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Abstract Myocardial energy and lipid homeostasis is
crucial for normal cardiac structure and function. Either
shortage of energy or excessive lipid accumulation in the
heart leads to cardiac disorders. Peroxisome proliferator-
activated receptors (PPARα, -β/δ and -γ), members of the
nuclear receptor transcription factor superfamily, play
important roles in regulating lipid metabolic genes. All
three PPAR subtypes are expressed in cardiomyocytes.
PPARα has been shown to control transcriptional expres-
sion of key enzymes that are involved in fatty acid (FA)
uptake and oxidation, triglyceride synthesis, mitochondrial
respiration uncoupling, and glucose metabolism. Similarly,
PPARβ/δ is a transcriptional regulator of FA uptake and
oxidation, mitochondrial respiration uncoupling, and glu-
cose metabolism. On the other hand, the role of PPARγ on
transcriptional regulation of FA metabolism in the heart
remains obscure. Therefore, both PPARα and PPARβ/δ are
important transcriptional regulators of myocardial energy
and lipid homeostasis. Moreover, it appears that the heart
needs to have two PPAR subtypes with seemingly over-
lapping functions in maintaining myocardial lipid and

energy homeostasis. Further studies on the potential
distinctive roles of each PPAR subtype in the heart should
provide new therapeutic targets for treating heart disease.
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Introduction

Fatty acid (FA) metabolism provides a large fraction of the
amaranthine energy needs to support normal cardiac func-
tion. Perturbation in myocardial energy and lipid homeo-
stasis is a common feature for many cardiac disorders. One
of the key determinants of myocardial energy and lipid
homeostasis is a transcriptional network that governs rela-
tive fluxes of energy substrates through affecting expres-
sion levels of key proteins in various metabolic pathways.
Emerging evidence shows that altering expression of genes
directing FA metabolism in the heart is associated with
substrate switches in pathological conditions. Peroxisome
proliferator-activated receptors (PPARα, -β/δ, and -γ),
members of the ligand-activated nuclear receptor superfam-
ily, are the key transcriptional regulators in FA metabolism.
Each PPAR subtype functions as an obligate heterodimer
with the retinoid X receptor (RXR). The PPAR and RXR
heterodimer binds to the PPAR responsive element (PPRE)
on its target genes and activates them [1]. FAs and/or lipid
metabolites serve as endogenous ligands of PPARs to me-
diate adaptive metabolic responses to changes in systemic
energy supplies [1]. A growing number of natural ligands
have been identified, such as leukotriene B4 and 8-(S)-
hydroxyeicosatetraenoic acid and 15-deoxy-Δ12, 14-prosta-
glandin J2 (15d-PGJ2) [3, 4]. At present, no high affinity
natural ligand has been identified for any of the PPARs.
Therefore, a physiological role of the receptor may be to
sense the total flux of Free FA (FFA) in important tissues,
such as the heart. The lipid lowering drug fibrates and the
antidiabetic Thiazolidinediones (TZDs) have been identi-
fied as PPARα and PPARγ ligands, respectively. In
addition, synthetic compounds have been developed for
the selective activation of each or multiple PPAR subtypes.

This review focuses on discussing the essential roles of
PPARs in the heart as the key transcriptional determinants
of myocardial energy and lipid homeostasis.

Myocardial energy and lipid homeostasis determines
cardiac structure and function

The energy and lipid homeostasis in cardiomyocytes relies
on the coordinating regulation of lipid uptake, oxidation,
triglyceride (TG) synthesis, and lipolysis, as well as lipopro-
tein secretion (Fig. 1). Excessive FA uptake, depressed FA
oxidation (FAO), or reduced lipid secretion potentially
contribute to lipid accumulation in cardiomyocytes. FA
uptake and FAO are the key steps that determine the
myocardial energetic supplies. In physiological state, FA
and carbohydrates such as glucose serve as energy sub-
strates for postnatal mammalian cardiac muscle, with 60–
70% from FAO [5–7]. Optimal cardiac function depends on

a precise coupling of energy supply and expenditure as well
as a delicate balance in energy flux between FAs and
glucose. The lipid and energy homeostasis of the heart is
tightly controlled by various mechanisms (see review [8]).
Abnormality of energy metabolism is one of the most com-
mon pathological phenomena in many cardiac disorders.
Inherited defects in many key enzymes on the mitochondrial
FAO pathway are associated with cardiomyopathy and
sudden death in children and young adults [9]. Acquired
cardiac disorders such as myocardial ischemia/reperfusion
and cardiac hypertrophy are also associated with alteration
of energy homeostasis [10, 11]. Myocardial metabolism
switches from the utilization of FA to the utilization of
glucose during the development of cardiac hypertrophy and
heart failure [10, 12–15]. This metabolic switch may
initially be adaptive. However, accumulation of intracellular
FA in these acquired conditions may contribute to contrac-
tile dysfunction [16]. Subsequent myocardial lipid accumu-
lation results in cardiomyocyte apoptosis and congestive
heart failure [17–19]. Similarly, animal models of diabetes
exhibit myocardial lipid metabolism disorder, contributing
to the pathogenesis of diabetic cardiomyopathy [17, 20–22].
It remains unclear whether the cardiomyopathies developed
in these pathologic states result from shortage of energy or
toxic lipid accumulation. Recent studies have shed light on
how transcriptional regulation controls gene expression of
mitochondrial and peroxisomal lipid metabolism in the
heart. It is evident that PPARs are the key transcriptional
determinants of myocardial energy and lipid homeostasis.
Ligands that specifically activate PPAR subtype(s) to
regulate transcriptional activities of lipid metabolic genes
logically become appealing drugs for treating perturbed
myocardial energy and lipid homeostasis in various cardiac
pathological conditions. Therefore, in-depth studies on the
expression patterns and the potentially distinctive functions
of each PPAR subtype in the heart become indispensable.

Myocardial expression profile of PPARs

It has been well recognized that PPARα is abundantly
expressed in cardiomyocytes [23, 24]. Whereas it is
recognized that PPARβ/δ has a ubiquitous expression
pattern, its expression is predominant in cardiomyocytes
of the rodent heart [24]. It is controversial on the cardiac
expression of PPARγ. It has been reported that PPARγ
transcript is very low to undetectable in ribonucleic acid
(RNA) samples extracted from cultured neonatal and adult
cardiomyocytes and heart tissues [25]. Nevertheless, North-
ern blot [26] and real-time reverse-transcriptase polymerase
chain reaction [27] both reveal the transcript expression of
PPARγ on RNA samples of human heart tissues. In
addition, RNA-protecting assay can also detect the PPARγ
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transcript in RNA samples from heart tissues of pigs [28].
Immunoblotting experiments demonstrate the expression of
PPARγ in cardiomyocytes, which reaches about 30% of the
abundance observed in adipocytes [29]. Expression of PPARγ
protein in samples from neonatal and adult rat cardiomyocytes
and from neonatal and adult heart ventricles can be detected
by Western blots [25]. Immunostainings on heart sections
from humans also support that PPARγ protein expresses
within cardiomyocytes [27]. Recently, PPARγ protein expres-
sion was also demonstrated by Western blots on protein
samples of mouse heart tissues [30]. More importantly,
cardiomyocyte-restricted PPARγ knockout in mice leads to
cardiac hypertrophy with increased nuclear factor-κB activities
[30]. Therefore, it becomes clear that PPARγ is indeed
expressed in cardiomyocytes from various species of animals.
However, it is not clear whether each individual subtype of
PPARs exerts distinctive biological effects in the heart.

Roles of PPARα in myocardial energy and lipid
homeostasis

Transcriptional regulation of FAO genes by PPARs in the
heart has been the main topic of studies as FAO supplies a

majority of the needed energy for the heart to work as a
pump. Studies on the in vitro effect of PPARα ligands such
as Wy14643 or on the conventional PPARα knockout mice
have unraveled how PPARα regulates FA metabolic genes.
More recently, studies on heart-specific PPARα over-
expression transgenic lines confirmed many of the previous
findings on potential target genes of PPARα in the heart
[31]. Studies using PPARα-selective synthetic ligands such
as Wy14643 on cultured cardiomyocytes provide additional
information on potential target genes of PPARα in
cardiomyocytes [24, 25, 32].

PPARα regulates FA uptake genes As shown in Table 1,
PPARα regulates the transcript expression of key enzymes
that are important components of FA uptake. These FA
uptake genes include FA translocase (FAT/CD36) [23, 31]
and FA transport protein 1 (FATP1) [23, 31]. FAT/CD36 has
been proposed to be the predominant mechanism to facilitate
FA uptake by myocytes [33]. Heart-specific transgenic over-
expression of FATP1 leads to cardiac dysfunction with the
increased FFA uptake by the heart [34]. Wy14643 adminis-
tration significantly induces the cardiac expression of genes
encoding proteins involved in cellular FA import and
thioesterification, such as FATP1, CD36, and long-chain
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Fig. 1 Schematic illustration of major aspects of lipid and energy
metabolism in cardiomyocytes. Fatty acids are the main sources of
substrates used by cardiomyocytes to generate energy. Fatty acid
metabolism in cardiomyocytes involves in multiple aspects, such as
free fatty acid (FFA) uptake, β-oxidation, energy uncoupling,
triglyceride (TG) synthesis, and lipoprotein secretion. LDL, Low-
density lipoproteins; VLDL, very low density lipoprotein; FATP, fatty

acid binding protein; LACS, long-chain acyl-CoA synthetase; FAT/
CD36, fatty acid translocase; CPT-I, carnitine palmitoyltransferase-I;
CPT-II, carnitine palmitoyltransferase-II; CACT, carnitine-acylcarnitine
translocase; LCAD, long-chain acyl-CoA dehydrogenase; HAD, 3-
hydroxyacyl CoA dehydrogenase; Thiolase, 3-oxoacyl-CoA thiolase;
UCP2, uncoupling protein 2; UCP3, uncoupling protein 3
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fatty acyl-CoA synthetase (LACS), in PPARα-overexpressed
hearts, but not in nontransgenic controls [31]. Consistent
findings have also been reported in PPARα null hearts [23].
PPARα-selective ligand, such as Wy14643, also induces
LACS expression in cultured cardiomyocytes [24, 25]. There-
fore, it is clear that PPARα in cardiomyocytes plays a crucial
role in governing the transcript expression of FA uptake genes.

PPARα regulates FAO genes in cardiomyocytes PPARα is
abundantly expressed in tissues that require high rates of

FAO and mediates lipid-induced activation of FAO genes
based on studies of a conventional PPARα knockout mice
[35]. The metabolic phenotype of PPARα null mice is
associated with failure of the liver and the heart to induce
β-oxidative pathways in response to physiological or
pharmacological perturbations in lipid metabolism [36–38].
Promoter studies showed that PPARα regulates transcrip-
tional expression of medium-chain acyl-CoA dehydroge-
nase (MCAD) and carnitine palmitoyltransferase I (CPT-I)
[39]. Further studies on PPARα knockout hearts and on

Table 1 Target genes of PPARα and PPARβ/δ in the heart

Gene
names

PPARα PPARβ/δ

FATP1 PPARα knockout [23]; PPARα overexpression and
synthetic ligand treatment [31]

LACS PPARα knockout [23]; Synthetic ligand treatment in
cardiomyocytes [24, 25]; PPARα overexpression [31]

Synthetic ligand treatment in cardiomyocytes [24, 25]

FAT/
CD36

PPARα knockout [23]; PPARα overexpression [31]

M-CPT-I In vitro promoter analyses [39]; PPARα knockout [36];
PPARα overexpression [31]; synthetic ligand treatment
in cardiomyocytes [24, 25]

Synthetic ligand treatment and PPARβ/δ overexpression in cultured
cardiomyocytes [24, 25, 32]; cardiomyocyte-restricted PPARβ/δ
knockout [32]

L-CPT-1 Synthetic ligand treatment in cardiomyocytes [24]
and PPARα knockout [37]

Synthetic ligand treatment and PPARβ/δ overexpression in
cardiomyocytes [24]

ACO PPARα overexpression [31] and PPARα knockout [36,
37]; synthetic ligand treatment in cardiomyocytes [32]

Synthetic ligand treatment in cardiomyocytes and PPARβ/δ
knockout [32]

UCP2 PPARα overexpression [31]; synthetic ligand treatment in
cardiomyocytes [24, 25]

Synthetic ligand treatment and PPARβ/δ overexpression in
cardiomyocytes [24, 25]

UCP3 PPARα overexpression [31]; synthetic ligand treatment in
cardiomyocytes [24]

Synthetic ligand treatment in cardiomyocytes and PPARβ/δ
knockout [32]

PDK4 PPARα overexpression [31]; synthetic ligand treatment
in cardiomyocytes [24, 32]

Synthetic ligand treatment in cardiomyocytes [24, 32] and PPARβ/δ
knockout [32]

HAD Gel shift mobility assay identified functional PPRE [2]
Thiolase Synthetic ligand treatment in cardiomyocytes [24, 32] Synthetic ligand treatment and PPARβ/δ overexpression in

cardiomyocytes [24, 32] and PPARβ/δ knockout [32]
MCAD In vitro promoter analyses [39]; PPARα knockout [36];

synthetic ligand treatment in cardiomyocytes [24]
Synthetic ligand treatment in cardiomyocytes [24]

LCAD PPARα knockout [36]; synthetic ligand treatment in
cardiomyocytes [24, 25]

Synthetic ligand treatment in cardiomyocytes [24, 25];
PPARβ/δ knockout [32]

MCD Synthetic ligand treatment in cardiomyocytes [24] Synthetic ligand treatment in cardiomyocytes [24, 32]
and PPARβ/δ knockout [32]

VLCAD PPARα knockout [23, 36] PPARβ/δ knockout [32]
MTE1 In vivo and in vitro synthetic ligand treatment [40]
MLDP In vivo synthetic ligand treatment in wild-type

and in PPARα knockout mice [45]
AGPAT3 In vivo synthetic ligand treatment in wild-type

and in PPARα knockout mice [42]
GPAT PPARα overexpression [31]
DGPAT PPARα overexpression in [31]

Listed are those reported target genes of PPARα and PPARβ/δ in the heart from current literatures. FATP1, Fatty acid binding protein; LACS,
long-chain acyl-CoA synthetase; FAT/CD36, fatty acid translocase; M-CPT-I, muscle carnitine palmitoyltransferase-I; L-CPT-I, liver carnitine
palmitoyltransferase-I; ACO, acyl CoA oxidase; UCP2, uncoupling protein 2; UCP3, uncoupling protein 3; PDK4, pyruvate dehydrogenase
kinase 4; HAD, 3-hydroxyacyl CoA dehydrogenase; Thiolase, 3-oxoacyl-CoA thiolase; MCAD, medium-chain Acyl-CoA dehydrogenase;
LCAD, long-chain acyl-CoA dehydrogenase; MCD, malonyl-CoA decarboxylase; VLCAD, very long chain acyl-CoA dehydrogenase; MTE1,
mitochondrial thioesterase 1; MLDP, myocardial lipid droplet protein; AGPAT3, 1-acyl-sn-glycerol 3-phosphate acyltransferase; GPAT, glycerol-
3-phosphate acyltransferase; DGPAT, diacylglycerolacyltransferase.
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cultured cardiomyocytes treated with Wy14643 demon-
strated that cardiac transcriptional expression of both
mitochondria and peroxisome FAO genes are regulated by
PPARα (Table 1). These mitochondrial FAO enzymes
include muscle CPT-I [24, 25, 31, 32, 36], liver CPT-I
[24, 37], long-chain acyl-CoA dehydrogenase (LCAD) [24,
25, 36], MCAD [24, 36], 3-hydroxyacyl CoA dehydroge-
nase [2], 3-oxoacyl-CoA (thiolase) [24, 32], and mitochon-
drial thioesterase 1 [40]. The peroxisomal-specific FAO
enzymes include acyl-CoA oxidase (ACO) [31, 32] and the
very long chain acyl-CoA dehydrogenase (VLCAD) [23, 32]
and are also regulated by PPARα. Pyruvate dehydrogenase
kinase 4 (PDK4), an enzyme suppressing glucose oxidation
via inhibiting pyruvate dehydrogenase complex activity, is
shown to be upregulated by PPARα in the heart [24, 31,
32] (Table 1). Mitochondrial respiration uncoupling pro-
teins such as uncoupling protein 2 and 3 [24, 25, 31] are
upregulated by PPARα (Table 1). As a result, PPARα null
hearts consequently show reduced FAO rates and increased
glucose oxidation rates [23]. Reduced expression of
malonyl-CoA decarboxylase (MCD) in the PPARα null
heart also contributes to the higher concentrations of
malonyl-CoA, thus lowering FAO rates [41].

PPARα regulates TG synthetic enzyme genes in the heart
Little is known about TG synthesis in cardiomyocytes.
Many important enzymes that are involved in TG synthesis
are expressed in cardiomyocytes. TG synthesis repre-
sents an active aspect of lipid metabolism in the heart.
Heart-specific PPARα overexpression upregulates glycerol-
3-phosphate acyltransferase (GPAT) and diacylglycerolacyl-
transferase, two key enzymes involved in the esterification
of FAs to TG at base line and further with fasting [31]
(Table 1). In addition, 1-acyl-sn-glycerol 3-phosphate acyl-
transferase (AGPAT)-3 (or lysophosphatidic acid acyltrans-
ferase; Table 1) is also regulated by PPARα activation [42].
AGPAT catalyses the acylation of lysophosphatidic acid to
form phosphatidic acid [43], the precursor of all glycerolip-
ids. The excessive TG in cardiomyocytes forms lipid droplets
that are usually surrounded by phospholipids monolayer [44].
Cardiomyocytes contain lipid droplets in various sizes
depending on the disease or dietary conditions. These lipid
droplets contain a class of proteins in their surface layers that
share a homologous sequence. A member of this class of
protein named MLDP (myocardial lipid droplet protein) was
recently identified. MLDP expression is upregulated in wild-
type hearts by Wy14643, but is blocked in PPARα null hearts
[45]. Therefore, the TG synthesis pathway within the
cardiomyocytes is likely regulated by PPARα. The activation
of this pathway in response to increased intracellular FFA
should help prevent the deteriorating effects of certain FAs.
However, more detailed studies are needed to uncover the
biological significance of this regulation.

PPARα regulates FA secretion in cardiomyocytes? Because
lipid accumulation is toxic to the heart, the heart may have
a capacity to increase its export of TG in states with
reduced FAO and increased FA uptake. The heart can
synthesize and secrete lipoproteins [46]. Apo B-100 and its
edited product apoB-48 are the major structural apolipo-
protein of liver-derived very low density lipoproteins and
low-density lipoproteins (LDL) [46–48]. Because the apoB
mRNA is not edited in the heart, the full-length apoB100
protein secretes lipoproteins in the heart [46, 49]. The heart
also expresses microsomal TG transfer protein (MTP),
which is a protein adding lipid to apoB. MTP transfers TG
onto the apoB protein structure before transferring into the
endoplasmic reticulum. When intracellular FFA or TG is
increased, cardiomyocytes secrete apoB-containing lipopro-
teins to prevent lipid accumulation. Cardiac apoB expres-
sion leads to reduced myocardial TG content in mice with
type II diabetes [50], LCAD deficiency [51], and heart-
specific lipoprotein lipase overexpression [52]. Recently, it
has been shown that the activation of PPARα increases the
expression and activity of MTP in the liver through the
PPRE on the MTP promoter [53]. Although it is feasible to
predict that MTP expression should also be regulated by
PPARα, it remains unclear if the PPARα-activated expres-
sion of MTP is subtype specific or tissue dependent.

Cardiac PPARα expression in pathological cardiac
hypertrophy and in aging

Genes encoding FAO enzymes are downregulated in
concomitant with the switch from FA to glucose utilization
in cardiac hypertrophy and heart failure [15, 54–56].
Interestingly, PPARα is downregulated during the develop-
ment of cardiac hypertrophy in animal models of ventric-
ular pressure overload [57–59], Thus, it was proposed that
the downregulation of PPARα is a key determinant of the
energy switch in cardiac hypertrophy and heart failure [60].
Similarly, the capacity of myocardial energy production
from FA metabolism is also depressed in the aging heart
accompanied by the downregulation of PPARα expression
[2]. More importantly, exercise training corrects the
downward trend of PPARα expression and activity in
concomitant with enhanced FAO in aged rat hearts [2].
However, while reversing the downregulation of PPARα
target genes in the hypertrophied heart and preventing
substrate switching, reactivation of PPARα exerts detri-
mental effects on cardiac performance [59]. Therefore,
PPARα downregulation may be essential to maintain
contractile function of the hypertrophied heart. Further-
more, variation in the PPARα gene influences left ventric-
ular growth in response to exercise and hypertension in
humans, implicating that maladaptive cardiac substrate
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utilization can play a causative role in the pathogenesis of
left ventricular hypertrophy. PPARα may serve as a
regulator of left ventricle growth in response to an intense
short-term physiological stimulus [61]. It has been shown
that ligands of PPARα attenuate necrosis in acute myocar-
dial infarction [62] and blunt the development of endothe-
lin-induced cardiac hypertrophy [63, 64]. However, the
expression and activity of PPARα are not necessarily
always concomitant with a reduced rate of FAO in disease
states. In the left ventricular tissues from pacing-induced
failing dog hearts, the activity of CPT-I and MCAD
decreased, but the expression of PPARα is unchanged
[65]. Therefore, differential interaction of PPARα with
other factors may also play roles in the reduction in FAO
genes in the failing hearts.

In summary, PPARα is a key determinant of myo-
cardial lipid and energy homeostasis by regulating
transcriptional expression of key components of FA
metabolism of the cardiomyocytes. These key compo-
nents include almost all aspects of lipid metabolism in a
cardiomyocyte, such as lipid uptake, FAO, TG synthesis
mitochondrial respiration uncoupling, and glucose me-
tabolism (Fig. 2). More studies are warranted to confirm
the functional aspects of PPARα-directed transcriptional
activities in determining myocardial energy and lipid
homeostasis.

Roles of PPARβ/δ in myocardial energy and lipid
homeostasis

In contrast to the well-characterized roles of PPARα in
regulating lipid metabolism in the heart, less is known
about the roles of PPARβ/δ in the heart. It has been
suspected that it exerts similar action on the heart as those
of PPARα. PPARβ/δ is predominantly expressed in
cardiomyocytes, but not in other cell types in the
myocardium [24]. As synthetic PPARβ/δ-selective ligands
have become available, evidence is emerging that PPARβ/δ
regulates similar FAO transcripts in cardiomyocytes as
PPARα [24, 25].

PPARβ/δ regulates FA uptake genes in cardiomyocytes
LACS has been shown to be upregulated by PPARβ/δ
ligand treatment in cultured cardiomyocytes [24, 25]. As
LACS plays essential roles in coordinating FA uptake,
PPARβ/δ should be a key determinant of FA uptake.
Additionally, it would not be a surprise to see that PPARβ/δ
also regulates the transcriptional expression of other lipid
uptake genes in cardiomyocytes. This is especially true for
FATP1 and FAT/CD36, which have been shown to be
regulated by PPARα (Table 1).

PPARβ/δ regulates FAO genes in cardiomyocytes PPARβ/
δ-selective ligand treatments and PPARβ/δ overexpression in
cultured cardiomyocytes result in elevation of FAO genes and
FAO rates in a classic ligand binding dependent mechanism
[24]. Both mitochondria-specific (M-CPT-I, L-CPT-I, UCP2,
UCP3, PDK4, thiolase, MCAD, LCAD, and MCD) and
peroxisome-specific (ACO, VLCAD, and thiolase) FAO
genes are regulated by PPARβ/δ in the heart (Table 1). More
importantly, a definite and essential role of PPARβ/δ in
maintaining constitutive myocardial FAO has been revealed
recently in studies performed in a cardiomyocyte-restricted
PPARβ/δ knockout mouse model [32]. In addition to
depressed FAO, these mice develop severe phenotypic
changes, such as cardiac dysfunction, myocardial lipid
accumulation, and progressive heart failure. The dominant
expression of PPARβ/δ in cardiomyocytes of the heart
explains, at least in part, why mice with cardiomyocyte-
restricted PPARβ/δ knockout exhibit remarkable phenotypic
changes [24, 32]. Thus, PPARβ/δ may play a key role as a
“sensor” of intracellular FA content and a constitutive
determinant of high-level FA metabolism observed in normal
adult hearts. Although PPARα and PPARβ/δ regulate similar
set of FAO genes in cardiomyocytes, they are not interde-
pendent on each other. Deletion of one from cardiomyocytes
does not affect the effects of another on activating FAO gene
expression [24, 32]. Although PPARβ/δ plays overlapping
roles as PPARα does on activating myocardial FAO, whether
PPARβ/δ also involves transcriptional regulation of other
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Fig. 2 PPARα determines myocardial lipid and energy homeostasis via
transcriptional regulation of lipid and energy metabolisms in cardio-
myocytes. PPARα governs transcriptional expression of key enzymes
that are involved in fatty acid uptake and oxidation, TG synthesis,
mitochondrial respiration uncoupling, and glucose metabolism
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lipid metabolic pathways in the heart remains relatively
unclear. Interestingly, cardiomyocyte-restricted PPARβ/δ
knockout but not the conventional PPARα knockout mice
exhibit myocardial neutral lipid accumulation at baseline
condition [23, 32]. Therefore, a mismatch of PPARβ/δ-
activated FAO and lipid uptake must be existed. For example,
it is likely that depressed myocardial FAO in PPARβ/δ
deficient heart could not oxidize the remaining FAs.
Nevertheless, it is also possible that PPARβ/δ and PPARα
deficient hearts employ, respectively, different regulating
mechanisms in response to the different cell contexts:
PPARβ/δ is only missing from the cardiomyocytes in the
cardiomyocyte-restricted PPARβ/δ knockout mice, whereas
PPARα is eliminated from all cell types and all tissues in the
conventional PPARα null mice.

In summary, PPARβ/δ is emerging as an essential
transcription factor in regulating myocardial lipid and
energy homeostasis. It is especially clear that PPARβ/δ
regulates major myocardial metabolic genes to activate
FAO, increase mitochondrial respiration uncoupling, and
suppress glucose oxidation (Fig. 3). It remains unknown
whether PPARβ/δ also governs transcription of genes
encoding other aspects of myocardial lipid metabolism.
The regulation of PPARβ/δ itself in response to dietary and
other pathological stimuli is also obscure. It has been
recently reported that PPARβ/δ-selective ligand or over-
expression of PPARβ/δ in cultured cardiomyocytes sup-
presses lipopolysaccharide-induced inflammatory responses
[66, 67]. Furthermore, activation of PPARβ/δ can inhibit
hypertrophic responses in cardiomyocytes [66]. However,
there is no direct evidence that the inhibitory effects of
PPARβ/δ to inflammation and hypertrophy are associated
with its action on FAO gene regulation. Further studies are
needed to unravel the important roles of PPARβ/δ on lipid
metabolic regulation.

The mystery role of PPARγ in myocardial energy
homeostasis

A primary role of PPARγ in the heart remains elusive.
Given the crucial roles of PPARγ on lipogenesis and
glucose metabolism in many tissues [68], including the
liver [69] and skeletal muscle [70, 71], which express very
low levels of PPARγ [72], it is conceivable that even
relatively low levels of cardiac PPARγ may play important
roles in cardiomyocytes.

Accumulating evidence indicates that PPARγ activators,
such as rosiglitazone, troglitazone, and 15d-PGJ2 can sup-
press hypertrophic response in cultured cardiomyocytes [73–
75] and in animal models [76]. In addition, it has been
shown by many recent reports that activation of PPARγ

with TZD drugs protects the myocardium from ischemic/
reperfusion injury [62, 77, 78]. Most recently, Duan et al.
showed that cardiomyocyte-specific PPARγ knockout in-
duces cardiac hypertrophy with elevated nuclear factor-kB
activities [30]. Treatments with selective PPARγ ligand
rosiglitazone in mice also lead to cardiac hypertrophy [30],
probably by increased water retention [79, 80]. Interestingly,
studies on the above cardiomyocyte-restricted PPARγ
knockout mice did not reveal any change on the transcript
abundances of key lipid metabolic enzymes [30], thus
ruling out PPARγ as a primary effector on suppressing
cardiac hypertrophy via regulating FAO. These seemingly
contradictory results may be derived from many factors. For
example, the beneficial effect of TZD drugs on the heart may
be a combination of direct and indirect effects on insulin
sensitivity and on inflammatory responses via systemic and/
or local PPARγ activation. As a result, TZD drugs may only
be effective in pathological conditions of the heart, which
usually exhibits exacerbated inflammation and disturbing
lipid metabolism [81, 82]. On the other hand, the activation
of TZD could lead to increased water retention, resulting in
volume-overload, and hence, cardiac hypertrophy. The
beneficial and harmful effects of TZD drugs to the heart
may depend on various drug actions on different tissues.
More in-depth studies will be needed to address the potential
tissue selective effects of PPARγ activation. Although these
data suggest the involvement of PPARγ in a pathway for
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Fig. 3 PPARβ/δ determines myocardial lipid and energy homeostasis
via transcriptional regulation of lipid and energy metabolisms in
cardiomyocytes. PPARβ/δ governs transcriptional expression of key
enzymes that are involved in fatty acid uptake and oxidation,
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negative regulation of cardiac hypertrophy, the roles of
cardiac PPARγ on myocardial lipid homeostasis remain
unclear.

Future perspectives and conclusion

Although considerable progress has been made in the
understanding of the roles of PPARs in myocardial lipid
homeostasis, there are many open questions regarding the
roles of these important nuclear receptors in the heart. It
appears that PPARα and PPARβ/δ in cardiomyocytes share
many overlapping functional roles in regulating lipid
homeostasis; however, their differential roles remain ob-
scure. Further studies on their potential differential regula-
tion in the heart in response to various conditions, such as
dietary stresses, are warranted. Moreover, whether PPARγ
plays any roles in regulating myocardial lipid homeostasis
remains an open question. Studies on mice with temporally
inducible heart-specific PPARs inactivation and/or inducible
cardiomyocyte-restricted transgenic overexpression of each
PPAR subtypes should provide important clues to answer the
above questions. Furthermore, studies on mice with double
or triple knockout of two or three of the PPAR subtypes
should help to identify potential intersecting of each PPAR in
cardiomyocytes. Only by understanding how these multiple
PPARs intersect will we be able to exploit the therapeutic
potential of PPAR ligands for treating lipid metabolic
disorders that underlie in cardiomyopathy. An understanding
of the molecular regulatory mechanisms involved in main-
taining cardiac lipid and energy homeostasis under various
cardiac pathological conditions should provide novel
insights into the therapeutic developments of inherited and
acquired diseases of the cardiovascular system in humans.
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