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Abstract Abdominal aortic aneurysm (AAA) is a common
disease that causes progressive expansion and rupture of the
aorta with high mortality. There is a large and unmet need
for nonsurgical treatment for AAA. Research has shown
that an intricate network of inflammatory cells and
interstitial cells contributes to the formation of AAA by
producing pro-inflammatory mediators that activate
enzymes to degrade the extracellular matrix (ECM) and
impair ECM biosynthesis. Pharmacological agents such as
statins and angiotensin-converting enzyme inhibitors may
promote tissue stabilization in AAA by diminishing pro-
inflammatory signaling and normalizing metabolism of the
ECM. Our recent experiments in animal models demon-
strate that inhibition of c-Jun N terminal kinase (JNK)
inhibits multiple pathological processes and causes regres-
sion of established AAA. Thus, emerging evidence indicates
that pharmacological intervention targeting pro-inflammatory
signaling and abnormal ECM metabolism is a promising
strategy for treatment of AAA.

Keywords Vascular disease . Signal transduction .

Extracellular matrix . Inflammation . Therapy

Introduction

Abdominal aortic aneurysm (AAA) is caused by a
segmental weakening of the abdominal aortic walls, which
leads to progressive aortic dilation. Although patients with AAA usually have no symptoms, it progresses with time,

resulting in rupture of the diseased aorta. Aortic rupture
frequently causes sudden death, with the mortality rate
exceeding 50% even when the patient arrives at the hospital
in time for surgical treatment. AAA poses a significant
healthcare problem, affecting 6–9% of men over 65 years
of age. In the United States, it is the tenth leading cause of
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death in men over 55 years of age [1]. Because AAA
patients usually have no symptoms, the therapeutic goal is
rupture prevention. The clinical strategy depends on the
diameter of the aneurysm, which is the strongest predictor
of rupture risk [2]. With aneurysms greater than 5.5 cm in
diameter, the risk of rupture exceeds the risk for elective
surgery. Thus, these large aneurysms are treated by surgical
procedures which are currently the only established
therapeutic option to prevent the aortic rupture. The
diseased aorta can be replaced with an artificial graft by
open surgery or by endovascular repair where an artificial
graft is attached to a metal stent and inserted in the aorta
through a catheter. In contrast, there is no effective therapy
for small AAA. Graft replacement does not offer a survival
advantage for small AAA [3, 4], and clinical trials to
determine the effectiveness of endovascular repair for
patients with small aneurysms are not yet complete [5].
Therefore, the standard practice for small aneurysms is
“watchful waiting,” in which periodical observations are
made to assess AAA progression, until the risk of rupture
reaches or exceeds the surgical risk. Thus, a nonsurgical
therapy that slows progression of the disease would be a
significant advance. An even greater advance would be a
therapy that not only arrests disease progression but also
induces healing and regression of the aneurysm.

Recently, we identified c-Jun N terminal kinase (JNK) as
a key molecule in the pathogenesis of AAA [6]. JNK
regulates various aspects of the molecular pathogenesis of
AAA, promoting the destruction of extracellular matrix
(ECM). Inhibition of JNK not only prevents the develop-
ment of AAA in vivo but also causes regression of
established AAA in animal models. Excellent textbooks
and reviews of the AAA field are already available ([7, 8]
among others). Rather than presenting a comprehensive
review, this article summarizes current knowledge of the
molecular pathogenesis of AAA as it relates to our study.
Putative nonsurgical therapies for altering the pathology of
AAA are described and discussed together with our recent
findings.

Etiological considerations

Overview

Due to the silent nature of AAA, investigating when and
how AAA develops is a challenge. Consequently, little is
known about the initiation of AAA, but investigation has
primarily consisted of case-control studies of genetic and
environmental factors predisposing individuals to AAA.
Although familial clustering of AAA has been reported and
15% of AAA patients has a family history of the disease
[9], decades of studies reveal that AAA is most likely a

polygenic disease under the influence of multiple environ-
mental factors.

Genetic factors

As familial accumulation of AAA has been observed
clinically, efforts have been made to identify genetic factors
that predispose carriers to the development of AAA
(reviewed in [10, 11]). Genome-wide screening in case-
control studies has identified several genetic loci associated
with AAA, including HLA class II, 19q13, and 4q31. The
candidate gene approach has also revealed several genetic
polymorphisms that predispose carriers to AAA develop-
ment. These include polymorphisms of the genes for
angiotensin-converting enzyme (ACE), matrix metallopro-
teinase (MMP)-9, plasminogen activator inhibitor-1 (PAI-1),
and interleukin (IL)-10 among others. The reported odds
ratios range from 1.34 (PAI-1) to 2.94 (MMP-9). These
results have been difficult to replicate in some cases, as with
other complex diseases, supporting the idea that AAA is
multigenic and multifactorial.

Environmental factors

Smoking, age, gender, existence of coronary heart disease,
hyperlipidemia, and hypertension all affect the development
of AAA. Male gender is a strong risk factor, the effect of
which may be mediated by multiple factors including
genetic predisposition, hormonal environment, and anatom-
ical factors such as relatively larger aortic diameter than
female. Gender, as well as the remaining risk factors, is
common to both AAA and atherosclerosis, and nearly all
cases of AAA involve atherosclerotic changes. The causa-
tive relationship between atherosclerosis and AAA, how-
ever, is not firmly established. Indeed, diabetes mellitus,
which is strongly linked to atherosclerosis, has repeatedly
been shown to negatively correlate with AAA development
and progression [9]. Thus, it seems that AAA and
atherosclerosis are clinically distinct, although they share
some common pathological features such as chronic
inflammation and macrophage infiltration.

Chlamydia pneumoniae is a pathogen that is implicated
in both AAA development and atherogenesis [9]. Its
presumed role in AAA is based on the high prevalence of
C. pneumoniae antibodies in the serum of AAA patients
and on data showing greater progression of experimental
AAA after C. pneumoniae infection. A clinical trial of
macrolide roxithromycin for small AAA showed a benefi-
cial effect of the antibiotic [12]. However, the pathogenetic
role of C. pneumoniae is still elusive [12], in part, because
not all AAA patients appear to be infected with C.
pneumoniae, and infection of C. pneumoniae does not
correlate with MMP production [9]. Thus, the effect of
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macrolide may be attributable to its anti-inflammatory or
antimicrobial activities [12, 13].

Etiology-oriented therapy

Because the etiology of AAA is largely unknown and
probably multifactorial, development of etiology-oriented
therapy has been difficult. Notable exceptions are certain
monogenic diseases associated with AAA, including
Marfan syndrome, Ehlers–Danlos syndrome type IV, and
Loeys–Dietz syndrome. Although the genetic defects
associated with these monogenic diseases are not yet
correctable, a recent study demonstrated the therapeutic
effectiveness of the angiotensin AT1 receptor antagonist
that ameliorate overactive signaling of transforming growth
factor-β (TGF-β) in a mouse model of Marfan syndrome
[14]. Interestingly, it has been reported that ACE inhibitors
retard the progression of experimental AAA [15] and may
suppress aortic rupture in human AAA [16]. It remains to
be seen whether AT1 signaling is involved in the etiology
of AAA in general and AT1 antagonists are effective in
treating human AAA; two reports have shown no beneficial
effect of the AT1 antagonists on experimental or human
AAA [15, 16].

Molecular pathogenesis of AAA

Overview

There has been extensive effort to unravel the molecular
pathogenesis of AAA, understanding of which is requisite
to the development of a nonsurgical therapy for the disease.
Research has demonstrated the importance of chronic
inflammation and degradation of ECM by various proteases
to AAA. In addition, impairment of ECM biosynthesis is
thought to play a role in the pathogenesis of AAA because
AAA is accompanied by a progressive decrease in the
number of vascular smooth muscle cells that normally
synthesize ECM [17–21]. These pathological processes—
inflammation, degradation of the ECM, and impairment of
biosynthesis of the ECM—act in concert to promote the
progressive destruction of the ECM. During chronic
inflammation, inflammatory cells and interstitial cells
secrete ECM-degrading proteases and pro-inflammatory
cytokines; such cytokines further activate inflammatory
signaling and may interfere with the normal biosynthesis of
the ECM by interstitial cells. However, our knowledge of
the molecular pathogenesis of AAA remains incomplete.
For example, it is not known what triggers chronic
inflammation and how it is maintained over a period of
years or what interferes with the ordered biosynthesis of the
ECM that should occur during tissue repair. In addition, the

mechanisms for coordination of these events during AAA
pathogenesis remain largely unknown.

Proteases

The mechanical strength of the aortic wall is maintained by
the ECM, which is mainly composed of collagen and
elastin fibers. The most prominent pathological feature of
AAA is disruption of the ordered layers of the ECM,
including the disappearance of elastic lamellae in the early
stage of the disease. Disruption of elastin is sufficient for
aneurysmal dilation of the aorta, and degradation of
collagen is responsible for rupture [22, 23].

For these reasons, there has been a major effort to
elucidate the mechanism for the degradation of the ECM,
with a focus on elastolytic factors. This has led to the
identification of various proteases in AAA tissue. Among
them, the MMPs have drawn much attention, with MMP-9
and MMP-2 being the most extensively studied. A major
breakthrough in AAA research was the finding that deletion
of the genes for MMP-9 [24] and/or MMP-2 [25]
completely protects mice from development of AAA.
Subsequent to this finding, it was proposed that MMP
inhibition is a potentially effective therapy for AAA.

Pro-inflammatory mediators

The chronic inflammation in AAA seems to be initiated and
maintained by a complex interplay between innate and
acquired immunity [26]. Infiltrating cellular components
include macrophages, T cells, and B cells. Chronic
inflammation is an essential component of AAA pathogen-
esis, as cytokine-stimulated macrophages are the major
source of matrix-degrading enzymes such as MMP-9 and
pro-inflammatory cytokines such as tumor necrosis factor
(TNF)-α.

The degradation products of elastin [27] or collagen [28]
can initiate the inflammatory response, and cleavage of IL-
8 by MMP-9 potentiates its ability to activate leukocytes
[29]. These facts exemplify the intimate interplay between
inflammatory signaling and MMP activities. However,
these processes are experimentally separable: Mice defi-
cient in MMP-9 and/or MMP-2 are protected from the
development of AAA by infusion of elastase or CaCl2
treatment of the aorta, but not protected from inflammatory
responses [24, 25]. Doxycycline treatment inhibits the
development of experimental AAA, but does not eliminate
the inflammatory response [30], suggesting that the
inflammatory response is maintained independently of
MMP activities.

Various pro-inflammatory mediators are present in AAA
tissue, including TNF-α, IL-1β, IL-6, and interferon (IFN)-γ
[1]. In addition to these peptide mediators, lipid mediators
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such as prostaglandin E2 [31–33] and leukotriene D4
(LTD4) [34] and the gaseous mediator nitric oxide [35, 36]
have also been reported to play important roles in AAA.
However, the precise roles of these inflammatory mediators
and the relationships among them have not been elucidated
and are likely to vary during the course of the disease.

These mediators affect not only inflammatory cells but
also interstitial cells such as vascular smooth muscle cells,
endothelial cells, and fibroblasts. For example, prostaglan-
din E2 inhibits the growth of vascular smooth muscle cells
[32]. It was proposed that LTD4, a metabolic product of
arachidonic acid 5-lipoxygenase (ALOX5), induces macro-
phage inflammatory protein-1α (MIP-1α) in macrophages
and MIP-2 in endothelial cells, which in turn, recruit
leukocytes into the aortic walls [34]. IFN-γ suppresses
collagen I expression during tissue repair [37], and TNF-α
suppresses the wound repair response of vascular smooth
muscle cells [38] and decreases the expression of collagen
type I and III in fibroblasts in a JNK-dependent manner
[39]. Taken together, these findings suggest that inflamma-
tory signaling suppresses normal ECM biosynthesis and
tissue repair independent of ECM-degrading activities.

Impairment of ECM biosynthesis

In the healthy artery, interstitial cells such as vascular
smooth muscle cells maintain the ordered structure of the
ECM through active biosynthesis. Because vascular smooth
muscle cells are depleted in human AAA, it has been
hypothesized that impaired biosynthesis of the ECM plays a
critical role in the pathogenesis of AAA [17–21].

Biosynthesis of collagen and elastin fibers, the major
components of aortic ECM, is regulated at the level of
expression as well as by post-translational modifications
such as prolyl and lysyl hydroxylation and lysyl oxidation.
These post-translational modifications are catalyzed by
prolyl 4-hydroxylase (P4H), pro-collagen lysyl hydroxylase
(PLOD), and lysyl oxidase (LOX). These ECM biosyn-
thetic enzymes are essential for stable trimerization of
collagen fibrils and cross-linking of collagen and elastin
fibrils to form durable fibers. The critical role of ECM
biosynthesis in maintaining the integrity of aortic walls is
demonstrated by the finding that disruption of the LOX
gene leads to aneurysm formation and aortic rupture [20].
In addition, it has been reported that expression of LOX is
reduced in aneurysm-prone mice [18] and in experimental
AAA [6, 17]. This may explain the ineffective maturation
of the ECM in human AAA [19, 21]. A PLOD1 mutation in
patients with Ehlers–Danlos syndrome causes a high risk of
arterial rupture [40]. Taken together, these observations
demonstrate the profound effect of impaired ECM biosyn-
thesis on the integrity of arterial walls. Indeed, we found
that adenoviral expression of exogenous LOX inhibits the

development of experimental AAA in which endogenous
LOX activity is suppressed [6].

Therapeutic targets in AAA

Overview

Based on their proposed roles in the pathogenesis of AAA,
chronic inflammation, degradation of ECM by MMPs, and
impaired biosynthesis of the ECM have been targeted with
therapeutic interventions. These therapeutic strategies have
proven effective to various extents in preventing the
progression of experimental AAA, providing strong support
for the working model of AAA pathogenesis.

Inhibition of MMP

MMP inhibition is the therapeutic strategy that has been
most extensively explored in clinical trials involving AAA
[41]. This is partly because of the prominent role of MMPs
in AAA pathogenesis and partly because of the clinical
availability of the MMP inhibitor doxycycline. Inhibition of
MMP prevents the development of AAA in animal models;
this has been demonstrated using both doxycycline [17, 30,
42] and another MMP inhibitor, BB-94 [43]. This under-
scores the critical role of MMPs in the pathogenesis of
AAA. In addition, clinical trials of doxycycline show the
feasibility of this approach and some favorable effects [44,
45], although these studies were designed to evaluate the
safety of doxycycline and the therapeutic effect was not as
clear as that demonstrated in animal models.

Another experimental approach for inhibiting MMP
activity is the forced expression of tissue inhibitor of
metalloproteinases (TIMP)-1 in smooth muscle cells and
the seeding of these cells into an aortic xenograft. This has
been shown to stabilize grafts and prevent rupture [46].
However, clinical application of the gene transfer approach
awaits further technical advancements such as improved
vector design and improved control of gene expression. The
enduring nature of gene transfer may have advantages over
conventional pharmacotherapy, as a one-time treatment
may last for years. However, this may also be a disadvan-
tage if adverse effects occur due to uncontrolled gene
expression or faulty vector function.

Anti-inflammatory therapy

Experiments in animal models of AAA have demonstrated
that immunosuppression with prednisone, cyclosporine
[47], or rapamycin [48] prevents the development of
experimental AAA induced by elastase infusion. However,
general immunosuppression by steroids or cyclosporine
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may not be sufficient to suppress the progression of AAA
in humans [9], suggesting that more specific targets need to
be identified.

Inhibition of the pro-inflammatory cytokine TNF-α [49]
or the chemokine MCP-1 [50] suppresses the development
of AAA in animal models. Interestingly, inhibition of IL-
1β, another potent pro-inflammatory cytokine present in
human AAA, is ineffective [49], suggesting that the various
pro-inflammatory mediators play specialized roles in this
context. More recently, it was shown that inhibition of
NFκB, a critical transcription factor in cytokine signal
transduction, by NFκB/Ets decoy oligonucleotide [51] or
by a chemical inhibitor [52], prevents the development of
experimental AAA.

The nonselective cyclooxygenase inhibitor indomethacin
[31] and the selective cyclooxygenase-2 inhibitor celecoxib
[33] have been reported to prevent AAA in animal models,
demonstrating the critical roles of arachidonate metabolites
in the development of AAA. A case-control study showed
that AAA patients taking nonsteroidal anti-inflammatory
drugs (NSAIDs) have aneurysms with a lower expansion
rate than those in patients who do not take NSAIDs [32],
suggesting that this class of drugs may be beneficial in this
population. The gaseous mediator nitric oxide may be a
therapeutic target, as it directly activates MMP-9 [53].
Furthermore, an inhibitor of inducible nitric oxide synthase
(iNOS) prevents elastase-induced AAA development in
animal models [36]. However, targeted deletion of the
iNOS gene does not protect mice from elastase-induced
AAA [54], suggesting that nitric oxide plays a context-
specific role.

Other pharmacological interventions, including 3-hydroxy-
3-methylglutaryl-coenzyme A (HMG-CoA) reductase
inhibitors (statins) [55–58] and ACE inhibitors [15, 16,
59], have been reported to prevent the progression of AAA
possibly by suppressing inflammation. ACE inhibition is a
promising therapy; a large-scale case-control study showed
that treatment with ACE inhibitors is associated with reduced
AAA rupture [16]. In contrast, AT1 receptor blockers do not
show a beneficial effect with regard to AAA [15, 16],
suggesting that the renin–angiotensin system plays a complex
role in the pathogenesis of AAA. Statins, in addition to their
lipid-lowering effect, suppress inflammatory signaling possi-
bly by inhibiting the Rho family of small G-proteins. Case-
control studies have demonstrated an association between use
of statins and reduction in the levels of some MMPs [60] as
well as a lower rate of expansion of AAA [58, 61]. ACE
inhibitors and statins would merit larger systematic random-
ized clinical trials to confirm their benefits and to determine
the optimal regimen for preventing the expansion and rupture
of AAA.

MMP inhibition alone does not suppress infiltration of
inflammatory cells [24, 25, 30]. Conversely, suppression

of inflammatory signaling does not always reduce levels of
MMP [31, 36]. Because pro-inflammatory mediators may
promote the progression of AAA independent of MMPs, anti-
inflammatory therapies may be a good strategy for treating
AAA possibly in combination with MMP inhibition.

Stabilization of the ECM

ECM biosynthesis and stabilization have not been studied
as extensively for AAA therapy as have MMP inhibitors
and pro-inflammatory mediators. One reason for this is that
although impairment of ECM biosynthesis has been
demonstrated in experimental animals [17, 18] and is
suspected in clinical settings [19, 21], the causal role of
the impaired ECM biosynthesis in AAA pathogenesis is
unclear. Other reasons include lack of knowledge regarding
the molecular mechanisms underlying impaired ECM
biosynthesis and the lack of reagents that specifically
promote the biosynthesis of well-ordered and durable
ECM. One proposed method for promoting ECM biosyn-
thesis is seeding smooth muscle cells in an AAA model
induced by xenografting a guinea pig aorta into a rat.
Seeding of syngeneic rat vascular smooth muscle cells
stabilizes aortic tissue [62], and this effect is enhanced by
adenoviral expression of TGF-β1 [63]. These findings
support the feasibility of therapy that increases ECM
biosynthesis. This approach may be as effective as, and
perhaps complementary to, inhibition of MMP. However,
activation of the TGF-β pathway must be approached
cautiously. Recent studies indicate that overactivation of
TGF-β signaling in the aortic wall exacerbates inflamma-
tion and causes progression of AAA in humans [64, 65]
and in an animal model of Marfan syndrome [14].

Regression of AAA via pharmacotherapy

Overview

Regression of AAA via pharmacotherapy, if clinically
applicable, would offer a therapeutic option for patients
with small aneurysms. Patients with larger aneurysms and a
high risk of rupture might not immediately benefit from
pharmacotherapy, as it would not instantaneously reduce
rupture risk. However, pharmacotherapy could be used to
treat patients with both high rupture risk and high surgical
risk, for example, patients with AAA and multiple
comorbidities such as pulmonary failure and renal failure.

It is becoming increasingly clear that the tissue degen-
eration observed in AAA is a consequence of an imbalance
between tissue degradation and repair. However, active
tissue repair is ongoing in aneurysms, as evidenced by
increased expression of tropoelastin [21] and collagen [66].
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It is thought that inhibition of MMP [17] or endovascular
seeding of vascular smooth muscle cells [62] may some-
times cause regression of experimental AAA. Tissue repair
in AAA also manifests clinically. Endovascular repair by
insertion of stent-grafts often causes shrinkage of the
aneurysmal aorta [67] and remission of the tissue degrada-
tion process [68], suggesting that regression of AAA is
possible in certain situations.

As discussed above, the current view of AAA pathogenesis
is that it is the result of a complex interplay among distinct
pathological processes: chronic inflammation, ECM degrada-
tion, and impaired ECM biosynthesis. Each pathological
process involves a network of signaling molecules and
effector molecules whose levels of expression are differen-
tially regulated [69–71]. In this regard, AAA progression is a
highly ordered and regulated process. Although intervention
in each process has proven effective in preventing the
development or progression of experimental AAA, none of
these therapeutic strategies reverses disease progression. This
suggests that either AAA is a fundamentally irreversible
destructive process or that we do not yet understand the key
molecular mechanisms that prevent the healing of AAA.
Alternatively, several simultaneous interventions may be
required to induce efficient healing.

Although the mechanisms responsible for initiation of
AAA are not known and may well be heterogeneous, the
clinical course and pathology are known and fairly
predictable. This suggests that various environmental and
genetic stimuli may activate a final common pathway or
“node” in the AAA signaling network that orchestrates
chronic inflammation, ECM degradation, and impairment
of ECM biosynthesis. Such a node, if it exists, would be an
ideal therapeutic target for affecting multiple pathological
processes and promoting healing of AAA.

Identification of JNK as a therapeutic target

In an attempt to identify a key therapeutic target for AAA,
we assessed the phosphorylation status of signaling
molecules in human AAA samples, including JNK, p38,
extracellular signal-regulated kinase (ERK), signal trans-
ducer and activator of transcription (STAT) 2, STAT3,
activating transcription factor (ATF) 2, inhibitor of κ light
polypeptide gene enhancer in B cells (IκB)-α, Akt,
glycogen synthase kinase (GSK) 3β, 70 kDa ribosomal
protein S6 kinase (p70S6K), and 90 kDa ribosomal protein
S6 kinase (p90RSK), all of which are regulated by
reversible phosphorylation. Screening revealed increased
phosphorylation of JNK, ERK, and STAT3 compared with
a non-aneurysmal control. Of these proteins, JNK was a
prime candidate because it is activated by stimuli that have
been implicated in AAA pathogenesis: mechanical stress,
oxidative stress, angiotensin II, TNF-α, IL-1β, IL-6, and

IFN-γ. In addition, JNK induces MMP-9 in several cell
lines [72–75]. A transcriptome analysis in vascular smooth
muscle cells revealed that JNK upregulates pro-inflammatory
molecules such as IL-1α, iNOS, ALOX5-activating protein
(ALOX5AP), and the ECM-degrading MMP-9. At the same
time, JNK downregulates TIMP-3, an endogenous inhibitor
of MMPs, and critical ECM biosynthetic enzymes including
PLOD1, P4HA1, and LOX. Therefore, JNK is an ideal
therapeutic target because it coordinately regulates multiple
pathological processes involved in tissue degradation, thus,
serving as a node in the AAA signaling network (Fig. 1).

JNK inhibition by SP600125 in vivo completely
prevented the development of AAA in response to
abluminal application of CaCl2 in mouse aorta (Fig. 2).
Importantly, JNK inhibition strongly suppressed macro-
phage infiltration of the periaortic tissue, whereas doxycy-
cline did not [30], suggesting that JNK is critically involved
in the pro-inflammatory signaling process [76, 77]. In vivo
JNK inhibition was also effective in treating established
AAA induced by CaCl2 treatment in wild-type mice and by
continuous infusion of angiotensin II in ApoE knockout
mice [78]. SP600125 caused significant regression of
established AAA and normalized tissue architecture, indicat-
ing that JNK inhibition is a promising therapeutic modality.

Implications and future directions

Despite decades of effort, the exact etiology of AAA
remains elusive and is likely to be heterogeneous. However,

Fig. 1 JNK-regulated gene expression. JNK is activated in macro-
phages and in vascular smooth muscle cells (VSMCs) in AAA tissue.
JNK induces the expression of MMPs and pro-inflammatory media-
tors, including TNF-α, IL-1α, and arachidonate 5-lipoxygenase-
activating protein (ALOX5AP). Inducible nitric oxide synthase
(iNOS) generates nitric oxide (NO), which activates MMP-9 by S-
nitrosylation [53]. Lipocalin-2 binds to MMP-9 and maintains its
activity [99]. In addition, JNK suppresses tissue inhibitor of metal-
loproteinase-3 (TIMP-3), an endogenous inhibitor of MMPs, and
critical ECM biosynthetic enzymes, including prolyl 4-hydroxylase (P4H),
pro-collagen lysyl hydroxylase (PLOD), and lysyl oxidase (LOX)
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emerging evidence supports the notion that the vicious
cycle of chronic inflammation and abnormal ECM metab-
olism is the final common pathway in the molecular
pathogenesis of AAA. Central to this pathway is the
signaling network, including JNK pathway, that coordinates
inflammation and abnormal metabolism of the ECM. Pro-
inflammatory mediators such as chemokines, cytokines,
and angiotensin II cause infiltration and activation of
inflammatory cells and increase in hemodynamic stress.
This causes activation of the intracellular signaling network
to dictate the destructive metabolism of the ECM and
production of pro-inflammatory mediators. Abnormal ECM
metabolism weakens the aortic wall, causing expansion of

AAA and exposure of interstitial cells to higher mechanical
and metabolic stress. This, in turn, exacerbates abnormal
intracellular signaling. The central role of JNK in chronic
inflammation and the abnormal metabolism of the ECM in
AAA provides a framework for understanding the coordi-
nation of these pathological processes (Fig. 3) and an
opportunity to develop a therapeutic intervention for
reversing AAA.

A critical unanswered question is what triggers the
abnormal activation of intracellular signaling and keeps it
continuously active in human AAA. If the aforementioned
vicious cycle maintains the chronic inflammation observed
in AAA, what is the most effective point of intervention to

Fig. 2 JNK inhibition therapy
for AAA. a CaCl2 treatment of
mouse aorta causes an increase
in expression of MMP-9, infil-
tration of macrophages (Mφ,
arrowheads), and development
of AAA after 10 weeks in mice
treated with vehicle. Inhibition
of JNK by SP600125 (SP)
completely prevents develop-
ment of AAA and suppresses
MMP-9 and Mφ infiltration.
b Adenoviral gene transfer of
LOX partially prevents the de-
velopment of AAA. Compared
to LacZ-transduced aorta (con-
trol), LOX-transduced aorta ex-
hibit less disruption of elastic
lamellae, as shown by elastica
van Gieson (EVG) stain, and
less cellular infiltration, as
shown by hematoxylin–eosin
(H&E) stain. c The mouse
model of AAA was established
6 weeks after CaCl2 treatment.
After AAA was established,
JNK inhibition was initiated via
treatment with SP600125 (SP).
After 6 weeks of SP600125
treatment, there was regression
of AAA and repair of tissue
architecture (modified from [6])
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end the cycle? Although our data support the JNK pathway
as an important candidate, answering this question requires
understanding of the complex network of inflammatory
signaling in AAA and the relationship of the JNK pathway to
other signaling pathways. For example, pro-inflammatory
cytokines frequently activate both activator protein-1
(AP-1), the downstream target of the JNK pathway, and
NFκB, and these transcription factors have been reported
to synergistically activate downstream genes including
MMP-9 [79] and pro-inflammatory cytokines [80, 81].
However, the JNK and NFκB pathways sometimes antag-
onize each other [82], exemplifying the complexity of the
inflammatory signaling network. STAT3, another transcrip-
tion factor activated in human AAA, may also cooperate
with AP-1 in the IL-6-induced response to injury [83, 84]
and in IL-17-induced expression of MMP-9 [85]. It remains
to be seen whether intervention in these parallel signaling
pathways promotes healing in AAA.

Concerning the molecular mechanisms by which JNK
promotes the progression of AAA, pathological processes
other than ECM metabolism may be involved. Numerous
reports and our transcriptional profiling [6] indicate that JNK
affects many cellular processes [76, 77], including cell
proliferation, cell differentiation, metabolic pathways, cell
migration [86], cell survival, and cell death [87, 88]. JNK
may also be involved in the loss of vascular smooth muscle
cells in the medial layer of the diseased aorta. Different JNK
isoforms play different roles in various physiological [89, 90]
and pathophysiological settings [91, 92], including AAA
(KY and HA, unpublished observation). Thus, the isoform-
specific role of JNK in AAA should be explored in detail.
Isoform-specific inhibition of JNKmay circumvent the possible
adverse effects of systemic inhibition of all JNK isoforms.

With regard to reducing the side-effects of pharmacother-
apy, local delivery of pharmacological agents should be

considered. The efficacy of this approach was demonstrated
in a recent study using doxycycline and a rat model of AAA
[93]. The rapid advancement of drug-eluting stent technol-
ogy and the growing prevalence of endovascular repair
make stent-grafts an obvious choice for drug delivery.
Regression of AAA by pharmacotherapy, if validated in
humans, will improve graft fitting. JNK inhibition may also
prevent thrombus formation, as recently demonstrated for
coronary stent thrombosis [94]. Although the intramural
thrombus may pose a barrier to the passive diffusion of
pharmacological agents from an eluting stent-graft, the
thrombus per se may be a therapeutic target [95, 96]
because the mural thrombus may promote the progression
and rupture of AAA [97] by actively producing proteases
[98]. On the other hand, systemically administrated phar-
macological agents may have better access to the adventitia,
the site of inflammation in AAA, than agents released from
inside the aorta. Further progress with drug delivery
systems, including drug-eluting stent-grafts, and validation
of their efficacy in vivo will advance the development of
less invasive therapeutic strategies for AAA.

Conclusions

We are witnessing a rapid progress in understanding the
molecular pathogenesis of AAA. This led to the proposal of
promising pharmacotherapy with statins, ACE inhibitors,
and JNK inhibitor among others. Accumulating knowledge
obtained in the research of AAA may also create new
avenues for improved therapeutic strategies not only for
AAA but also for other diseases. Chronic inflammation and
destructive remodeling of the ECM are widely observed in
a variety of diseases, including rheumatoid arthritis,
osteoarthritis, valvular heart disease, vulnerable atheroma-
tous plaque, chronic obstructive pulmonary disease, and
cancer. There may be a common abnormality of cellular
signaling that positively regulates the destructive processes
underlying these diseases and AAA. Then, how does the
signaling network that is centered on the JNK pathway fit
into the molecular pathogenesis of these diseases? How can
therapeutic manipulation of the signaling pathways de-
crease the chronic inflammation and progressive tissue
destruction observed in all of these pathologies? We are
optimistic that the answers to these questions will lead to
better future treatment of AAA and other diseases.
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