurogenesis, and this eventuated in an increase in weight
gain. Thus, a benefit of central administration of CNTF or
CNTF analogs is the ability to remain effective after
therapy has been terminated. This prolonged effect may
provide scope to trial drugs that could be used in a cyclic
manner in the treatment of obesity. Further studies are

warranted to fully elucidate the pathophysiological signif-
icance of CNTF-mediated hypothalamic neurogenesis.

While it has been known that CNTF exerts anorexic
effects via activation of neurons in the arcuate nuclei of the
hypothalamus for some years, the precise subset of cells
that CNTF acts on in this region of the brain has remained
elusive until recently. A transgenic mouse with a selective
ablation of the gp130 receptor in anorexigenic proopiome-
lanocortin (POMC) expressing neurons gp130ΔPOMCmice

� �

was engineered [39]. The gp130ΔPOMC mice and littermate
control mice displayed similar phenotypes when fed a
normal chow or high-fat diet. When CNTF was adminis-
tered centrally, the effect of centrally administered CNTF
was abolished in gp130ΔPOMC mice compared with litter-
mate control mice. This conclusively identified the precise
neuronal pathway that CNTF uses in the hypothalamus.
CNTF has also been shown to mediate effects on
orexigenic NPY hypothalamic neurons. Interestingly, hy-
pothalamic NPY mRNA expression was markedly de-
creased in CNTF-treated rats compared to their control
counterparts [40]. In addition, NPY-induced feeding was
considerably reduced in CNTF-treated animals. The authors
concluded that CNTF-induced anorexia is partly due to
reduced NPY supply. Hence, CNTF has effects on both
POMC and NPY hypothalamic neurons.

It has recently been demonstrated that part of the central
action of CNTF is due to reduced AMPK activation. When
CNTFAx15 was administered intracerebroventricularly
(ICV) and intraperitoneally (IP), AMPK α2 activity in the
hypothalamus was reduced [41]. In addition, ICV treatment
with CNTFAx15, promoted phosphorylation of STAT3,
reduced phosphorylation of AMPK and ACC in the arcuate
nucleus, induced hypophagia, and decreased body weight
of mice fed a standard and/or high fat chow [41]. In
conclusion, CNTF or CNTF analogs mediate hypothalamic
control of energy balance by specific activation of POMC
neurons in the arcuate nuclei via reduced AMPK activation.
In addition, CNTF appears unique as its neurotrophic
properties result in hypothalamic neurogenesis, allowing
for the possibility of cyclic treatment regimes in the
treatment of obesity (see Fig. 2). However, the neurotrophic
effects of CNTF, which could possibly result in unwanted
side effects, coupled with the observations that CNTF can
activate inflammatory gene expression in the brain [36, 37],
may limit the efficacy of CNTF as a centrally acting
therapeutic agent.

CNTF: activity outside of the central nervous system

Two in vitro studies have eluded to the fact that CNTF may
directly act on cells originating from peripheral tissues in a
centrally independent manner. In the first study, CNTF was
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shown to stimulate STAT3, MAPK, Akt, and p70S6K in
brown adipocytes [42]. The second study also demonstrated
that CNTF may directly activate cultured 3T3-L1 preadipo-
cytes and mature adipocytes as evidenced by STAT3
phosphorylation [43]. The authors of the latter study noted
that the activation of cultured mature adipocytes by CNTF
occurred despite the fact these adipocytes do not express the
CNTFRα. This further highlighted that the IL-6Rα may
serve as an α receptor for CNTF in adipocytes in vitro [27].
Interestingly, in contrast to the aforementioned in vitro
results, the CNTFRα is highly expressed in the adipose
tissue of numerous rodent models of obesity [43]. As CNTF
is known to promote insulin sensitivity, the authors of this
study hypothesized that the upregulation of the CNTFRα in
adipose tissue of obese rodents may be a compensatory
mechanism to increase insulin sensitivity. In addition, when
wild-type mice fed a normal chow were treated with CNTF,
phosphorylation of STAT3 occurred in skeletal muscle and
adipose tissue. This observation also suggested that CNTF
could exert peripheral, centrally independent actions, but it
still remained to be eliminated that intraperitoneal adminis-
tration of CNTF was not ultimately acting centrally. To test
whether central administration of CNTF could result in
activation of AMPK in murine skeletal muscle, CNTF was
administered either IP or ICV, and skeletal muscle was
dissected. Intracerebroventricular delivery of CNTF failed to

have any effect on skeletal muscle. However, intraperitoneal
administration of CNTF promoted activation of STAT3 and
AMPK in red gastrocnemius muscle [16]. This was the first
report that proved that CNTF could act in a centrally
independent manner. In addition, numerous markers of fatty
acid oxidation were elevated at the mRNA level in skeletal
muscle after intraperitoneal administration of CNTF only.
Although it may be inferred that increased insulin sensitivity
and weight loss would result after the increased fatty acid
oxidation, it still needs to be formally demonstrated. Chronic
administration of CNTF to mice both intracerebroventricu-
larly and intraperitoneally, followed by body weight mea-
surements and glucose/insulin tolerance testing, will fulfill
this aim. In the aforementioned study, the authors were able
to also determine precise pathways for CNTF action in
peripheral tissues such as skeletal muscle. CNTF promoted
fatty acid oxidation in skeletal muscle in an AMPK-
dependent manner. This was concluded when the CNTF-
mediated increase in fatty acid oxidation was abrogated
when skeletal muscle cells were infected with an AMPK-
dominant negative adenovirus. Of great importance, insulin
signal transduction and insulin action was restored in the
skeletal muscle of mice treated with CNTF for 7 days
compared with sham-treated pair-fed animals on a high fat
diet. Unlike leptin, CNTF promoted phosphorylation of
STAT3, AMPK, and ACC and increased fatty acid oxidation

CNTF
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Muscle

lipid

JNK
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Fig. 2 Pathways by which CNTF mediates weight loss and insulin
sensitivity. CNTF functions centrally via gp130 receptor signaling in
proopiomelanocortin (POMC) expressing neurons in the hypothala-
mus to reduce AMPK activation. In addition, CNTF increases
neurogenesis in the arcuate nuclei. Ultimately, hypophagia prevails.
In peripheral organs/tissues such as skeletal muscle, CNTF upregu-
lates AMPK activation, which eventuates in increased fatty acid

oxidation. CNTF acts to decrease steatosis of the liver and lipid build
up in skeletal muscle. The promotion of fatty acid oxidation and
lowered lipid accumulation (diacyglyceride and ceramide) in liver and
skeletal muscle decreases the activation of serine threonine kinases
(JNK and IKK) and the transcription of SCD-1 in liver to improve
lipid induced insulin resistance
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in skeletal muscle from mice fed a high-fat diet [16]. These
results pointed to CNTF or CNTF analogs acting as
anti-obesity targets [44] and eluded to a possible mechanism
whereby gp130 ligands may overcome leptin resistance. The
gp130β receptors and LRb are strikingly similar with regard
to numerous aspects of their carboxyl domains. Of note,
however, there are some critical differences. Similar to the
LRb, where SOCS-3 can bind the SHP-2 domain, SOCS-3
can inhibit Jak/Stat signaling on the human and mouse
gp130 receptor, by binding the SHP2/Tyr759 or Tyr757

binding site, respectively. It should be noted that the LRb
receptor has 1 STAT-3 binding site (human: Tyr 1138),
whereas, gp130 has 4 STAT-3 binding sites (human: Tyr
767, 814, 905, and 915) in their cytoplasmic domains.
Therefore, it appears that CNTF can overcome SOCS-3
inhibition of receptor signaling because the gp130 receptor
has an additional 3 STAT binding sites. A recent murine
study has indicated that the four STAT3 binding domains on
the gp130 receptor appear critical for promoting the
beneficial metabolic effects in skeletal muscle after CNTF
binding (Fig. 1b and c). This was clearly shown when
gp130ΔSTAT and wild-type mice were treated with CNTF.
The gp130ΔSTATmice lack the STAT-3 binding sites in the
cytoplasmic domain of gp130. Interestingly, activation of
STAT3, AMPK, and ACC failed to occur in gp130ΔSTAT

mice and culminated in an absence of fatty acid oxidation,
which was in direct contrast to wild-type mice [16].

A hallmark of insulin resistance is the accumulation of
lipid intermediates in peripheral organs such as skeletal
muscle and liver [45, 46]. Stress kinases such as c-jun
terminal amino kinase (JNK), which attenuates insulin
signaling, may be activated by the production of fatty acid
metabolites within insulin-responsive tissues [47–49].
Therefore, it is of prime importance that CNTF treatment
of mice fed a high-fat diet greatly decreased the build up of
lipid in skeletal muscle and the activation of serine kinase
cascades [16]. In this same study, CNTF treatment
promoted insulin sensitivity of mice fed a high-fat diet as
evidenced by increased glucose uptake and insulin signal-
ing in skeletal muscle. In support of the aforementioned
murine studies, it was also shown that rats infused with
lipid and treated with CNTFAx15 also displayed increased
insulin responsiveness and decreased activation of JNK in
skeletal muscle and diminished JNK and NFκB in the liver
[50]. This was linked with lowered fat accumulation in
skeletal muscle and liver. CNTF has also been shown to
lower the degree of hepatic steatosis in conjunction with
increases in liver function, liver insulin signaling, and
metabolic rate, in db/db mice, which were administered
CNTFAx15 for 10 days [51]. This same group also
documented increases in uncoupling protein 1 (UCP1)
mRNA levels in brown adipose tissue of mice treated with
CNTF [52]. In an independent study, Liu et al. [53, 54] also

demonstrated that 30 days of recombinant human ciliary
neurotrophic factor (rhCNTF) administration to obese
diabetic KK-Ay mice resulted in marked reductions in
body weight, blood glucose, perirenal fat mass, serum-free
fatty acids, and pancreatic islet triglycerides. Enhanced
expression of UCP-1, NRF-1 (nuclear respiratory factor-1)
and TFam (mitochondrial transcription factor A) was
observed in brown adipose tissue after 3 days of rhCNTF
administration in KK-Ay mice. In addition, rhCNTF
treatment increased the activity of mitochondrial complex
IV, which suggests that mitochondrial respiration was
increased. This study has highlighted that upregulation of
NRF-1 and TFam may contribute to increased UCP-1
expression after rhCNTF treatment. These latter observa-
tions are consistent with the fact that CNTF may upregulate
peroxisome proliferator-activated receptor γ coactivator 1α
(Ppargc1a) mRNA and protein expression in skeletal
muscle [16] and brown adipose tissue [54]. Importantly,
increased AMPK activity can directly phosphorylate PGC-
1α to increase its activity [55], and a number of studies
have recently implicated defective mitochondria in the
etiology of insulin resistance and type 2 diabetes [56–59].
In summary, CNTF clearly acts centrally, and recent studies
demonstrate that this gp130 ligand promotes insulin
sensitivity and fatty acid oxidation in peripheral tissues in
a centrally independent manner as depicted in Fig. 2.

Are mutations in human CNTF/CNTFRα functional?

A limited number of mutations occur in either the CNTF
[60] or the CNTFRα gene [61]. As CNTF is clearly
implicated in energy balance, several researchers have aimed
to assess whether the CNTF or CNTFRα gene mutations are
associated with body mass in humans. Whether the null
mutation of the CNTF gene is associated with body weight
in humans is equivocal, as the mutation in the CNTF gene
appears to have little association with early onset obesity
[62], but is associated with a 10-kg increase in body weight
in older male Caucasians [63]. Most importantly, the C174T
polymorphism in exon 9 of the CNTFRα gene correlated
with fat-free mass in both sexes [61].

Efficacy of human clinical trials using CNTFAx15

As previously discussed, CNTFAx15, the human recombi-
nant variant of CNTF, has been developed under the name
Axokine®. The results from a phase II clinical trial were
reported 3 years ago [63]. All subjects in this clinical trial
had an average BMI of ~41. Interestingly, the weight of the
control patients remained steady state, while the patients
administered Axokine® lost 3–4 kg after 84 days. Unfor-
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tunately, patients administered high doses of Axokine®
experienced nausea, and numerous subjects developed
neutralizing anti-CNTFAx15 antibodies. Added to this, a
follow-up study eluded that patients treated with Axokine®
had gained weight [63]. It appears, therefore, that the
follow up study using Axokine® has revealed somewhat
disappointing results.

Fine tuning CNTF as an antiobesity therapy

As discussed, the IL6Rα is a promiscuous receptor for both
IL-6 and CNTF ([16, 27] and Fig. 1c). However, IL-6 and
CNTF still possess a greater degree of binding affinity for
their specific α receptor. A vast number of studies have
been conducted in an effort to ascertain the role that IL-6
plays in type 2 diabetes or insulin resistance. Currently,
interleukin-6 has been implicated in both the promotion of
insulin sensitivity [64] and resistance [65]. In addition, a
major disadvantage of IL-6 therapy lies in the fact that
sustained immunostimulation may occur. It is of consider-
able interest that the IL-6Rα is much more highly
expressed in peripheral tissues such as skeletal muscle
[16] compared with the CNTFRα. In addition, while CNTF
delivered ICV seems to result in upregulation of inflamma-
tory gene expression in the brain [36, 37], this does not
appear to be the case in peripheral tissue [16]. Together, one
potential therapeutic strategy may be to design a gp130
chimera that is “CNTF-like” in action, with a greater
binding affinity for the IL-6Rα and which specifically
targets peripheral tissue such as skeletal muscle and adipose.
In fact, receptor recognition sites of gp130 cytokines are
organized as exchangeable modules and various chimeras,
where the site III loop of IL-6 has been substituted for the
site III loop of CNTF have previously been reported [66].
The site III loop is situated on the C-terminal end of the
protein and is the region which binds the receptor [64].
Whether “designer gp130 receptor ligands” may indeed
prove to be the “holy grail” as an antiobesity drug remains
to be tested.
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