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Abstract The family of the secretory proprotein conver-
tases (PCs) comprises seven basic amino acid (aa)-specific
subtilisin-like serine proteinases known as PC1/3, PC2,
furin, PC4, PC5/6, PACE4 and PC7, and two other PCs,
SKI-1 (subtilisin-kexin isozyme-1)/S1P (site-1 protease)
and PCSK9 (proprotein convertase subtilisin kexin 9) that
cleave at nonbasic residues. Except for the testicular PC4,
all the other convertases are expressed in brain and
peripheral organs and play a critical role in various
functions including the production of diverse neuropeptides
as well as growth factors and receptors, the regulation of
cellular adhesion/migration, cholesterol and fatty acid
homeostasis, and growth/differentiation of progenitor cells.
Some of these convertases process proteins that are
implicated in pathologies, including cancer malignancies,
tissue regeneration, and viral infections. The implication of
some of these convertases in sterol/lipid metabolism has
only recently been appreciated. SKI-1/S1P activates the
synthesis of cholesterol and fatty acids as well as the LDL
receptor (LDLR), whereas PCSK9 inactivates the LDLR.
Moreover, furin, PC5 and/or, PACE4 inactivates endothelial
and lipoprotein lipases. Humans and mice exhibiting either
a gain or loss of function of PCSK9 through specific point
mutations or knockouts develop hypercholesterolemia and
hypocholesterolemia phenotypes, respectively. A PCSK9
inhibitor in combination with statins offers a most promis-
ing therapeutic target to treat cardiovascular disorders

including dyslipidemias. Specific inhibitors/modulators of
the other PCs should find novel therapeutic applications in
the control of PC-regulated pathologies.
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Introduction

Atherosclerosis and its major sequelae, coronary artery
disease (CAD), are the leading causes of mortality and
morbidity in developed countries. Incidence of fatal and
non-fatal acute myocardial infarctions is expected to
increase dramatically in the next two decades. Cardiovas-
cular risk factors include dyslipidemia, hypertension,
diabetes, smoking, obesity, age, psychological stress, and
male gender. The most potent factor, dyslipidemia, often
reflects a high ratio of low-density lipoprotein cholesterol
(LDL-C) to high-density lipoprotein cholesterol (HDL-C).
The data from the Cholesterol Treatment Trialists (CTT)
Consortium [6] reveal that for each 1 mmol/l reduction in
LDL-C induced by statins yields ∼20% more protection
against vascular disease, implying that the lower we drive
the ratio of plasma LDL-C/HDL-C, the greater is the
benefit to patients at risk to develop cardiovascular
complications. Current guidelines recommend a target level
of LDL-C <1.8 mmol/l (<70 mg/dl) in high-risk individuals
and in the secondary prevention of CAD [67]. Among the
effective LDL-C-lowering drugs are statins [14], inhibitors
of the rate-limiting hydroxylmethylglutaryl coenzyme A
reductase (HMG-CoA) needed for cholesterol synthesis.
Although well tolerated statins are limited in their capacity
to lower LDL-C. New approaches include NPC1L1
intestinal sterol transporter blocker ezetimibe that reduces
LDL-C by an additional 20% [111]. Clearly, novel
strategies to further decrease levels of circulating LDL-C
in combination therapy are needed [17, 107].

Cardiovascular regulation is dependent on a myriad of
factors, including protease activities [107]. The mammalian
genome database predicts the presence of 550–700 protease
genes (∼2% of genes), covering all potential enzymatic
cleavages of a given species at all developmental stages [7,
73]. The most abundant serine proteases represent about
one third of all five protease classes [73]. However,
proteases do not operate alone but form cascades, regula-
tory circuits, and networks that all dynamically interconnect
to form the protease web [69]. All known vasoactive
proteins and peptides result from proteolytic processing and
activation events. The proprotein convertases (PCs) are
implicated in the limited proteolysis of secretory precursor
proteins resulting in a diversity of bioactive proteins and
peptides, and in some cases, in inactivation of key proteins
[88]. Mammalian PCs are the central focus of this
manuscript. They are encoded by genes numbered from
PCSK1 to PCSK9 (PC subtilisin/kexin). The nine known
PCs (Fig. 1) are as follows: PC1/3, PC2, furin, PC4, PC5/6,
PACE4, PC7, SKI-1/S1P, and PCSK9 [85, 86, 90]. The first
seven are basic amino acid (aa)-specific PCs cleaving
precursor proteins at single or paired basic residues. These
PCs are phylogenetically more closely related to each other
and to yeast kexin than to SKI-1/S1P or PCSK9, which
belong to the pyrolysin [89] and proteinase K [85]
subfamilies, respectively. All PCs contain a signal peptide,
a prosegment, and a catalytic domain. Just following the
catalytic domain, the basic aa-specific convertases exhibit a
β-barrel P-domain that apparently stabilizes the catalytic
pocket. The C-terminal domain of each convertase contains

Fig. 1 Schematic primary struc-
tures of the nine PCs. The basic
aa-specific PCs together with
ykexin, SKI-1, and PCSK9 are
individually boxed to emphasize
their distinct subclasses. PC5
exists as two alternatively
spliced isoforms, soluble PC5A
and membrane-bound PC5B.
The catalytic triad residues Asp,
His, and Ser and the oxyanion
hole Asn are indicated. h, hu-
man; r, rat; m, mouse; and
y, yeast
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unique sequences regulating their cellular localization and
trafficking. PC5 and PACE4 contain a specific Cys-rich
domain (CRD), which, in combination with TIMPs, binds
to HSPG at the cell surface. In contrast, PCSK9 exhibits a
Cys-His-rich domain (CHRD) that is required for cell
surface binding in an LDLR-dependent fashion [85, 89].
Some of these PCs play critical roles in regulating lipids
and/or sterols [88]. PCSK9 enhances the degradation of the
LDL receptor (LDLR) [10, 55, 56, 70], SKI-1/S1P activates
specific membrane-bound transcription factors, e.g.,
SREBP-1 and -2 [20], PC5A, PACE4, and/or furin cleave/
inactivate EL and LPL, which are critical in HDL, VLDL,
and chylomicron metabolism (Fig. 2) [37]. Familial
autosomal dominant hypercholesterolemia (ADH) is char-
acterized by high levels of plasma cholesterol, xanthomas,
and premature CAD. In vivo functions of PCSK9 have
been shown in humans exhibiting gain- or loss-of-function
mutations associated with hypercholesterolemia [1, 2, 4, 11,
50, 63, 110] or hypocholesterolemia [12, 21, 44, 117] and
in mouse knockout (KO) models [76]. This led to
classifying PCSK9 as the third gene associated with
familial ADH (incidence ∼2.3%) with LDLR (incidence
∼67%) and APOB (apolipoprotein B; incidence ∼14%) as
the other two (Fig. 3) [1]. Although LDLR and PCSK9
genes are coregulated, PCSK9 triggers the degradation of
LDLR [5, 27]. PCSK9 inhibition is thus a promising
complement to statin therapy [5, 17, 117]. In vivo functions
of PCSK9 have been reported in mouse KO models [76]
and in natural gain- or loss-of-function human variants [1,
10, 21, 50, 110].

The role of PCs in cardiovascular functions and disease

Background on lipid homeostasis

Lipoproteins shuttle hydrophobic molecules (cholesteryl
esters and triglycerides) between organs in the aqueous
environment of plasma. They are macromolecules with a

Fig. 2 Inactivation of endothe-
lial lipase (EL) and lipoprotein
lipase (LPL) by PC5, PACE4,
and furin. EL and LPL bind
heparan-sulfate proteolycans
(HSPGs) and heparin-like gly-
cosaminoglycans (HLGAGs),
respectively, and are cleaved by
PCs internally at the C-terminus
of Arg in the motif RxKR↓. This
cleavage hampers the phospho-
lipase role of HSPG-bound EL
on HDL and the triglyceride
hydrolase function of HLGAG-
bound LPL on chylomycrons
(CM) and VLDL (adapted from
Broedl et al. [15])

Fig. 3 Incidence of mutations in LDLR, APOB, PCSK9, and other
genes in familial hypercholesterolemia. The incidence of mutations are
represented, emphasizing that the genetic origin of ∼16.7% of ADH
cases remains to be elucidated
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single envelope of phospholipids and free (unesterified)
cholesterol and a core of triglycerides and cholesteryl esters
[33]. The major lipoprotein classes are the triglyceride-rich
chylomicrons and VLDL, LDL, and HDL lipoproteins. The
protein component of LDL is apoB, whereas VLDL also
contains apoE and apoCs. The denser HDL contains apoAs,
Cs, D, and E [39]. The LDL particles are atherogenic, that
is, they cause atherosclerosis [19]. LDLs are cleared from
blood by LDLR-mediated endocytosis. SK1-1/S1P and
PCSK9 are involved in transcriptional regulation and
cellular processing of the LDLR, respectively. HDL-C levels
are inversely related to the risk of CAD. HDL particles are
formed predominantly in the liver and intestine and are
extensively modified in the plasma by EL and hepatic lipase
(HL) and lipid transfer proteins. Presently, few therapeutic
options raise HDL-C to prevent heart disease [51].

This paper explores the possible role of some of the
convertases implicated in HDL metabolism and exclusively
concentrates on the lipidemic effects of the PCs and will not
detail the other numerous implications of the PCs in cancer,
metastasis, atherosclerosis, restenosis, and viral infections
and other pathologies. For these, the reader is referred to
excellent reviews [9, 40, 83, 90, 97, 108].

– PCSK9 (originally named NARC-1): PCSK9 was first
characterized by our group in 2003; it is highly
expressed in the liver, gut, and kidney [85]. PCSK9
mRNA levels are upregulated by SREBP-2 and down-
regulated by cholesterol [27, 35, 57]. We established
the first association between single-point mutations in
PCSK9 and ADH in two French families [1] (Fig. 4).
Later on, Cohen et al. [21] showed that two nonsense
PCSK9 mutations resulting in a loss of function are
associated with hypocholesterolemia in 1.8% of black
subjects [44] (Fig. 4). Only one of these two mutations
was also found in European–Americans at a lower
frequency (0.12%). PCSK9 mutations associated with
hypercholesterolemia result in a gain of function via an
enhanced PCSK9 activity that triggers the degradation
of LDLR [55] in acidic compartments, likely endo-
somes/lysosomes [5, 10, 56]. By a yet unknown
mechanism, high levels of PCSK9 lead to a faster rate
of degradation of the cell surface LDLR, resulting in
increased circulating LDL-C, as the LDL uptake in
hepatocytes by the Ldlr is diminished. In agreement,
Pcsk9−/− mice exhibit an increased LDLR protein, but
not mRNA, and a twofold drop in circulating choles-
terol [76]; whereas mice overexpressing PCSK9 after
recombinant adenoviral infections exhibit high levels
of circulating cholesterol [10, 46, 55, 70]. Two healthy
and fertile females, 32 [117] and 21 [34] years old, with
either homozygote C679X or heterozygote ΔR97 and
Y142X variations, respectively, were reported (Fig. 4).

Although the Y142X truncation leads to the complete
loss of PCSK9 expression, the deletion of ΔR97 and
the C679X variant results in either an unprocessed
zymogen or an autocatalytically processed PCSK9 that
remains in the endoplasmic reticulum (ER) [117]. Their
LDL-C is remarkably low, ∼15 mg/dl. This, and the
observation that loss-of-function nonsense mutations
could lead to 88% reduction in CAD over a 15-year-
period, indicate that the inhibition of PCSK9 or
decreasing its levels may represent a safe and effective
strategy for the control of hyperlipidemia [44].

– Interplay between PCSK9, LDLR, and apoB—In vivo
studies in hypercholesterolemic patients [68] and in a
stable transfectant in rat liver cells [104] showed that
hypercholesterolemic mutants of PCSK9 resulted in the
increased release of apoB-containing lipoproteins. In
vivo evidence that PCSK9 enhances apoB release, even
in the absence of LDLR, came from its adenovirus-
mediated overexpression in Ldlr−/− mice that led to the
increased VLDL- and LDL-associated cholesterol [10].
However, adenovirus infection at lower titers revealed
no significant effects on apoB secretion [70]. Twenty-
four hour-fasted mice overexpressing adenovirus
PCSK9 showed massive hyperlipidemia as a conse-
quence of increased secretion of apoB100-containing
VLDLs [22, 47]. Primary hepatocytes from Pcsk9−/−

mice showed some reduction in secretion of apoB as
compared to Pcsk9+/+ hepatocytes [76]. That LDLR
may attenuate hepatic apoB secretion was first ob-
served by Twisk et al. [113] who showed that, by an
unknown mechanism, Ldlr−/− hepatocytes secreted
apoB100 at a 3.5-fold higher rate than did Ldlr+/+

hepatocytes. The mechanisms of PCSK9-mediated
degradation of LDLR or apoB and their interplay along
the secretory pathway need clarification. As hepatic
overproduction of apoB100 is one of the causes for a
subset of familial-combined hyperlipidemia, to better
understand the impact of PCSK9 on the synthesis and
secretion of apoB-containing lipoproteins is essential.

– PCSK9 degradation versus gain-/loss-of-function
mutations—To date, almost 35 aa variations have been
reported (see Fig. 4; [1, 2, 12, 21, 32, 44, 50, 72, 91,
110, 117]). Until the crystal structure of PCSK9 is
solved, the biochemical analysis of the corresponding
variants is crucial to better understand its biology. As
gain-of-function mutations are rather rare in proteases,
we suspected that the level of active enzyme was
modulatory and thereby able to modulate in return
LDLR levels (Fig. 5). We discovered that two French
mutations associated with hypercholesterolemia, F216L
and R218S [1, 2], modify a typical RXXR218 site for
basic aa-specific PCs (Fig. 6), best cleaved by furin and
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PC5 [11, 86]. Although not in the vicinity of this PC
site, the Anglo-Saxon D374Y mutation also confers
resistance to cleavage. The extent of this cleavage was
highly enhanced when we optimized the site for PC
cleavage into an RRRR218EL, resulting in a loss of
function of PCSK9, i.e., the inability to trigger LDLR
degradation (Fig. 6) [11]. In contrast, the A443T
substitution [44] associated with hypocholesterolemia
leads to an increase sensitivity to PC-mediated cleav-
age [11]. Thus, the half-life of PCSK9 seems to directly
modulate the circulating LDL-C. Whether cellular and/
or circulating PCSK9 is subjected to degradation by
other enzymes, such as cell surface metalloproteinases
or plasma proteases, is yet to be defined.

– Cellular trafficking of PCSK9 and colocalization with
its dominant partner LDLR—Like most PCs, PCSK9 is
autocatalytically processed in the ER, before its exit
from this compartment. Although most PCs are
activated after a secondary cleavage of their proseg-
ment before their secretion (Fig. 7), PCSK9 is rapidly
secreted as a tight complex with its N-terminal proseg-

ment [10, 85]. As the prosegments of PCs are usually
potent inhibitors, this suggests that the secreted PCSK9
is inactive. The secreted form of PCSK9 was shown to
be internalized into endosomes via cell-surface binding
in an LDLR-dependent manner [18]. In agreement,
media swaps [18] or addition of purified PCSK9 to
naive cells [45] resulted in the degradation of the
LDLR. Very recently, it was demonstrated that PCSK9
and LDLR could interact directly at the cell surface
[45], but whether this is cell-type dependant and requires
another accessory protein is yet to be determined. We also
recently completed an extensive immunocytochemical
study of the cellular localization of PCSK9 and its
mutants in primary hepatocytes and cell lines [64]. Our
data show that wild type and hypercholesterolemic
variants of PCSK9 co-localize with LDLR in early and
late endosomes, whereas variants associated with hypo-
cholesterolemia do not [64].

SKI-1: In contrast to basic aa-specific PCs, SKI-1 (also
known as S1P) cleaves substrates in the general motif RX

Fig. 5 The PCSK9 and LDLR
protein balance. Possible path-
ways leading to higher (red
arrow) or lower (green arrow)
levels of PCSK9 protein or
activity are proposed. Their op-
posite impact on LDLR protein
levels, as PCSK9 enhances the
degradation of the LDLR, is
illustrated

Fig. 4 Known human PCSK9 mutations or single nucleotide poly-
morphisms (SNPs) with or without effect on the development of
hyper-or hypocholesterolemia. A schematic of the 22-kb PCSK9 gene
is shown and the location of the active site D186, H229, N317, and
S386 residues is emphasized. Also shown are the known PCSK9 aa
modifications because of exonic nucleotide changes. Some lead to

hypercholesterolemia (top), a discovery made by Abifadel et al. [1] for
the S127R and F216L mutations, whereas others result in the loss-of-
function of PCSK9 and hence hypocholesterolemia (bottom) as first
reported by Cohen et al. [21]. In the bottom panel (grey background),
aa modifications that have no, mild, or not yet proven effect on plasma
cholesterol levels are displayed according to their exon location
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(V,L)(K,F,L)↓ (the downward arrow emphasizes that cleav-
age occurs C-terminal to K, F, or L) [71, 89]. ProSKI-1 is
autocatalytically cleaved into a mature ~106 kDa mem-
brane-bound form [89] and a secreted ~98 kDa shed form
[29]. Its PCSK8 gene, ubiquitously expressed [89], is
located on human chromosome 16 and mouse chromosome
8 [105]. In the absence of sterols, SKI-1 cleaves the
membrane-bound transcription factors sterol regulatory
element-binding proteins (SREBPs) in their luminal loop
[81], leading to the release of a cytosolic basic helix-loop-
helix transcription factor. In the nucleus, this activates the
transcription of LDLR and all the genes involved in

cholesterol and fatty acid synthesis [81]. In the presence
of sterols, SREBP cleavage is inhibited, and hence,
transcription of its target genes is reduced, although the
reverse is true in the absence of sterols [81]. Other
transmembrane transcription factors cleaved by SKI-1
include the ER-stress response factor ATF6 and CREB-like
transcription factors Luman and CREB4 [16, 49, 53, 61, 71,
81, 103, 114, 115]. Recently, we developed in vitro
fluorogenic assays of SKI-1 activity as well as cellular
inhibitors of this convertase that block viral infectivity
through the inhibition of viral surface glycoprotein process-
ing [8, 71, 74, 112].

Fig. 7 Zymogen activation of
the proprotein convertases. Ex-
cept for PC2, all other PCs
undergo an autocatalytically
cleavage of their chaperone/in-
hibitor prosegment in the ER.
The complex prosegment-cata-
lytic enzyme then exits the ER
towards the Golgi or post-Golgi
compartments, where usually a
secondary cleavage of the in-
hibitory prosegment results in
zymogen activation. The condi-
tions favoring such activation
vary from one PC to another and
include pH, calcium concentra-
tion, and in some cases, the
presence of specific partners

Fig. 6 Functional representa-
tion of some of the gain-of-
function mutations. The
sequences surrounding the
F216L, R218S, and D374Y
mutations are shown, as well as
the percent in cleavage by furin/
PC5 of PCSK9 secreted by
transfected HEK293 cells. Ex-
pression of the mutated
215RRRREL220 PCSK9 resulted
in 100% cleavage producing
∼55 kDa inactive PCSK9-
ΔN218. WT, wild type; pIRES,
empty vector
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SKI-1 KO—Lethality occurs at the blastocyst stage in
Pcsk8−/− mice with the absence of inner cell mass formation
[59]. A conditional KO of Pcsk8 in the liver, using the
Mx1-cre transgene, led to a partial disruption to the gene
(85%) and caused a 50% reduction in rates of cholesterol
and fatty acid synthesis, plus very low levels of nuclear
SREBPs and reduced mRNA of their target genes [114].
SKI-1 may be involved in cartilage formation as
disorganization of chondrocytes was observed in zebra-
fish deficient in SKI-1 [84].

PC5: PC5 (also called PC6 [62]) was first identified and
cloned by our group [54, 58]. Human PCSK5 encodes two
alternatively spliced isoforms PC5A (915 aa) and PC5B
(1870 aa) [54]. Both zymogens undergo a first autocatalytic
cleavage in the ER and a second in the trans-Golgi network
(TGN) [24, 65] or possibly at the cell surface (Mayer and
Seidah, in preparation). Although devoid of a transmem-
brane domain, PC5A can exert its proteolytic action at the
cell surface, as it is retained at the plasma membrane as a
complex with tissue inhibitors of metalloproteases (TIMPs)
and heparan sulfate proteoglycans [66].

Using in situ hybridization and/or quantitative reverse
transcription polymerase chain reaction, we documented
tissue distribution patterns of PC5 during development,
adulthood, and in various cell lines [30]. By embryonic day
E15.5, the PC5 pattern of expression becomes similar to the
adult: strong labeling in adrenal cortex, small intestine,
kidney, and vasculature [30]. PC5A is the predominant
isoform in adult mouse tissues except in the intestine and
kidney where PC5B predominates [30].

Many substrates are reported to be efficiently pro-
cessed ex vivo by PC5: matrix metalloproteases and
ADAM family enzymes [95, 102]; growth factors such
PDGF-A [94], PDGF-B [93], and VEGF-C [92]; and
receptors such as IGF-1R [41], integrins [13, 52], renin
[58, 77], and lipases [37]. We showed that in atherosclerotic
plaques and during arterial restenosis, expression of PC5 is
highly upregulated [96, 98–102]. High expression of PC5
in enterocytes suggests a possible role in processing protein
substrates that could regulate food and/or sterol/lipid
absorption [54, 87]. It was recently reported that a locus
on chromosome 9, close to PCSK5, is implicated in lipid
regulation in humans [31]. PC5 is thus a good candidate
proteinase in the control of both arterial restenosis [97] and
the levels of circulating HDL.

PC5 KO—To investigate physiological roles of PC5, we
generated a Pcsk5-deficient allele missing exon 4 that
encodes the catalytic Asp173. Although heterozygote Δ4/+
mice are healthy and fertile, homozygote Δ4/Δ4 embryos
die at E4.5-E7.5 [30].

Furin: Furin, an ubiquitous membrane protein [78], is
initially produced as a ~104 kDa precursor rapidly
converted into an active ~98 kDa form [23, 48, 87]. This

autocatalytic cleavage, occurring in the ER (Fig. 6), is a
prerequisite for the exit of mature furin molecules out of the
ER to the TGN and cell surface [60, 106]. Deduced from
many studies is that furin and PC5 exhibit partial
redundancy of their in vitro selectivity and sensitivity to
certain modified serpin inhibitors [36, 86, 109]. Candidate
substrates described for furin in vitro include many
vasoactive peptides and proteins involved in cardiovascular
tissue remodeling [3, 108]. Most of these cleavages occur
in the TGN, at cell surface, or in endosomes but rarely in
the ER [82]. It is noted that furin, PACE4, and PC5 can
inactivate endothelial and lipoprotein lipases [37]. More-
over, furin plays a key role in blood pressure regulation
though the activation of transforming growth factor β
(TGFβ) [26], a process that was recently shown to be
inhibited by the binding of Emilin-1 to proTGFβ [75, 116].
Very recently, it was shown that angiopoietin-like proteins
Angptl-3 and Angptl-4 were processed at an internal RRKR
site to release these lipoprotein lipase inhibitors in
circulation [42, 43]. This suggests that a furin-like enzyme
is the responsible convertase of LPL, a hypothesis that will
need further confirmation. With tissue-specific conditional
KOs, we may soon be able to establish if such ex vivo
observations also pan out in vivo.

Furin KO—Furin is detected at E7.5 in the endoderm
and mesoderm. During the late somite stages, it is seen in
the cardiovascular system [80, 118]. Inactivation of the fur
gene (Pcsk3) causes embryonic death ≈E11 because of
hemodynamic insufficiency and cardiac ventral closure
defects [80]. Mutant embryos failed to develop large vessels
despite the presence of endothelial cell precursors. TGFβ1
was recently shown to be efficiently processed by furin [26],
and the inactivation of its gene produces a phenotype similar
to that of furin-null embryos [25, 28].

A conditional KO in liver, with the deletion of exon 2
dependent on the Cre expression from the Mx1-cre transgene,
resulted in viable Pcsk3flox/flox Tg(Mx1-cre) mice with almost
no phenotype. This demonstrated the existence of some

Fig. 8 High throughput functional cell-based screens for PCSK9
inhibitors. Schematic representation of such screens using either
fluorescent mAb to LDLR or its ligand DiI-LDL
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redundancy with other convertases, as some typical furin
substrates were still cleaved, although to a lesser extent [79].

The need for better treatments of dyslipidemias

It is becoming very clear that lowering the levels of
circulating LDL-C and/increasing that of HDL-C over a
lifetime has profound effects on the incidence of cardio-
vascular disorders and dyslipidemias. This includes myo-
cardial infarcts, hypertension, and endothelial dysfunction
leading to atherosclerosis, as well as stroke. Indeed, recent
clinical trials indicated that treatment of these disorders
should be based on global cardiovascular risks rather than
only on the levels of circulating cholesterol. It is now
recognized that the major risk factors in cardiovascular
disorders are as follows: abnormal lipid contents, smoking,
diabetes, high blood pressure, abdominal obesity, unhealthy
diet, and lack of physical activity. Although improved diet
and increased physical activity can be achieved by
modifications of lifestyle, the other parameters are usually
regulated with specific medication, e.g., the use of statins,
ezetimibe, thiazide, β-blockers, angiotensin converting
enzyme inhibitors, or angiotensin receptor blockers.

The available data suggest that some of the basic aa-
specific PCs may be implicated in lipid and sterol
regulation. Examples include the role of furin, PACE4,
and PC5 in the inactivation of endothelial and lipoprotein
lipases and in the processing of receptors such the
lipoprotein-related receptor protein LRP1. On the other
hand, it is very clear that SKI-1/S1P is directly implicated
in the regulation of SREBPs activation and hence the
synthesis of cholesterol and fatty acids. Finally, PCSK9,
through degradation of the LDLR, indirectly contributes to
the regulation of the levels of circulating LDL-C.

How can we envisage a drug design against the
convertases implicated in regulating the levels of choles-
terol and/or fatty acids? Concerning the role of furin,
PACE4, and PC5 in the inactivation of lipases (Fig. 2), it
would not be recommended to use an inhibitor of these
enzymes, as this would likely result in a decreased level of
HDL [37, 38]. This assumption should be verified by
measuring lipase activity and HDL-C levels in knockout
mice of either furin, PACE4, or PC5. As the knockouts
furin [80] and PC5 [30] are embryonic lethal, it will be
necessary to use conditional knockouts in either liver or
endothelial cells to answer this question. In the case of SKI-
1/S1P that activates SREBPs and/or PCSK9 that enhances
the degradation of LDLR, a direct cell permeable functional
inhibitor obtained through high throughput screens (HTS)
of combinatorial libraries of nonpeptidic compounds may
be successful. This could take the shape of in vitro assays
screens with fluorogenic substrates or cell-based assays.

The identification of “hits” would then be followed by
medicinal chemistry methods to enhance the potency,
efficacy, and kinetic bioavailability of the “hits” and
drastically reduce their possible toxicity. As in the case of
PCSK9, the enzyme is secreted as a tight binding complex
with its inhibitory prosegment [10, 11, 85], it may be
difficult to achieve an in vitro enzymatic activity. However,
as addition of the PCSK9-prosegment complex outside
cells allows its internalization into endosomes and results in
a functional protein [18, 64], a cell-based functional assay
using the level of LDLR as end point would allow HTS for
an inhibitor of the function of PCSK9 or its more active
D374Y mutant [11, 45] on the degradation of endogenous
LDLR in either HuH7, HepG2, or HEK293 cells (and
hence higher levels of cell-surface LDLR). For example we
could use either automated FACS with a monoclonal
antibody (mAb) to LDLR, or fluorescent LDLR-mAb or
even DiI-LDL ligand (Fig. 8). As heterozygotes lacking
50% of the functional PCSK9 already show marked
reduction in circulating LDL-C [21, 44], it may not be
necessary to reduce the levels or activity of PCSK9 by
more than 70–80% to achieve the desired effect.

Although PC-based hypolipidemic treatments are still in
their infancy, the future will tell whether modulating the
levels or activity of some of these convertases may
represent viable therapeutic approaches that when com-
bined with the other drugs, may well prove to be very
beneficial in treating cardiovascular disorders.
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