ORIGINAL ARTICLE

Theophany Eystathioy · Edward K. L. Chan · Ken Takeuchi · Michael Mahler · LeeAnne M. Luft · Douglas W. Zochodne · Marvin J. Fritzler

Clinical and serological associations of autoantibodies to GW bodies and a novel cytoplasmic autoantigen GW182

Received: 13 May 2003 / Accepted: 8 September 2003 / Published online: 4 November 2003 © Springer-Verlag 2003

Abstract A novel autoantigen named GW182 was recently identified when the serum from a patient with a sensory ataxic polyneuropathy was used to immunoscreen a HeLa cDNA library. Unique features of the GW182 protein include 39 repeats of glycine (G) and tryptophan (W) residues, binding to a subset of messenger RNA and localization to unique structures within the cytoplasm that were designated GW bodies (GWBs). The goal of the present study was to identify the clinical features of patients with anti-GW182 antibodies and to characterize the B cell anti-GW182 response by defining the epitopes bound by human autoantibodies. The most common clinical diagnosis of patients with anti-GW182 antibodies was Sjögren's syndrome followed by mixed motor/ sensory neuropathy, and systemic lupus erythematosus. Of interest, 5 (28%), 9 (50%), and 3 (17%) of the 18 sera that react with GWBs had autoantibodies to the GW182 and the 52 kDa and 60 kDa SS-A/Ro autoantigens, respectively. Epitopes bound by the human autoantibodies were mapped to the GW-rich middle part of the protein, the non-GW rich region, and the C-terminus of GW182 protein. None of the GW182 epitopes had significant sequence similarities to other known proteins. GW182 represents a new category of ribonucleoprotein autoantigens.

T. Eystathioy · L. M. Luft · D. W. Zochodne · M. J. Fritzler (☑) Departments of Medicine and Medical Biochemistry, University of Calgary,
3330 Hospital Dr. N.W., Calgary, AB, T2N-4N1, Canada e-mail: fritzler@ucalgary.ca
Tel.: +1-403-220-3533, Fax: +1-403-283-5666

E. K. L. Chan Department of Oral Biology, University of Florida, Gainesville, Florida, USA

K. Takeuchi

Department of Rheumatology, School of Medicine, Juntendo University, Tokyo, Japan

M. Mahler

Institute for Molecular Genetics, Universität Heidelberg, Heidelberg, Germany

THEOPHANY EYSTATHIOY received her M.Sc. degree in cell and developmental biology from the University of Calgary, Canada, and further research training at Scripps Research Institute in La Jolla, Calif. She is presently completing her Ph.D. research at the University of Calgary. Her research interests include mRNA-binding proteins that are targets of the human autoimmune response.

MARVIN J. FRITZLER received his M.D. and Ph.D. degrees in cell biology from the University of Calgary, Canada. He received research training at Scripps Research Institute in La Jolla, Calif. and the University of Colorado in Denver, Colo. He currently holds the Arthritis Society Research Chair at the University of Calgary. His research interests include the cell and molecular biology of human autoantigens.

Keywords Autoantibodies · mRNA · Autoimmunity · Sjögren's syndrome · Neurological disease

Abbreviations *GWB*: Glycine tryptophan-rich cytoplasmic structure · *IIF*: Indirect immunofluorescence · *IP*: Immunoprecipitation · *NET2*: NaCl, EDTA, Tris buffer · *SDS*: Sodium dodecyl sulfate · *SjS*: Sjögren's syndrome · *SLE*: Systemic lupus erythematosus · *TBS*: Tris-buffered saline · *TnT*: Transcription and translation

Introduction

The sera from patients with systemic autoimmune disease have been used to isolate and identify novel autoantigens that are components of macromolecular complexes that have a variety of cellular functions including transcription, translation, and ribosomal processing [1, 2, 3]. In addition, the identification of autoantigens and the characterization of their respective epitopes are used as diagnostic tools to assist in the clinical evaluation of autoimmune diseases [4, 5, 6]. For example, the presence of autoantibodies to double-stranded DNA and the Sm small nuclear ribonucleoproteins (RNPs) are highly specific serological markers for systemic lupus erythematosus (SLE) [7]. Sjögren's syndrome (SjS) is characterized by the presence of autoantibodies to SS-A/Ro, and/or SS-B/la [8]. In addition, the identification of autoantigens and their association with autoimmune disease is a key approach to understanding the autoimmune disease state [9, 10].

Recently a novel autoantigen named GW182 was discovered when the serum from a patient with ataxic sensory polyneuropathy was used to immunoscreen a HeLa cDNA library [11]. Interesting features of the GW182 protein include 39 repeats of glycine (G) and tryptophan (W) residues and its localization in unique cytoplasmic structures that have been designated as GW bodies (GWBs). The GW182 protein, which has an RNA recognition motif and binds specific mRNAs, is thought to be part of a mRNA-protein macromolecular complex. It has been postulated that GWBs provide an additional level of posttranscriptional gene regulation and function in mRNA processing in a cell compartment referred to as the ribosome or posttranscriptional operon [12, 13]. More recent evidence implicates the GW182 protein and GWBs in mRNA degradation pathways [14]. The goal of the present study was to characterize the B-cell immune response in patients with antibodies to GWBs and the GW182 protein which resides within the GWBs and to assess the clinical features of these patients. This is the first report of the clinical features of patients with anti-GWB antibodies and a description of the GW182 epitopes bound by these sera.

Materials and methods

Patient serum and antibodies

All human sera used in this study were obtained from serum banks at the Advanced Diagnostics Laboratory (University of Calgary, Calgary, Canada), the W.M. Keck Autoimmune Disease Center (Scripps Research Institute, La Jolla, Calif., USA), and Juntendo University (Tokyo, Japan). The index human serum used in this study was selected based on its reactivity to an apparently unique cytoplasmic domain and its reactivity with the native and recombinant GW182 protein [11]. Clinical information was obtained by contacting the referring physician and retrospective chart review. Indirect immunofluorescence

The presence of anti-GW182 antibodies in the human sera were initially tested by Indirect immunofluorescence (IIF) using HEp-2 cell substrates (Immuno Concepts, Sacramento, Calif., USA) and had a cytoplasmic staining pattern that was characteristic of anti-GWB antibodies [11]. Reactivity with GWBs was confirmed by IIF colocalization studies on HEp-2 cells where a monoclonal antibody (4B6) to the recombinant GW182 protein which stains GWBs was used as the marker antibody [15]. Secondary antibodies for colocalization studies were fluorescein isothiocyanate conjugated anti-mouse IgG (Jackson ImmunoResearch, West Grove, Pa.,USA) and fluorescein isothiocyanate or Cy3-conjugated anti-human IgG (Jackson ImmunoResearch). Nuclei in the cell substrates were stained with 4',6-diamidino-2-phenylindole that was included in the glycerol mounting medium (VectaShield, Vector, Burlingame, Calif., USA).

In vitro transcription/translation and immunoprecipitation

Reactivity of the sera with recombinant GW182 protein was confirmed by immunoprecipitation (IP) of the recombinant protein. The full-length GW182 cDNA was used as a template to synthesize the protein in an in vitro transcription and translation (TnT) protocol that used a rabbit reticulocyte lysate kit (TnT, Promega Biotec, Madison, Wis., USA) in the presence of [35S]methionine at 30°C for 3-4 h as previously described [11, 16]. To confirm the presence of TnT products 2- to 5-µl samples were separated by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis and analyzed by autoradiography. The TnT products were then used in IP reactions by combining 100 µl of a 10% protein A Sepharose bead suspension (Sigma, catalog no. P-3391), 10 µl human serum, 500 µl NET2 buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 5 mM EDTA, 0.5% Nonidet P-40, 0.5% deoxycholic acid, 0.1% SDS, 0.02% sodium azide), and 10 µl of radiolabeled protein product. After incubation for 1 h at 4-8°C the suspension was washed five times in NET2, the proteins eluted in 10 µl sample buffer, and analyzed by 10% gel SDS polyacrylamide gel electrophoresis as described [17].

Epitope mapping

Epitope mapping employed sequential peptides of 15 amino acids offset by five amino acids, representing the full-length GW182 protein, were synthesized on membranes using the SPOT technology as previously described [18, 19, 20]. The membranes containing the peptides were processed for immunoblotting by soaking the membrane in Tris-buffered saline (TBS; 10 mM Tris-HCl pH7.6, 150 mM NaCl) for 10 min and then blocking with 2% milk/TBS for 1 h at room temperature. The human sera were diluted 1/100 in 2% milk/TBS and applied to the membrane. After 2 h of incubation at room temperature the membrane was washed three times with TBS. A horseradish-peroxidase conjugated goat anti-human IgG (Jackson ImmunoResearch) was diluted according to the manufacturer's protocol, and reactivity was visualized using enhanced chemiluminescence western blotting detection reagents (Amersham International). After reactive epitopes were identified a BLAST search of the GenBank using the reactive sequences as the query was conducted to identify homologous sequences in other proteins.

Purified recombinant GW182

The GW182 cDNA insert encoding a partial length of the GW182 protein was subcloned into pET28 (Novagen, Madison, Wis., USA). *Escherichia coli* JM109 (DE3) was transformed with this subclone, and the recombinant protein produced was purified using Ni²⁺ affinity chromatography as per the manufacturer's instructions

(Qiagen, Valencia, Calif., USA). This recombinant protein was subsequently used in the laser bead immunoassay described below.

Laser bead immunoassay

A set of addressable beads bearing laser reactive dyes (Luminex, Austin, Tex., USA) were selected to couple the recombinant purified GW182 protein. Unless otherwise specified, all incubations and reactions were conducted at room temperature. Ten micrograms of 1-ethyl-3-(3-dimethylaminopropyl) carboiimide hydrochloride (Pierce, Rockford, Ill., USA) and N-hydroxysuccinimide (Pierce) was placed in separate microcentrifuge tubes (USA Scientific) and dissolved in 200 µl activation buffer (0.1 M sodium phosphate, pH 7.2). Of the laser bead suspension 100 µl was placed into a microcentrifuge tube and centrifuged at 10,000 rpm in a microcentrifuge for 1 min, and the fluid was decanted. Forty microliters of activation buffer was added to the pelleted beads, and they were gently resuspended by brief sonication and vortexing. Five microliters of 1-ethyl-3-(3-dimethylaminopropyl) carboiimide hydrochloride and N-hydroxysuccinimide was added in sequence to the resuspended microspheres, followed by brief sonication and vortexing. The suspended spheres were incubated in the dark for 20 min before the purified recombinant GW182 protein, dissolved in coupling buffer (0.14 M NaCl, 0.01 M NaPO4, pH approx. 7.2: PBS), was added to the mixture. After an additional incubation in the dark for 3 min, the suspension was centrifuged at 13,000 rpm for 3 min. The fluid was decanted and 125 µl coupling buffer added. The spheres were resuspended by sonication and vortexing as above before repelleting by centrifugation at 13,000 rpm for 3 min. The supernatant was decanted, 125 µl the protein solution (50 µg/ml) added, and the beads resuspended by sonication and vortexing. The protein and sphere suspension were incubated for 1 h at room temperature in the dark. The protein-coupled microspheres were pelleted by centrifugation at 10,000 rpm for 2 min and then resuspended in 125 µl washing buffer (PBS pH 7.2, 0.05% Tween 20). After two cycles of resuspension and pelleting in 125 µl blocking/storage buffer (0.5% BSA in PBS), the beads were stored as a suspension in 100 µl of blocking buffer at 2-8°C until required for use.

To analyze reactivity of the sera with the bound GW182, patient sera were diluted in Quanta Plex sample diluent (INOVA, San Diego, Calif., USA) to a final dilution of 1/1,000. To each well 40 μ l of bead stock (1 part microspheres in blocking buffer to 40 parts Quanta Plex sample diluent) and 10 μ l of diluted patient sera were added and incubated for 30 min on an orbital shaker. Then 50 μ l phycoerythrin-conjugated goat anti-human IgG (Jackson ImmunoResearch) diluted 1/50 was added to each well and incubated on the orbital shaker for an additional 30 min. The reactivity of the antigen-coated beads was determined on a Luminex 100 dual-laser flow cytometer (Luminex). Control negative and standard positive sera were included in each assay. The tests were semiquantitative, and the results were expressed as median fluorescent intensity of the test sample.

Line immunoassay

The serum samples were tested for reactivity to other autoantigens using a "line" assay that includes recombinant and native SmB, SS-A/Ro52, SS-A/Ro60, SS-B/la, U1-RNP, ScI-70, ribo P antigens located on a solid phase strip (INNO-LIA, Innogenetics, Norcross, Ga., USA). The assays were performed according to the manufacturer's instructions, and at the completion of the assay the strips were dried and were interpreted based on visual comparison of the intensity of the bands on the test strip to the cutoff control on another strip.

Results

IIF using the index human serum on HEp-2 cells showed a pattern of distinctive cytoplasmic dots and what was previously described as GWBs (Fig. 1a). The number of GWBs present in HEp-2 cells varied from zero in mitotic cells to more than 30 in interphase cells. Previously it was shown that GWBs containing the GW182 autoantigen are distinguished from other cytoplasmic organelles, including the Golgi complex, lysosomes, endosomes, and proteasomes [11]. Over a 14-month period the clinical reference laboratory (Advanced Diagnostics Laboratory, University of Calgary) received approximately 5,000 sera for autoantibody analysis as requested by physicians who were investigating the presence of autoimmune disease, such as SLE and SjS, in their patients. From these 5,000 serum samples approx. 200 sera showed a cytoplasmic speckled staining pattern on HEp-2 cells. Of these 200 sera 18 (9%) had autoantibodies to the GWBs as determined by colocalization with the monoclonal antibody 4B6 that reacts with the GW182 protein and stains

Fig. 1a–e IIF colocalization studies using human and murine monoclonal anti-GWB antibodies. Cytoplasmic bodies in HEp-2 cells detected with the index patient serum diluted 1/100 (**a**, **b**) colocalized with the staining of a monoclonal antibody 4B6 to GW182 (**c**). The nuclei are stained blue with 4',6-diamidino-2-phenylindole (**d**) and the merged images are shown in **e**. *White bar* (**b**) 5 µm

Table 1 Demographic, clinical, and serological features of patients with anti-GWB antibodies (*AMA* anti-mitochondrial antibodies, *mAb* monoclonal antibody, *NHS* normal human serum, *PBC* primary biliary cirrhosis, *Pt* patient serum, *IP* immunoprecipitation,

SjS Sjögren's syndrome, *SLE*, systemic lupus erythematosus, *SS-A/ B* Sjögren's syndrome antigen A/B, *TnT* in vitro transcription and translation, *UCTD* undifferentiated connective tissue disease)

Patient	Age (years)	Sex	Diagnosis	IIF colocalized with mAb 4B6	Line assay				Laser bead	TnT IP
no.					SmB	SS-A 52 kDa	SS-A 60 kDa	SS-B	assay GW182 antibodies ^a	
Group A	1									
1	73	F	Ataxic sensory polyneuropathy	+	_	+	_	_	7766 ^b	+
2	75	F	Sensory neuropathy, arthritis, granuloma, silicon breast implants	+	-	+	-	-	72	-
3	38	F	Sensory neuropathy, granulomatous lymph nodes	+	-	+	-	-	1209 ^b	+
4	46	F	Malar rash, arthralgia	+	+	_	_	-	189	_
5	64	Μ	AMA negative PBC	+	-	+	_	-	209	_
6	43	F	UCTD	+	-	_	_	-	123	-
7	51	F	Lymphoma	+	-	_	_	-	161	-
8	67	F	Renal failure, hypergammaglobulinemia	+	-	-	-	-	98	+
9	85	F	Diabetes, heart block	+	-	_	_	-	1014 ^b	-
Group E	3									
10	77	F	SjS, ataxia	+	_	+	_	_	5999 ^b	+
11	54	F	SjS, ataxia	+	-	+	_	-	123	_
12	48	F	SjS, motor neuropathy	+	-	+	_	-	287	-
Group C	2									
13	51	F	SLE	+	_	_	_	_	226	_
14	46	F	SLE	+	_	_	_	_	139	_
15	47	F	SLE, SiS	+	_	_	+	_	112	_
16	51	F	SLE, SiS	+	+	+	+	+	84	_
17	70	F	SiS	+	_	_	_	-	109	_
18	57	F	SjS, interstitial pneumonitis	+	-	+	+	+	116	-

^a The results of the addressable laser bead immunoassay for antibodies to GW182 are expressed as median fluorescence units ^b Sera with a positive test

the GWBs (Fig. 1). The other sera had antibodies to early endosome antigen 1 [21], ribosomal RNP [22], mitochondria [23], cytoplasmic linker protein (CLIP-170) [24], and other as yet unknown endosome or lysosome antigens. None of the 18 sera that bound GWBs had antibodies to dsDNA, chromatin, U1-RNP, topoisomerase I (Scl-70), fibrillarin (U3 RNP), or centromeres/kinetochores [10]. The immunoglobulin isotype of all sera with antibodies to GWBs was IgG as shown by isotypespecific staining of HEp-2 cells, immunoblotting, and protein A Sepharose immunoprecipitation of recombinant GW182 protein. The anti-GWB titers as determined by IIF on HEp-2 cell substrates ranged from 1/320–1/5,120. A study of 2500 healthy female blood donors showed that none of these samples contained anti-GWB antibodies as determined by IIF using HEp-2 cells [25].

Although all 18 sera had antibodies to the GW body, the multiplexed laser bead assay indicated that 4 of the 18 sera (nos. 1, 3, 9, 10) recognized the recombinant GW182 protein which is one of several proteins found within GWBs (Table 1). When the reactivity of the 18 sera was also tested by IP using in vitro transcribed/translated protein, it was observed that 4 sera (nos. 1, 3, 8, 10) IP the GW182 protein (Fig. 2). Therefore when the data of the two assays that used recombinant protein are combined, 5 of the 18 sera recognized GW182.

Fig. 2 Immunoprecipitation of the ³⁵S-labeled GW182 TnT recombinant GW182 protein with patient sera. Four sera (*lanes 1–4*) that stained GWBs, immunoprecipitation IP the recombinant GW182 (*TnT*), but normal human serum (*NHS*) did not. MW ¹⁴C molecular weight markers

The clinical data obtained on the 18 patients who had the GWB staining pattern are summarized in Table 1. Of the 18 patients 17 (39%) with autoantibodies to the GWBs were women and ranged in age from 46 to 85 years (mean 58). The clinical diagnoses could be stratified into three groups: group A composed of 9 patients had predomiPatient 1

Pateint 3

Patient 10

Fig. 3 Epitope mapping obtained using sequential 15mer peptides offset by five amino acids that represented the full-length GW182 protein were spotted on membranes and then probed with a normal human serum (*NHS*) and three sera with anti-GWB antibodies (*patients 1, 3, 10*)

nantly mixed motor and/or sensory neuropathy, although other disease manifestations were also noted; 3 patients in group B had SjS in addition to some neurological features that overlapped with group A; in group C there were 6 patients who had SLE and/or SjS without documented evidence of neurological disease. When the various diagnoses or clinical conditions were tabulated individually, SjS was the most common, seen in 7 of 18 (39%), followed by patients with neurological disease (motor and sensory neuropathy and/or ataxia) in 6 (33%), followed by SLE in 4 (22%).

When it was observed that some of the patients had SLE and SjS, we were interested to determine whether autoantibodies to known autoantigens that are typical markers of SLE and SjS were present. Autoantibodies to SS-A/Ro and SS-B/la were correlated with the diagnosis of SjS in 6/7 patients diagnosed with SjS (Table 1). However, four patients in group A had anti-SSA/Ro52 antibodies but did not have a clinical diagnosis of SjS or

SLE. Interestingly, 9 sera had antibodies to the 52-kDa SS-A/Ro antigen, but 7 did not have coexisting antibodies to the 60 kDa SS-A/Ro antigen. One patient (no. 4) had a malar rash, arthralgia, and antibodies to the SmB protein but did not fulfill criteria [26] for classification as definite SLE.

Only 4 of the 18 patient sera (22%; nos. 1, 3, 8, 10) with anti-GWB antibodies as defined by colocalization, IP the GW182 protein. Three of these four sera (nos. 1, 3, 10; Table 1) were used for epitope mapping due to limited quantity available for the fourth serum (no. 8). Multiple epitopes over the entire length of GW182 were recognized by the patient sera (Figs. 3, 4). Four overlapping reactive peptides were shared between patient no. 1 and patient no. 10: amino acids 666-695, 951-970, 1676-1690, 1691-1705. Several peptides were in common between patient no. 1 and patient no. 3: amino acids 431-450, 766-780, 921-945, 951-970, 1101-1115, 1161-1185, 1191–1205, 1391–1410, 1431–1445, 1616–1630. Interestingly, only one peptide (1511–1525) was bound by both patient no. 10 and patient no. 3. The reactive epitopes mapped to the GW-rich, the middle portion, the non-GW rich, and the C-terminal domains of the GW182 protein (Fig. 4). When the reactive peptides were subjected to a BLAST analysis, only the published GW182 protein and related EST clones, KIAA1460, KIAA1582, and KIAA1093 showed more than 60% amino acid sequence identity. The KIAA1460 EST is known to be partial-length GW182 [11].

Discussion

In this study we report the clinical features of 18 patients who have autoantibodies to a unique structure within the cytoplasm which we previously named GW bodies or GWBs. Five of the 18 sera that colocalized with the murine monoclonal antibody to GW182 (monoclonal antibody 4B6) which stains the GW bodies, reacted with the GW182 protein in two different immunoassays. This suggests that either the epitopes reactive by IIF are not present in the recombinant proteins used in these assays, or that GWBs contain target autoantigens that remain to be defined. Studies are underway to define additional autoantigens in GWBs.

The incidence of anti-GWB antibodies reported in this study was 0.36%. In the Advanced Diagnostics Laboratory at the University of Calgary, this approaches the incidence of autoantibodies to Sm and Golgi antigens (0.4% and 0.5%, respectively) and was higher than antibodies to proliferating cell nuclear antigen (0.1%), Jo-1 (histidyl t-RNA synthetase (0.1%) and Scl-70 (topoisomerase I, 0.3%; unpublished data).

It is not clear whether the autoantibodies directed against GWBs and GW182 are pathogenic. The clinical diagnosis of patients with GWB autoantibodies included SjS, motor or sensory neuropathies, SLE, and a variety of other clinical conditions. Observations of mRNA processing may be relevant because particles containing

Number Sequence Position #1 #5 #10 6 EKDGLKNSTGLGSQN 26-40 98 EKDGLKNSTGLGSQN 98-1005 7 RNSTGLGSQNKIVVG 31-45 99 198 MERNAWGUYSSSSN 66-100 200 GOVREVGKGPOSKE 100-1015 200 200 200 100 100 200 GOVREVGKGPOSKE 100-1015 200 100 100 200 100 100-1015 200 200 100 100 200 100 100 200 100 100 200 100 100 200 100 100 200 100 100 100 100 100 200 100 200 100 200 100 200 100 <td< th=""><th></th><th>PEPTIDE</th><th></th><th></th><th>PATIEN</th><th>Г</th><th>191</th><th>FVKQFSNISFSRDSP</th><th>951-965</th><th></th><th></th></td<>		PEPTIDE			PATIEN	Г	191	FVKQFSNISFSRDSP	951-965		
Number Sequence Position ff ff3 ff3 ff3 ff3 ff4							192	SNISFSRDSPEENVQ	956-970		
6 EKDGLRNSTGLGSQN 26-40 109 HSLNGDVRTVGKG 991-1005 7 RNSTGLGSQNKFVVG 31-45 200 GOVNRTVGKGC 991-1005 20 STLSNASNIGAWPVL 106-120 201 TVGKAPORSPISKE 1001-1015 21 STLSNASNIGAWPVL 106-120 201 TVGKAPORSPISKE 1001-1015 20 QCSTIGMVFNSQNS 144-155 202 POSRPIGNERAVPCQV 1101-1115 30 GYUNSYGKVSSQG 176-190 221 PLSSSQPNLRAQVPPS 1136-1150 213 TQSVSTGKVSSSQK 266-280 233 SQLQRLAQQCRAQS 1161-1175 214 LLAQQQRAQQRSPV 1161-1175 234 LLAQQQRAQQSRNP 1171-1185 215 AVGNYSGDKCSGA 311-325 234 LLAQQQRAQQSRNP 1171-1185 216 SRVSGANSGANSGS 311-345 235 GRFISVQQOMMOQSR 1171-1185 216 SRVSGANSGANSGS 311-345 235 GRFISVQQQMNQQSR 1161-1175 217 GRKTINOWKSTILED 311-335 236 </td <td>Number</td> <td>Sequence</td> <td>Position</td> <td>#1</td> <td>#3</td> <td>#10</td> <td>198</td> <td>MEIDKHSLNIGDYNR</td> <td>986-1000</td> <td></td> <td></td>	Number	Sequence	Position	#1	#3	#10	198	MEIDKHSLNIGDYNR	986-1000		
6 EKDGLRNSTGLGSQN 2-640 7 RNSTGLGSQNKTVVG 31-45 18 NNRMAWGTVSSSSN 86-100 23 STLNASNHGAWPV1 106-120 24 STLNASNHGAWPV1 106-120 25 STLNASNHGAWPV1 106-120 26 OCYNTYCKORCORSPP 106-110 27 OKYNSTORYNSKOR 141-155 28 STLNSSYSGOPNILR 106-110 29 OCSTICQMPMNQSINK 146-160 21 TMKYSSGOPNILR 113-1145 21 STLNSSOPNILRAQUPP 1101-115 21 STLNSSOPNILRAQUPP 1101-115 21 STLNSSOPNILRAQUPP 1111-115 21 STLNSSOPNILRAQUPP 1111-125 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>199</td> <td>HSLNIGDYNRTVGKG</td> <td>991-1005</td> <td></td> <td></td>							199	HSLNIGDYNRTVGKG	991-1005		
7 RNSTGLGSQNKFVG 31-45 18 NRNMAWGTUSSSS 86-100 22 STLSASASHIGAWPVL 106-120 23 QCSTIGQMENNQSINSKVSG 146-160 20 GQMENNQSINSKVSG 146-160 21 PLSSGPUSKES 100-1015 22 QPAQPESSSPPNLR 100-1105 23 GCSTIGQMENNQSINSKVSG 146-160 24 FLEPSSTGAWENSGOR 176-190 25 ATGNSYGDKSCGROP, 176-190 221 25 ATGNSYGDKSCGROP, 277-285 233 26 GTIWGAYGNNYSGDK, 266-280 233 25 ATGNSYGDKSCGA, 311-325 234 264 KGGGWWESGA, 331-345 235 265 WESGANSQSTSWGS 31-345 266 WESGANSQSTSWGS 31-345 27 GKTINGWKSTIEED 381-395 264 264 SPYPYDPHNN 131-125 270 SPKNESSWNPPFER 136-130 271 SSNMWPFER 136-130 272 PELFWOPMNN 131-1325 273 MCIGSQSNRDRKH 451-450 274<	6	EKDGLRNSTGLGSQN	26-40				200	GDYNRTVGKGPGSRP	996-1010		
18 NNRMAWGTVSSSSN 86-100 202 PGSRVDSKESSNER 1006-1020 22 STLNSSNIG4WPL 106-120 201 MRGVGNTAGRMQU 106-1005 29 QCSTIGQMPNNOSIN 141-155 202 OPRADROMQU 106-1105 36 SEVSCTOKVSPSGOP 175-190 221 OPRADROMQU 106-1105 37 TQKVSFSGOP(DUTT 181-195 221 PNSGLGNPLFGPQQV 1131-1145 221 45 ELPSSNTGAWRVSTM 221-235 231 SQLORALOQOS 1161-1175 223 224 LLAQAQSORSVPSORP 1161-1175 224 124, GAGSORSVSORP 1161-1175 226 226 67 75 GKGSNANSGGSKGG 313-35 236 67 78, GKANSGSTRWG 211-125 226 227 PLSKGSVQQMMQOSR 111-1125 226 227 PLSKGSVQQMMQOSR 111-125 226 227 PLSKGSVQQMMQOSR 111-125 226 227 PLSKGSVQQMMQOSR 111-125 226 227 PLSKGSVQVPPDFNNSTIT 131-130 226 227 PLSKTGKQVPPDFNNSTIT 131-135 226 227 PLSKTGKQVPPDFNNSTIST 136-1330	7	RNSTGLGSQNKFVVG	31-45				201	TVGKGPGSRPQISKE	1001-1015		
22 STLNASNIGAWPVL 106-120 217 MCGYGTAAQPROMQ 106-110 30 GQMPNOQSINSKVSG 146-160 221 PLSSOPNLR 100-1115 30 SEVSOTOKVSTSOQCOP 176-190 221 PLSSOPNLR 100-1115 37 TQKVSTSOQCOPNTT 181-195 221 PLSSOPNLR 100-1115 221 34 ELPSSNTGAWRSTM 221-235 223 100-1115 223 101-1175 54 GTWSGANSQSOR 246-380 233 SQLQRAQSR VP 116-1175 233 116-1180 234 101-1175 235 235 0RASORSVSORAP 21-285 234 102-00CA3QS0RSVS 116-1180 235 0RASORSVSORAP 21-285 235 0RASORSVSORAP 21-216-290 236 0REISVDQOMMQOR 111-125 <	18	NNRMNAWGTVSSSSN	86-100				202	PGSRPQISKESSMER	1006-1020		
29 QCSTIGQMIPNOSIN 141-155 220 QPAOPLSSOPNLR 1006-1110 36 GVMPNOSINSKYSKS 146-160 221 PNSGLONPLFCRQQV 1131-1145 36 SEVSCTCKVSPSGOP 176-190 227 PNSGLONPLFCRQQV 1131-1145 37 TQKVSPSGOP(DNTT 181-195 228 PNSGLONPLFCRQQV 1131-1145 45 ELPSSNTGAWRVSTM 221-235 231 LSQLORQAS 1161-1175 53 AYGSNYSGDCSGPN 271-285 234 LLAQQQSQSNPSNP 1161-1175 64 KGGGWESGAANSQS 316-330 236 GREPSQRLRKTVTDS 127-61-290 67 TSWGSGNANSGGSR 331-345 256 GREPSQRLRKTVTDS 127-125 77 GKTFTNGWKSTEEDD 381-395 264 SPFVPDFWNSTTD 121-125 78 NGWKSTEEDDQGAST 386-400 270 SPSWNBPFER 136-1330 79 WDTETSPRCEWKSTS 316-430 271 SPSWNBPFER 136-130 79 WDTETSPRGERKTDN 481-4455 270	22	STLNSASNHGAWPVL	106-120				217	MFGVGNTAAQPRGMQ	1081-1095		
30 GQMPNNQSINSKYG 146-160 221 PLSSSPPNLRAQVPP 1101-115 36 SEVSGRVSTSRSQCP 176-190 221 PLSSSPPNLRAQVPP 1101-115 37 TQKVSPSOQPQNITT 181-195 228 INPLGPQVVAILAQVPP 1101-115 36 GYGNSGRVSCRSQP 271-285 233 SQUQRLAQQQRAQS 1161-117 36 QVNTNKGGVVESCA 311-325 233 SQUQRLAQQQRAQS 1166-1180 36 QVNTNKGGVVESCA 311-325 233 SQUQRLAQQQRAQS 1161-1175 36 MYGNSCNCANSQGS 313-345 235 GRPLSVQQOMMQOSR 1161-1175 37 TSWGSONCANSQGS 313-345 256 REPSVPDYDNMN 1311-1325 38 ROWSSTEED 313-345 256 RPLSVQQOMMQOSR 1271-1185 38 ROGONPERD 336-530 270 SPVPVDYDNNN 1311-1325 270 39 DPKVLSNSQWCOTPI 461-475 270 SPVNPORNN 1316-1325 270 39 DPKVLSNSQWCONDYN 461-475 270	29	QCSTIGQMPNNQSIN	141-155				220	QPPAQPLSSSQPNLR	1096-1110		
36 SEVSGTQKVSFSGQP 176-190 227 PNRGGLNFLGRQQV 1131-1145 37 TQKVSFSGQPNIT 181-195 231 LSQUAVAMINQ 1136-1150 45 GTTMCAGVGSNYSGDK 266-280 231 LSQUAVAMINQ 1136-1150 55 AYGSNYSGDKCSGPN 271-285 231 LSQUAVAMINQ 1161-1175 64 KGGOVMESGANSOSS 316-330 234 LLAQOQRAQS REGVERSGRP 1166-1180 65 MESGANSOSTSWGS 213.35 236 CRASOSSWFSGRRP 1166-1180 66 MESGANSOSTSWGS 313-35 236 CRASOSSWFSGRRP 1166-1180 67 TSWCSOGANSOSGR 313-35 256 KEPOSILRKWTTVDS 1276-1290 68 GNGANSOSGRRGWQT 336-350 266 PRLEESPT VPDFNAN 1311-1325 76 KTITNOWKSTEEED 381-395 270 SPVVDFWDSTSTS 1316-1330 78 ROGKSKNDQMTKH 414-445 271 SSVNWPPEFR 1346-1360 79 DPRVLSNSQWODPKKK 464-475 270	30	GQMPNNQSINSKVSG	146-160				221	PLSSSQPNLRAQVPP	1101-1115		
37 TQKVSFSQQPQNITT 181-195 228 LNPLFCPQQVAILNQ 113-1150 228 54 GTTWGAYGSNYSGDK 266-280 233 SQLQRLLAQQQRAQS 115-1150 223 55 AYGGSNYSGDK CSPN 271-285 233 SQLQRLLAQQQRAQS 1161-1175 63 QVNTNKGGWESGA 311-325 235 236 GRAQSQRSVFSCNPP 1171-1185 64 KGGOWESGA ANSOS 331-345 235 GRAQSQRSVFSCNPP 1171-1185 65 WESGAANSQCSTSWGG 321-335 236 GRAQSQRSVFSCNPP 1171-1185 66 GNGANSGGSRKWGT 336-350 237 RLIRW TIVDSISWNT 121-1205 236 77 GKTTTNGWKSTEEED 381-395 237 RLIRW TIVDSISWNT 121-1205 244 88 ESQSRDRRKIDUTL 434-445 271 SSWWPPEER 1361-1350 272 92 NRTDLDPRVLSNSGW 456-470 271 SSWWPPEERFGEPW 1351-1365 272 272 PFERRGEPW GTSNIL 136-1370 272 272 PFERRGEPW GTSNIL 136-1370 272 272 PFERRGEPW GTSNIL 136-1370	36	SEVSGTQKVSFSGQP	176-190				227	PNNGGLNPLFGPQQV	1131-1145		
45 ELPSNTGAVENYSTM 221-235 54 GTTWGAYGSNYSORDK 26-280 30 55 AYGSNYSORDKCSQPN 271-285 64 KOGGVWESGA 311-325 64 KOGGVWESGA 311-325 65 WESGANSQSR WSGS 316-330 67 TSWGSOGANSGOSR 313-345 68 GNGANSGOSRROWT 336-350 77 GKTTTKGWKSTEEED 381-395 78 NGWKSTEEEDQGSAT 386-400 78 NGWKSTEEEDQGSAT 386-400 79 WDTENROGEVKENT 431-445 88 ESQSKURKKIDQHTIL 431-445 80 DPRVLSNSGWQOTPI 461-475 93 DPRVLSNSGWOOPKP 521-535 105 GNDTSSVSGWGDPKP 521-535 117 KNGQGWGDGXSSQG 581-595 118 WCDQGKSQQGWSSA 566-600 118 WCDQGKSQQGWSSA 566-600 118 WCDQGKSQQGWSSA 566-600 134 SQGWGPPKSNSDLG 661-675 135 DPPKSNQSLGWGDSS 671-689 136	37	TQKVSFSGQPQNITT	181-195				228	LNPLFGPQQVAMLNQ	1136-1150		
54 GTTWGAYQSNYSODK 266-280 233 SQLQRLLAQOQRAQS 1161-1175 63 QVNTNKGGGVWESGA 311-325 234 LLAQOQRAQSCRNP 1161-1175 64 KGGWESGANSQS 311-325 235 QQRAQSQRNP 1161-1175 65 WESGANSQSTWGS 321-335 236 GRPSQDQCMAQORXP 1161-1175 66 GNGANSQSTWGS 321-335 236 GRPSQDQCMAQORXP 1161-1175 67 TSWGSGNGANSQS 311-345 236 GRPSQDQCMAQORXP 1171-1185 236 68 GNGANSGSRNGWGT 336-350 257 RLRKWTTVDS 1276-1290 257 77 GKTFTNGWKSTEEED 381-395 264 SPKVPDENNSSTEP 1316-130 271 87 EKGGGESQRDRRKI 431-445 271 SSVNWPPERPGEPW 1361-1375 272 PFEVPDENNSSTEP 1361-1375 276 DPYVTDENNSSG 1391-1405 276 <td< td=""><td>45</td><td>ELPSSNTGAWRVSTM</td><td>221-235</td><td></td><td></td><td></td><td>231</td><td>LSQLNQLSQISQLQR</td><td>1151-1165</td><td></td><td></td></td<>	45	ELPSSNTGAWRVSTM	221-235				231	LSQLNQLSQISQLQR	1151-1165		
55 AYGSNYSGDKCSGPN 271-285 234 LLAQQQRAQSQRSYP 1166-1180 64 KGGGWWESGAANSQS 316-330 235 QRPLSVQQDNMQQSR 1191-1205 65 WESGAANSQTSWGS 321-335 235 QRPQSVSPSORNP 1171-1185 66 GNGANSGGSRR 331-345 236 GRPLSVQQQNMQQSR 1191-1205 67 TSWGSONGANSGGSR 331-345 256 KEPQSRLRKWTTVDS 1281-1295 68 GNGANSGGSRRWGT 336-530 256 RELESPFVPTDENN 1311-1325 78 NGWKSTEEED 381-495 266 SPFVDPMNSSTSP 136-130 270 92 NRTDLPRVLSNSGW 456-470 271 SSVNWPPETR 1346-130 271 SSVNWPPETR 1346-130 272 PPERVGEPWKGYPN 135-137 273 PGEWKGYPNIDET 136-1410 273 PGEWGYNNISLS 1376-137 273 POEWKGYPNIDET 136-1410 273 PFERCEPWKGYPNIDET 136-1410 274 PFERVERGEWKGYPNIDET 136-1410 275 276 NYTREVDHLRDNSGSSSSL 1396-1410 275 276 NYTREVDHLRDNSGSSSSL 136-1410 276 NYT	54	GTTWGAYGSNYSGDK	266-280				233	SQLQRLLAQQQRAQS	1161-1175		
63 QVNTKGGGVWESGA 311-325 64 KGGVWESGANSQS 316-330 65 WESGANSQSTSWGS 321-335 66 GRGANSGGSRGWGT 336-350 67 TSWGSGNGANSGGSR 331-345 68 GNGANSGGSRGWGT 336-350 77 GKTTFNOWKSTEEED 381-395 78 NGWKSTEEEDQGSAT 386-400 87 EKGTGESQSRDRRKI 431-445 88 ESQSRDRRKDUPHTI 436-430 92 NRTDLDPRVISNSGW 456-470 92 NRTDLDRVISNSGW 456-470 93 DPRVISNSGWGDPHT 436-435 94 MOTETSPRGERKTDN 481-495 105 GNDTSSVSGWGDPKP 525-540 106 SVSGWGDPKPALRWG 526-540 118 WGDQKSSQGWSNSA 586-690 133 SKPTPSQUWODQPKS 661-675 134 SQGWGDPKSNQSLG 666-680 135 DPPKSNQSLGWGDS 671-685 136 NQSLGWGDSSKPYSS 676-690 137 WGDSSKPVSSPBYNNK 661-675 138	55	AYGSNYSGDKCSGPN	271-285				234	LLAQQQRAQSQRSVP	1166-1180		
64 KGGGWESGAANSQS 316-330 239 GRPLSVQQQMMQQSR 1191-1205 200 65 WESGAANSQSTSWGS 321-335 200 257 RLEKWTTVDS 276-1290 201 67 GKTFINGWKSTEEED 381-345 261 FRLESPFVPTDFMN 131-1325 201 78 NGWKSTEEED 381-345 264 SPFVPTDFMNSTSP 1316-1330 201 78 NGWKSTEEED 381-430 201 SPNCSSVNWPEFER 1346-1360 201 79 WDTLDPRVLSNSGW 456-470 271 SPNUMPEFER 1346-1360 201 90 WDTLDPRVLSNSGW 456-470 272 PEFRPGEPW KGYPNIDET 136-1370 201 97 WDTETSPRGERKTDN 481-495 201 276 DPYVTPGSVSINKLSI 1376-1390 201 105 GNDSKSVGSQG 526-540 201 276 DPYVTPGSVSINKLSI 136-1450 201 201 21-315 201 201 201 201 201 201 201 201 20	63	QVNTNKGGGVWESGA	311-325				235	QRAQSQRSVPSGNRP	1171-1185		
65 WESGANSQSTSWGS 321-335 256 KEPQSRLRKWTYDS 1276-1290 281-1295 68 GNGANSGGSRRGWGT 336-350 263 FRLESPFVPJDFMN 131-1325 263 FRLESPFVPJDFMN 131-1325 263 FRLESPFVPJDFMN 131-1325 263 FRLESPFVPJDFMN 131-1325 263 FRLESPFVPJDFMNSTSP 136-1300 264 SPFVPYDDFMNSTSP 136-1300 264 SPFVPYDFMNSTSP 136-1300 263 FRLESPFVPGEFW 135-1370 270 SPGEPWKGPNNDSPFT 136-1370 272 PEFRPGEFW 135-1370 270 SPGEPWGGVPNDSPFT 136-1370 273 PGEPWGGVPNDSPG 270 NTREVDHLRDRNSG 1376-1390 270 SPGEPWGGVPNDSPG 270 NTREVDHLRDRNSG 376-1390 270 NTREVDHLRDRNSG 376-1390 270 NTREVDHLRDRNSGSSSSL 136-1410 280 280 VDHLRDRNSGSSSSSL 136-1410 280 281 281 281 281 281 281 281 281 <td< td=""><td>64</td><td>KGGGVWESGAANSQS</td><td>316-330</td><td></td><td></td><td></td><td>239</td><td>GRPLSVQQQMMQQSR</td><td>1191-1205</td><td></td><td></td></td<>	64	KGGGVWESGAANSQS	316-330				239	GRPLSVQQQMMQQSR	1191-1205		
67 TSWGSUNGANSGOSR 331-345 257 RLRKWTVDSISVNT 1281-1295 263 68 GNGANSGOSROWGT 336-350 263 FRLESPFVPJOFMN 1311-1325 263 77 GKTFTNGWKSTEEED 381-395 264 SPVVPJOFMNSTSP 1316-1330 264 78 NGWKSTEEEDQGSAT 386-400 270 SPNGSSSVNWPPEFR 1346-1360 271 92 NRTDLDPPVLSNSGW 456-470 271 SSVNWPPEFR 1361-1375 272 93 DPRVLSNSGWGQTPI 461-475 273 PGEPWGCYPNUDPT 1361-1375 276 97 WDTETSPRGERKTDN 481-495 276 DPVVTPGSVINNLSI 1376-1390 276 106 SVSGWODPKPALRWG 526-540 278 PGEWGCYPNUDPT 1361-1375 278 118 WGDQQKSSQG 681-505 288 AQSTSARNSDSKTIW 1431-1445 292 297 NTSLAHELWKVPLP 1436-1470 292 292 293 AHELWKVPLPKNIT 1461-1475 293 294 KVPLPKNITN 1461-1475 293 294 KVPLPKNITN 1466-1480 297 297 <	65	WESGAANSQSTSWGS	321-335				256	KEPQSRLRKWTTVDS	1276-1290	11200000000	
68 GNGANSGGSRGWGT 336-350 263 FRLESPFVPYDFMN 1311-1325 78 NGWKSTEEEDQGSAT 386-400 264 SPFVPYDFMNSSTSP 136-1330 87 EKGTGESQSRDRRKI 431-445 264 SPFVPYDFMNSSTSP 1316-1330 88 ESQSKDRKKIDQHTL 436-450 270 SPNGSSSVNWPPEFR 1346-1360 271 92 NRTDLDPRVLSNSGW 456-470 272 PPEFRRGEPW 1351-1355 272 93 DPRVLSNSGWOGTPH 461-475 276 DPYVTROSVINLSI 1376-1390 276 96 SVSGWGDPKPALRWG 521-535 280 VDHLRDRNSGSSSL 1396-1410 280 280 VDHLRDRNSG 1391-1405 280 287 PLSSTAQSTARNSDSKLTW 1431-1445 286 287 PLSTAQSTARNSDSKLTW 1436-1440 287 280 VDHLRDRNSGSSSSL 1396-1410 292 284 AQSTSARNSDSKLTW 1436-1440 293 AHELWKVPLPKNT 1461-1475 293 AHELWKVPLPKNT 1461-1475 293 AHELWKVPLPKNT 1461-1475 293 294 KVPLPFKNTTPGSSWGC 296 QKVPLPSKNT 1461-1475	67	TSWGSGNGANSGGSR	331-345				257	RLRKWTTVDSISVNT	1281-1295		
77 GKTFTNGWKSTEEED 381-395 264 SPFVPYDFMNSSTSP 1316-1330 28 87 EKGTGESQSRDRRKI 431-445 270 SPNGSSSVNWPPER 1346-1360 270 92 NRTDLDPRVLSNSGW 456-470 271 SSVNWPPERPGEPWK0YPN 1351-1365 28 93 DRVLSNSGWGQTPI 461-475 273 PGEPWK0YPNIDPET 1361-1375 29 97 WDTETSPRGERKTDN 481-495 279 NTVREVDHLRDRNSG 1391-1405 270 NTVREVDHLRDRNSG 1391-1405 270 SVNWPPERNQE 271 SVNWPERNQE 280 VDHLRDRNSG 1391-1405 270 270 NTVREVDHLRDRNSG 1391-1405 270 NTVREVDHLRDRNSG 1391-1405 270 270 NTVREVDHLRDRNSG <	68	GNGANSGGSRRGWGT	336-350				263	FRLEESPFVPYDFMN	1311-1325		
78 NGWKSTEEEDQGSAT 386-400 270 SPNGSSSVNWPPEFR 1346-1360 286 87 EKGTGESQSRDRRKI 431-445 271 SSVNWPPEFRGEPW 1351-1365 272 92 NRTDLDPRVLSNSGW 456-470 273 PGEPWKGYPN 1356-1370 273 93 DPRVLSNSQWGOTPI 461-475 276 DPYTFROSVINLIS 1376-1390 279 97 WDTETSPRGERKTDN 481-495 270 NTVREVDHLRDRNSG 1391-1405 279 NTVREVDHLRDRNSG 1391-1405 279 NTVREVDHLRDRNSG 1391-1405 279 NTVREVDHLRDRNSG 1391-1405 279 136 279 NTVREVDHLRDRNSG 1391-1405 270 288 AQSTSARNSDRLTW 1436-1450 287 1431-1445 287 288 AQSTSARNSDRLTW 1436-1450 292 1715LAHELWKVPLPKNIT 1461-1475 293 294 KVPLPFNNTAPSRP 1466-1480 297 293 294 KVPLPFNNTAPSRP 1466-1480 297 298 GQKPLSTWDNSPLR 1486-1500 300 301 GGGWGNSDARYTPG 1510-153 304 303 RYTPGSWGGSSGR 1511-1525 304 <td>77</td> <td>GKTFTNGWKSTEEED</td> <td>381-395</td> <td></td> <td></td> <td></td> <td>264</td> <td>SPFVPYDFMNSSTSP</td> <td>1316-1330</td> <td> </td> <td></td>	77	GKTFTNGWKSTEEED	381-395				264	SPFVPYDFMNSSTSP	1316-1330	 	
87 EKGTGESQSRDRRKI 431-445 271 SSVNWPPERPOEPW 1351-1365 88 ESQSRDRRKIDQHTL 436-470 272 PPERPGEPWKGYPN 1356-1370 93 DPRVLSNSGW 456-470 272 PPERPGEPWKGYPN 1351-1365 97 WDTETSPRGERKTDN 481-495 276 DPYVTPGSVINNLSI 1376-1390 279 105 GNDTSSVSGWGDPKP 521-535 276 DPYVTPGSVINNLSI 1376-1390 279 106 SVSGWGDPKPALRWG 526-540 278 NTVREVDHLRDRNSG SSSL 1396-1410 280 117 KNKQGWGDQGKSSQG 581-555 286 405 287 PLSSTAQSTSARNSD 1431-1445 292 118 WGDQGKSSQGWSVSA 586-600 292 TNTSLAHELWKVPLP 1436-1470 293 AHELWKVPLPNNIT 1461-1475 293 AHELWKVPLPNNIT 1461-1475 293 294 KVPLPPNNIT 1461-1475 294 297 PPGLTGQKPLSTWD 1481-1495 297 297 PPGLTGQKPLSTWD 1481-1495 297 297 PPGLTGQKPLSTWD 1481-1495 298 GQKPPLSTWDNSLR 1460-1475 298 <	78	NGWKSTEEEDQGSAT	386-400				270	SPNGSSSVNWPPEFR	1346-1360		
88 ESQSRDRRKIDQHTL 436-450 272 PPETRPGEPWKGYPN 1356-1370 92 NRTDLDPRVLSNSGW 456-470 273 PGEPWKGYPNIDPET 136-1375 93 DPRVLSNSGWOQTPI 461-475 276 DPYVTGSVINLSI 1376-1390 97 WDTETSPRGERKTDN 481-495 279 NTVREVDHLRDRNSG 1391-1405 106 SVSGWGDPKPALRWG 526-540 280 VDHLRDRNSGSSSL 1396-1410 117 KNKQGWGDQKSSQG 581-595 288 AQSTSARNSD 1431-1445 118 WGDGQKSSQGWSYSA 586-600 292 TNTSLAHELWKVPLP 1436-1470 133 SKPTPSQGWGDPKS 661-675 293 AHELWKYPLPNIT 1461-1475 134 SQGWGDPKSNQSLG 661-685 294 KVPLPPKNIT APSRP 1466-1480 135 DPPKSNQSLGWGDSS 676-690 298 GQKPPLSTWDNPLR 1486-1500 136 MQSLGWGDQALSKSG 681-695 301 IGGGWGNSDAR 1496-1510 302 137 WGDSKPVSSRWIKEDD 736-750	87	EKGTGESQSRDRRKI	431-445				271	SSVNWPPEFRPGEPW	1351-1365		
92 NRTDLDPRVLSNSGW 456-470 273 PGEPWKGYPNIDET 1361-1375 288 97 WDTETSPRGERKTDN 481-495 276 DPYVTPOSVINLSI 1376-1390 276 105 GNDTSSVSGWGDPKP 521-535 276 DPYVTPOSVINLSI 1376-1390 276 106 SVSGWGDPKP 521-535 288 AQSTSARNSDSKL 1390-1405 280 118 WGDGQKSSQGWSNSA 586-600 287 PLSSTAQSTSARNSD 1431-1445 288 133 SKPTPSQGWGDPPKSN 661-675 292 TNTSLAHELWKVPLP 1456-1470 292 133 SKPTPSQGWGDPSKS 661-675 293 AHELWKVPLPKNIT 1461-1475 294 134 SQGWGDPPKSNQSLG 666-680 294 KVPLPFKNITAPSRP 1466-1480 297 PCLTGQKPPLSTWDNSPLR 1486-1500 300 187 301 IGGGWGNSDAR 1496-1510 301 303 171 304 SSWGESSGRITSW 150-1515 303 303 1511-1525 303 313 LPHGNALVRYSKEE 561-	88	ESQSRDRRKIDQHTL	436-450				272	PPEFRPGEPWKGYPN	1356-1370	 	
93 DPRVLSNSGWGQPIPI 461-475 276 DPYVTPGSVINNLSI 1376-1390 279 97 WDTETSPRGERKTDN 481-495 279 NTVREVDHLRDRNSG 1391-1405 279 106 SVSGWGDPKPL 521-535 280 VDHLRDRNSG 1391-1405 281 106 SVSGWGDPKPALRWG 526-540 287 PLSSTAQSTSARNSD 1431-1445 282 117 KNKQGWGDQKSSQG 581-595 288 AQSTSARNSDSKLTW 1436-1470 283 133 SKPTPSQGWGDPKS 661-675 293 AHELWKVPLPKNIT 1461-1475 293 135 DPPKSNQSLG 666-680 294 KVPLPFKNITAPSRP 1466-1480 294 136 NQSLGWGDSKPVSS 676-690 293 AHELWKVPLPKNIT 1481-1495 294 137 WGDSSKPVSSPDWNK 681-695 300 NSPLRIGGGWGNSDA 1496-1510 301 138 KPVSSPDWNKQODIV 691-705 302 GNSDARYTPG 1510-1515 304 304 SWGESSSGR 1511-1525 304 304 SWGESSSGR 1511-1525 304 304 SWGESSSGR	92	NRTDLDPRVLSNSGW	456-470				273	PGEPWKGYPNIDPET	1361-1375		
97 WDTETSPRGERKTDN 481-495 105 GNDTSSVSGWGDPKP 521-535 106 SVSGWGDPKPALRWG 526-540 117 KNKQGWGDQKSSQG 581-595 118 WGDGQKSSQGWSVSA 586-600 113 SKPTPSQWGDPKS 661-675 134 SQCWGDPKSNQSLG 666-680 135 DPPKSNQSLG 666-690 136 NQSLGWGDSSK PVSS 676-690 137 WGDSSKPVSSPDWNK 681-695 138 KPVSSPDWNKQQDIV 686-700 139 PDWNKQQDIVCSWGI 691-705 144 EPSPESIRRKMEIDD 736-750 150 MEIDDGTSAWGDSKS 746-760 154 VNMWNKNVPNGNSRS 766-780 177 PGNRPTGWEEEDVE 881-895 189 NKQEEAWINPFVKQF 931-945 189 NKQEEAWINPFVKQF 941-955 190 AWINPFVKQFSNISF 946-960	93	DPRVLSNSGWGQTPI	461-475				276	DPYVTPGSVINNLSI	1376-1390		
105 GNDTSSVSGWGDPKP 521-535 280 VDHLRDRNSGSSSL 1396-1410 106 SVSGWGDPKPALRWG 526-540 287 PLSSTAQSTSARNSD 1431-1445 117 KNKQGWGDPKS 661-675 288 AQSTSARNSDSKLTW 1436-1450 292 118 WGDGQKSSQG 581-595 288 AQSTSARNSDSKLTW 1436-1470 293 133 SKPTPSQGWGDPPKS 661-675 293 AHELWKVPLPPKNIT 1461-1475 294 134 SQGWGDPKSNQSLG 676-690 294 KVPLPPKNITAPSRP 1466-1480 297 137 WGDSSKPVSSPDWNK 681-695 298 GQKPPLSTWDNSPLR 1481-1495 298 138 KPVSSPDWNKQQDIV 686-700 301 IGGGWGNSDARYTPG 1501-1515 302 148 EPSPESIRRKMEIDD 736-750 303 RYTPGSSWGE 1506-1520 303 303 RYTPGSSWGE 150-1530 304 SSWGSSQRIGKSS 313 LPHGNALVRYSSKEE 151-1525 304 304 SSWGESSGRITMUL 1516-1530 313 313 LPHGNALVRYSSKEE 314 ALVRYSSKEEVVKAQ 1566-1580 </td <td>97</td> <td>WDTETSPRGERKTDN</td> <td>481-495</td> <td></td> <td></td> <td></td> <td>279</td> <td>NTVREVDHLRDRNSG</td> <td>1391-1405</td> <td></td> <td></td>	97	WDTETSPRGERKTDN	481-495				279	NTVREVDHLRDRNSG	1391-1405		
106 SVSGWGDPKPALRWG 526-540 287 PLSSTAQSTSARNSD 1431-1445 117 KNKQGWGDQKSSQG 581-595 288 AQSTSARNSDSKLTW 1436-1450 133 SKPTPSQGWGDPPKS 661-675 292 TNTSLAHELWKVPLP 1456-1470 288 134 SQGWGDPPKSNQSLG 666-680 292 TNTSLAHELWKVPLPRNIT 1461-1475 293 135 DPPKSNQSLGWGDSS 671-685 294 KVPLPKNIT APSRP 1466-1480 294 136 NQSLGWGDSSKPVSS 676-690 298 GQKPPLSTWDNSPLR 1486-1500 298 GQKPPLSTWDNSPLR 1486-1500 298 GQKPPLSTWDNSPLR 1486-1510 300 NSPLRIGGGWGNSDA 1496-1510 301 10GGWGNSDARYTPG 1501-1515 302 303 RYTPGSSWGE 1506-1520 303 304 SSWGESSSGR 1511-1525 304 SSWGESSQRWGE 304 SSWGESQRWGE 304 SSWGESQRWGE 304 334 <td>105</td> <td>GNDTSSVSGWGDPKP</td> <td>521-535</td> <td></td> <td></td> <td></td> <td>280</td> <td>VDHLRDRNSGSSSSL</td> <td>1396-1410</td> <td></td> <td></td>	105	GNDTSSVSGWGDPKP	521-535				280	VDHLRDRNSGSSSSL	1396-1410		
117 KNKQGWGDGQKSSQG 581-595 288 AQSTSARNSDSKLTW 1436-1450 292 118 WGDQKSSQGWSVSA 586-600 292 TNTSLAHELWKVPLP 1456-1470 293 133 SKPTPSQGWGDPKSNQSLG 666-680 293 AHELWKVPLPPKNIT 1461-1475 293 134 SQGWGDPKSNQSLG 666-680 293 AHELWKVPLPPKNIT 1461-1480 293 135 DPPKSNQSLGWGDSS 671-685 293 AHELWKVPLPPKNIT 1481-1480 293 136 NQSLGWGDSSKPVSS 676-690 294 KVPLPPKNITAPSRP 1486-1500 293 137 WGDSSKPVSSPDWNK 681-095 298 GQKPPLSTWDD 1486-1510 293 138 KPVSSPDWNKQQDIV 686-700 300 NSPLRIGGGWGNSDA 1496-1510 204 139 PDWNKQQDIVGSWGI 691-705 302 GNSDARYTPG 1501-1515 302 154 VNMWNKNVPRGNSRS 766-780 304 SSWGESSSGR 1511-1525 304 171 WGSSSVGPQALSKSG 851-865 314 ALVRYSSKEE 1561-1575 314 315 </td <td>106</td> <td>SVSGWGDPKPALRWG</td> <td>526-540</td> <td></td> <td></td> <td></td> <td>287</td> <td>PLSSTAQSTSARNSD</td> <td>1431-1445</td> <td></td> <td></td>	106	SVSGWGDPKPALRWG	526-540				287	PLSSTAQSTSARNSD	1431-1445		
118 WGDQGKSSQGWSVSA 586-600 292 TNTSLAHELWKVPLP 1456-1470 201 133 SKPTPSQGWGDPKS 661-675 203 AHELWKVPLPFKNIT 1461-1475 201 134 SQGWGDPKSNQSLG 666-680 201 203 AHELWKVPLPFKNIT 1461-1475 201 135 DPPKSNQSLGWGDSS 671-685 201 203 AHELWKVPLPFKNIT 1461-1475 201 136 NQSLGWGDSSKPVSS 676-690 201 297 PPGLTGQKPPLSTWD 1486-1500 201 138 KPVSSPDWNKQQDIV 686-700 201 1GGGWGNSDA 1496-1510 203 201 1GGGWGNSDA 1496-1510 203 201 1GGGWGNSDA 1496-1510 201 203 301 IGGGWGNSDA 1496-1510 203 203 RYTPGSSWGE 150-1510 203 203 RYTPGSSWGE 150-1510 204 303 RYTPGSSWGE 150-1520 204 304 SSWGESSGRITINWL 151-1525 204 304 SSWGESSGRITINWL 1516-1530 204 313 LPHGNALVRYSSKEE 1561-1575 204 323 QSLTPSPGWQSLGSS <td>117</td> <td>KNKQGWGDGQKSSQG</td> <td>581-595</td> <td></td> <td></td> <td></td> <td>288</td> <td>AQSTSARNSDSKLTW</td> <td>1436-1450</td> <td></td> <td></td>	117	KNKQGWGDGQKSSQG	581-595				288	AQSTSARNSDSKLTW	1436-1450		
133 SKPTPSQGWGDPPKS 661-675 134 SQGWGDPPKSNQSLG 666-680 135 DPPKSNQSLGWGDSS 671-685 136 NQSLGWGDSSKPVSS 676-690 137 WGDSSKPVSSPDWNK 681-695 138 KPVSSPDWNKQQDIV 686-700 139 PDWNKQQDIVGSWGI 691-705 148 EPSPESIRRKMEIDD 736-750 150 MEIDDGTSAWGDPSK 746-760 154 VNMWNKNVPNGNSRS 766-780 177 PGNRPTGWEEEEDVE 881-895 187 RRERGMMKGGNKQEE 921-935 189 NKQEEAWINFYKQF 941-955 190 AWINPFVKQFSNISF 946-960 190 AWINPFVKQFSNISF 946-960	118	WGDGQKSSQGWSVSA	586-600				292	TNTSLAHELWKVPLP	1456-1470		
134 SQGWGDPPKSNQSLG 666-680 294 KVPLPPKNITAPSRP 1466-1480 297 135 DPPKSNQSLGWGDSS 671-685 298 GQKPPLSTWD 1481-1495 298 136 NQSLGWGDSSKPVSS 676-690 298 GQKPPLSTWDNSPLR 1486-1500 298 GQKPPLSTWDNSPLR 1486-1510 298 GQKPPLSTWDNSPLR 1486-1510 298 GQKPPLSTWDNSPLR 1486-1510 298 GQKPLSTWDNSPLR 1486-1510 298 301 IGGGWGNSDAR 179 174 746-760 301 IGGGWGNSDARVTPG 1516-1520 304 SSWGESSSGR 1511-1525 304 SSWGESSSGR 313 LPHGNALVRYSSKEE 1561-1575 314 ALVRYSSKEE 1561-1575 314 314 ALVRYSSKEEVVKAQ 1566-	133	SKPTPSQGWGDPPKS	661-675				293	AHELWKVPLPPKNIT	1461-1475		
135 DPPKSNQSLGWGDSS 671-685 297 PPGLTGQKPPLSTWD 1481-1495 298 136 NQSLGWGDSSKPVSS 676-690 298 GQKPPLSTWDNSPLR 1486-1500 298 137 WGDSSKPVSSPDWNK 681-695 200 NSPLRIGGGWGNSDA 1496-1510 201 138 KPVSSPDWNKQQDIV 686-700 201 IGGGWGNSDARYTPG 1501-1515 201 148 EPSPESIRRKMEIDD 736-750 203 RYTPGSSWGESSSGR 1511-1525 203 150 MEIDDGTSAWGDPSK 746-760 201 304 SSWGESSSGR 1511-1525 201 171 WGSSSVGPQALSKSG 851-865 201 314 ALVRYSSKEE 1561-1575 201 177 PGNRPTGWEEEEDVE 881-895 213 LPHGNALVRYSSKEE 1511-1625 223 224 SPGWQSLGSS 1611-1625 224 236 335 YSSLWGPSSDPR 236 233 337 SSDPRGISSPP INAFLSVD 1686-1700 233 337 SSDPRGISSPSPINA 1681-1695 233 338 GISSPSPINAFLSVDHLGGGG 1691-1705 336 336 337	134	SQGWGDPPKSNQSLG	666-680				294	KVPLPPKNITAPSRP	1466-1480		
136 NQSLGWGDSSKPVSS 676-690 298 GQKPPLSTWDNSPLR 1486-1500 1486-1500 137 WGDSSKPVSSPDWNK 681-695 300 NSPLRIGGGWGNSDA 1496-1510 1496-1510 138 KPVSSPDWNKQQDIVGSWGI 691-705 301 IGGGWGNSDA 1496-1510 301 302 GNSDARYTPGSWGE 1501-1515 1496-1510 1496-1510 303 RYTPGSSWGE 1501-1515 303 303 RYTPGSSWGE 1501-15130 140 1511-1525 304 SSWGESSGRITINWL 1516-1530 151 <	135	DPPKSNQSLGWGDSS	671-685				297	PPGLTGQKPPLSTWD	1481-1495		
137 WGDSSKPVSSPDWNK 681-695 138 KPVSSPDWNKQQDIV 686-700 139 PDWNKQQDIVGSWGI 691-705 148 EPSPESIRRKMEIDD 736-750 150 MEIDDGTSAWGDPSK 746-760 154 VNMWNKNVPNGNSRS 766-780 171 WGSSSVCPQALSKSG 851-865 177 PGNRPTGWEEEEDVE 881-895 187 RRERGMMKGGNKQEE 921-935 189 NKQEEAWINFVKQF 941-955 190 AWINPFVKQFSNISF 946-960 333 GISSPSPINAFLSVDH 1681-1695 334 GISSPSPINAFLSVDHLGGGG 168-1700 335 SISDRGSGSS 1691-1705 340 AFLSVDHLGGGGESM 1691-1705	136	NQSLGWGDSSKPVSS	676-690				298	GQKPPLSTWDNSPLR	1486-1500		
138 KPVSSPDWNKQQDIV 686-700 301 IGGGWGNSDARYTPG 1501-1515 139 PDWNKQQDIVGSWGI 691-705 302 GNSDARYTPGSSWGE 1506-1520 148 EPSPESIRRKMEIDD 736-750 303 RYTPGSSWGE 1506-1520 303 150 MEIDDGTSAWGDPSK 746-760 303 RYTPGSSWGE 1511-1525 304 154 VNMWNKNVPNGNSRS 766-780 313 LPHGNALVRYSSKEE 1561-1575 313 171 WGSSSVGPQALSKSG 851-865 314 ALVRYSSKEEVVKAQ 1566-1580 314 185 SSKGLSGKKRRERG 921-935 323 QSLTPSPGWQSLGSS 1611-1625 324 187 RRERGMMKGGNKQEE 931-945 335 YSTSLWGPPSSDPR 1676-1690 335 336 WGPPSSSDPRGISSP 1676-1690 337 SSDPRGISSPSPINA 1681-1695 338 GISSPSPINAFLSVD 1686-1700 339 SPINAFLSVDHLGGGG 1691-1705 340 AFLSVDHLGGGGGESM 1691-1705 340 340 AFLSVDHLGGGGGESM 1691-1705 340 340 AFLSVDHLGGGGGESM 1691-1705 340 340	137	WGDSSKPVSSPDWNK	681-695				300	NSPLRIGGGWGNSDA	1496-1510		
139 PDWNKQQDIVGSWGI 691-705 302 GNSDARYTPGSSWGE 1506-1520 148 EPSPESIRRKMEIDD 736-750 303 RYTPGSSWGESSGR 1511-1525 150 MEIDDGTSAWGDPSK 746-760 304 SSWGESSSGR 1511-1525 154 VNMWNKNVPNGNSRS 766-780 314 ALVRYSSKEE 1561-1575 314 171 WGSSSVGPQALSKSG 851-865 314 ALVRYSSKEEVVKAQ 1566-1580 314 177 PGNRPTGWEEEDDVE 881-895 314 ALVRYSSKEEVVKAQ 1661-1630 323 185 SSKGLSGKKRRERG 921-935 324 SPGWQSLGSSS RILG 1616-1630 335 YSTSLWGPPSSDPR 1677-1685 189 NKQEEAWINFFVKQF 941-955 336 WGPPSSSDPR 1671-1685 336 337 SSDPRGISSPSPINA 1681-1690 337 SSDPRGISSPSPINA 1681-1695 338 GISSPSPINAFLSVD 1686-1700 339 SPINAFLSVDHLGGGG 1691-1705 340 AFLSVDHLGGGGGESM 1691-1705 340 340 AFLSVDHLGGGGGESM 1691-1705 340 340 AFLSVDHLGGGGGESM 1691-1705 <	138	KPVSSPDWNKQQDIV	686-700				301	IGGGWGNSDARYTPG	1501-1515		
148 EPSPESIRRKMEIDD 736-750 150 MEIDDGTSAWGDPSK 746-760 154 VNMWNKNVPGNSRS 766-780 171 WGSSSVGPQALSKSG 851-865 177 PGNRPTGWEEEEDVE 881-895 185 SSKGLSGKKRRRERG 921-935 187 RRERGMMKGGNKQEE 931-945 190 AWINPFVKQFSNISF 946-960 303 RYPPGSSWGESSSGR 1511-1525 304 SSWGESSSGRITNWL 1516-1530 313 LPHGNALVRYSSKEE 1561-1575 323 QSLTPSPGWQSLGSSS 1611-1625 324 SPGWQSLGSSQSRLG 1616-1630 335 YSTSLWGPPSSSDPR 1671-1685 336 WGPPSSSDPRGISSP 1676-1690 337 SSDPRGISSPSPINA 168-1700 338 GISSPSPINAFLSVD 1686-1700 339 SPINAFLSVDHLGGGG ESM 1691-1705 340 AFLSVDHLGGGGESM 1691-170	139	PDWNKQQDIVGSWGI	691-705				302	GNSDARYTPGSSWGE	1506-1520		
150 MEIDDGTSAWGDPSK 746-760 304 SSWGESSSGRITNWL 1516-1530 308 154 VNMWNKNVPNGNSRS 766-780 313 LPHGNALVRYSSKEE 1561-1575 313 124 171 WGSSSVGPALSKSG 881-895 314 ALVRYSSKEEVVKAQ 1566-1580 314 323 QSLTPSPGWQSLGSS 1611-1625 323 224 SPGWQSLGSSQSRLG 1616-1630 335 324 SPGWQSLGSSQSRLG 1616-1630 336 336 WGPPSSSDPR 1671-1685 336 337 SSDPRGISSP 1671-1690 338 GISSPSPINAFLSVD 1686-1700 339 SPINAFLSVDHLGGGG 1691-1705 340 AFLSVDHLGGGGESM 1691-1705 340 AFLSVDHLGGGGESM 1691-1705 340 340 AFLSVDHLGGGGESM 1691-1705 340 340 AFLSVDHLGGGGESM 1691-1705 340 340 340 1651-570 340 340 1651-1700 340 340 340 1641-1645 340 340 340 1641-1645 340 340 340 1641-1705 <td>148</td> <td>EPSPESIRRKMEIDD</td> <td>736-750</td> <td></td> <td></td> <td></td> <td>303</td> <td>RYTPGSSWGESSSGR</td> <td>1511-1525</td> <td></td> <td></td>	148	EPSPESIRRKMEIDD	736-750				303	RYTPGSSWGESSSGR	1511-1525		
154 VNMWNKNVPGNSRS 766-780 313 LPHGNALVRYSSKEE 1561-1575 171 WGSSSVGPQALSKSG 851-865 314 ALVRYSSKEEVVKAQ 1566-1580 177 PGNRPTGWEEEEDVE 881-895 323 QSLTPSPGWQSLGSS 1611-1625 185 SSKGLSGKKRRERG 921-935 324 SPGWQSLGSSQSRLG 1616-1630 187 RRERGMMKGGNKQEE 931-945 335 YSTSLWGPPSSDPR 1671-1685 189 NKQEEAWINPFVKQF 941-955 336 WGPPSSSDPRGISSP 1676-1690 337 SSDPRGISSPSPINA 1681-1695 338 GISSPSPINAFLSVD 1686-1700 339 SPINAFLSVDHLGGG 1691-1705 340 AFLSVDHLGGGGESSM 1696-1710	150	MEIDDGTSAWGDPSK	746-760				304	SSWGESSSGRITNWL	1516-1530		
171 WGSSSVGPQALSKSG 851-865 314 ALVRYSSKEEVVKAQ 1566-1580 177 PGNRPTGWEEEDDVE 881-895 323 QSLTPSPGWQSLGSS 1611-1625 185 SSKGLSGKKRRERG 921-935 324 SPGWQSLGSSQSRLG 1616-1630 187 RERGMMKGGNKQEE 931-945 335 YSTSLWGPPSSDPR 1671-1685 336 190 AWINPFVKQFSNISF 946-960 337 SSDPRGISSP 1668-1700 338 GISSPSPINAFLSVD 1686-1700 330 SPINAFLSVDHLGGGG 1691-1705 340 AFLSVDHLGGGGGESM 1691-1705 340	154	VNMWNKNVPNGNSRS	766-780				313	LPHGNALVRYSSKEE	1561-1575		
177 PGNRPTGWEEEDVE 881-895 323 QSLTPSPGWQSLGSS 1611-1625 185 SSKGLSGKKRRERG 921-935 324 SPGWQSLGSSQSRLG 1616-1630 187 RERGMMKGONKQEE 931-945 335 YSTSLWGPPSSSDPR 1671-1685 189 NKQEEAWINPFVKQF 941-955 336 WGPPSSSDPRGISSP 1676-1690 190 AWINPFVKQFSNISF 946-960 337 SSDPRGISSPSPINA 1681-1695 338 GISSPSPINAFLSVD 1686-1700 339 SPINAFLSVDHLGGGG 1691-1705 340 AFLSVDHLGGGGESM 1696-1710 1691-1705 1690	171	WGSSSVGPQALSKSG	851-865				314	ALVRYSSKEEVVKAQ	1566-1580		
185 SSKGLSGKKRRERG 921-935 324 SPGWQSLGSSQSRLG 1616-1630 187 RERGMMKGGNKQEE 931-945 335 YSTSLWGPPSSDPR 1671-1685 189 NKQEEAWINPFVKQF 941-955 336 WGPPSSSDPRGISSP 1676-1690 190 AWINPFVKQFSNISF 946-960 337 SSDPRGISSPSPINA 1681-1695 338 GISSPSPINAFLSVD 1686-1700 339 SPINAFLSVDHLGGGGESM 1691-1705 340 AFLSVDHLGGGGESM 1696-1710 1696-1710 1696-1710	177	PGNRPTGWEEEEDVE	881-895				323	QSLTPSPGWQSLGSS	1611-1625		
187 RERGMMKGGNKQEE 931-945 335 YSTSLWGPPSSSDPR 1671-1685 1671-1685 189 NKQEEAWINPFVKQF 941-955 336 WGPPSSSDPRGISSP 1676-1690 336 190 AWINPFVKQFSNISF 946-960 337 SSDPRGISSPSPINA 1681-1695 338 GISSPSPINAFUND 1686-1700 339 SPINAFLSVDHLGGG 1691-1705 340 AFLSVDHLGGGGESM 1696-1710 340 AFLSVDHLGGGGESM 1696-1710 340 3	185	SSKGLSGKKRRRERG	921-935				324	SPGWQSLGSSQSRLG	1616-1630		
189 NKQEEAWINPFVKQF 941-955 336 WGPPSSSDPRGISSP 1676-1690 190 AWINPFVKQFSNISF 946-960 337 SSDPRGISSPSPINA 1681-1695 338 GISSPSPINAFLSVD 1686-1700 339 SPINAFLSVDHLGGG 1691-1705 340 AFLSVDHLGGGGESM 1696-1710 1696-1710 1696-1710	187	RRERGMMKGGNKQEE	931-945				335	YSTSLWGPPSSSDPR	1671-1685		
190 AWINPFVKQFSNISF 946-960 337 SSDPRGISSPSPINA 1681-1695 338 GISSPSPINAFLSVD 1686-1700 338 339 SPINAFLSVDHLGGG 1691-1705 340 340 AFLSVDHLGGGGESM 1696-1710 1681-1695	189	NKQEEAWINPFVKQF	941-955				336	WGPPSSSDPRGISSP	1676-1690		
338 GISSPSPINAFLSVD 1686-1700 339 SPINAFLSVDHLGGG 1691-1705 340 AFLSVDHLGGGGESM 1696-1710	190	AWINPFVKQFSNISF	946-960				337	SSDPRGISSPSPINA	1681-1695		
339 SPINAFLSVDHLGGG 1691-1705 340 AFLSVDHLGGGGESM 1696-1710							338	GISSPSPINAFLSVD	1686-1700		
340 AFLSVDHLGGGGESM 1696-1710							339	SPINAFLSVDHLGGG	1691-1705		
							340	AFLSVDHLGGGGESM	1696-1710		

Fig. 4 Amino acid sequence and position of the GW182 protein synthetic peptides and their reactivity with three patient sera with anti-GWB antibodies. *Gradient of white to black* Increasing intensity of reaction of antibodies with peptide

mRNA and the human protein staufen have been observed in neurons [27, 28]. Staufen binds double-stranded RNA and was visualized in RNA containing particles in rat hippocampal neurons after transient transfection experiments [28, 29]. It may be relevant that the GW182 autoantigen was also shown to bind mRNA through its RNA binding motif [11]. It is interesting to speculate that the storage of mRNA by GWBs may be an important process in maintenance of neurons and neurotransmission and that disruption of GW182 function by autoantibodies may affect neural integrity and subsequent motor/sensory neurological disease. This view is supported by preliminary data suggesting that GW182 is highly expressed in neural tissues (unpublished observations). Recent evidence suggests that GW182 and GW bodies are involved in mRNA decapping and subsequent mRNA degradation [14]. It is interesting to speculate that disruption of the GW182 protein and/or GW bodies by the presence of autoantibodies affect one aspect of the mRNA degradation pathway vital in the overall maintenance and function of the cell. Although we have not determined whether mRNA degradation in the GWBs is directly related GW182 function in nonstop [30] or nonsense-mediated mRNA decay [31, 32], the failure to degrade problematic mRNAs with no stop codons or premature termination codons may have pathological consequences on the function of the cell and subsequently be manifest as a disease state.

Our study shows that multiple epitopes of the GW182 protein are recognized by the human antibodies. The SPOT method of epitope mapping has been validated, and the majority of studies has shown that each patient displays an individual epitope pattern [6]. The diverse and heterogenic epitope recognition pattern among the patients observed in this study is not unlikely since the fine specificity of B-cell immune processes strongly depends on the MHC system. Epitope mapping followed by BLAST analysis confirmed that the autoantibody targets are unique to the GW182 protein because sequence similarity to other known eukaryotic or prokaryotic **Table 2** Ribonucleoprotein (*RNP*) autoantigens (*MCTD*) mixed connective tissue disease, *PM* polymyositis, *RA* rheumatoid arthritis, *RNP* ribonucleoprotein, *SjS* Sjögren's syndrome, *SLE* systemic lupus erythematosus, *SSc* systemic sclerosis)

RNP antigen	RNA: protein antigens	Associated disease
Sm UL DND	U2-U6 snRNA: SmD	SLE
Ra33	hnRNA: A2 core protein	RA
SS-A/Ro	hY RNAs: 60 and 52-kDa proteins	SLE/SjS
Ribosomal P proteins	rRNA: P0/P1/P2 proteins rRNA: L12/S10/15 proteins	SJS SLE
Ribosome		SLE
Fibrillarin Hu GWB	U3-RNA: 35 kDa fibrillarin mRNA: 37–45 kDa mRNA: 182 kDa GW182	SSC Paraneoplastic neurological syndromes SL E/SiS/neuropathy

proteins or expressed sequence tags was not observed. This suggests that the GW182 protein drives the autoimmune response and reactivity to endogenous or exogenous proteins with similar sequence motifs and molecular mimicry is less likely. This also raises the possibility that, as with many other autoantibody systems, autoreactivity to GW182 demonstrates intramolecular epitope spreading [33, 34]. A study using more sera and different methods in an extended epitope mapping study should shed more light on the epitope distribution on GW182.

The association of anti-GWB antibodies with antibodies to the 52 kDa SS-A/Ro antigen, particularly in the patients with no evidence of SjS and SLE was an unexpected finding. Although the 52-kDa SS-A/Ro antigen has been localized to both the nucleus and cytoplasm, antibodies from a variety of sources directed to the 52-kDa SS-A/Ro autoantigen do not produce a GWB staining pattern [35, 36]. The function of the 52 kDa SS-A/Ro antigen is not clear [37], and the observation that it is associated with GWB antibodies may help clarify its function.

In summary, GWBs are a novel class of RNP autoantigens that are specifically recognized by human autoantibodies. Over the past three decades several autoantigens that are part of RNP macromolecular complexes have been described, and we propose that autoantibodies to GWBs and GW182 now join this growing list (Table 2). Some of these autoantigens, including Sm, U1-RNP, and Hu, have been shown to have a central role in mRNA splicing, mRNA processing, and mRNA translation [37, 38, 39]. In this study we observe that the diseases associated with autoantibodies to GWBs overlap with those associated with other RNPs but extend to patients who appear to have primary neurological disorders.

Acknowledgements We acknowledge the technical assistance of Joan Miller, Cheryl Hanson, Jill Wenger (University of Calgary) and Dr. Zheng Yang (Scripps Research Institute). This work was supported in part by the Canadian Institutes for Health Research Grant MOP-57674 and the National Institutes of Health Grants AR42455, AI47859 and AI39645. M.J.F holds the Arthritis Society Chair at the University of Calgary.

References

- Hassfeld W, Steiner G, Studnicka-Benke A, Skriner K, Graninger W, Fischer I, Smolen JS (1995) Autoimmune response to the spliceosome. An immunologic link between rheumatoid arthritis, mixed connective tissue disease, and systemic lupus erythematosus. Arthritis Rheum 38:777–785
- 2. Tan EM (1999) Autoantibodies in diagnosis and identifying autoantigens. Immunologist 7:85–92
- Eenennaam H van, Vogelzangs JHP, Lugtenberg D, van den Hoogen FHJ, Van Venrooij WJ, Pruijn GJM (2002) Identity of the RNase MRP- and RNase P-associated Th/To autoantigen. Arthritis Rheum 46:3266–3272
- Muhlen CA von, Chan EKL, Angles-Cano E, Mamula MJ, Garcia-de la Torre I, Fritzler MJ (1998) Advances in autoantibodies in SLE. Lupus 7:507–514
- Fritzler MJ, Schoenroth LJ (2003) Advances in understanding and use of autoantibodies as markers of diseases. In: Sticherling M, Christophers E (eds) Treatment of autoimmune diseases. Springer, Vienna New York, pp 29–42
- Mahler M, Blüthner M, Pollard KM (2003) Advances in B-cell epitope analysis of autoantigens in connective tissue diseases. Clin Immunol 107:65–79
- Muhlen CA von, Tan EM (1995) Autoantibodies in the diagnosis of systemic rheumatic disease. Semin Arthritis Rheum 24:323–358
- Chan EKL, Andrade LEC (1992) Antinuclear antibodies in Sjögren's syndrome. Rheum Dis Clin North Am 18:551–570
- Tan EM, Chan EKL, Sullivan KF, Rubin RL (1988) Short analytical review—antinuclear antibodies (ANAs): diagnostically specific immune markers and clues toward the understanding of systemic autoimmunity. Clin Immunol Immunopathol 47:121–141
- Fritzler MJ (1997) Autoantibodies: diagnostic fingerprints and etiologic perplexities. Clin Invest Med 20:50–66
- Eystathioy T, Chan EKL, Tenenbaum SA, Keene JD, Griffith KJ, Fritzler MJ (2002) A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol Biol Cell 13:1338–1351
- Tenenbaum SA, Lager PJ, Carson CC, Keene JD (2002) Ribonomics: identifying mRNA subsets in mRNP complexes using antibodies to RNA-binding proteins and genomic arrays. Methods 26:191–198
- Keene JD, Tenenbaum SA (2002) Eukaryotic mRNPs may represent post-transcriptional operons. Mol Cell 9:1161–1167
- 14. Eystathioy T, Jakymiw A, Chan EKL, Séraphin B, Cougot N, Fritzler MJ (2002) The GW182 protein co-localizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW bodies. RNA 9:1171–1173
- Eystathioy T, Chan EKL, Mahler M, Luft LM, Fritzler ML, Fritzler MJ (2003) A panel of monoclonal antibodies to cytoplasmic GW bodies and the mRNA binding protein GW182. Hybridoma Hybridomics 22:79–86
 Griffith KJ, Chan EKL, Hamel JC, Miyachi K, Fritzler MJ
- Griffith KJ, Chan EKL, Hamel JC, Miyachi K, Fritzler MJ (1997) Molecular characterization of a novel 97\kDa Golgi complex autoantigen recognized by autoimmune antibodies

from patients with Sjögren's syndrome. Arthritis Rheum $40{:}1693{-}1702$

- Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680
- Frank R (1992) SPOT-synthesis: an easy technique for the postionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48:9217–9232
- Mahler M, Mierau R, Blüthner M (2000) Fine-specificity of the anti-CENP-A B-cell autoimmune response. J Mol Med 78:460– 467
- 20. Gausepohl H, Behn C (2002) Automated synthesis of solidphase bound peptides. In: Koch J, Mahler M (eds) Peptide arrays on membranes-synthesis and applications. Springer, Berlin Heidelberg New York, pp 55–69
- Selak S, Schoenroth L, Senécal J-L, Fritzler MJ (1999) Early endosome antigen 1: an autoantigen associated with neurological diseases. J Investig Med 47:311–318
- Mahler M, Kessenbrock K, Raats J, Williams RC Jr, Fritzler MJ (2003) Characterization of the human autoimmune response to the major C-terminal epitope of the ribosomal P proteins. J Mol Med 81:194–204
- Fritzler MJ, Manns MP (2002) Anti-mitochondrial antibodies. Clin Appl Immunol Rev 3:87–113
- Griffith KJ, Ryan JP, Senécal J-L, Fritzler MJ (2002) The cytoplasmic linker protein CLIP-170 is a human autoantigen. Clin Exp Immunol 127:533–538
- 25. Fritzler MJ, Pauls JD, Kinsella TD, Bowen TJ (1985) Antinuclear, anticytoplasmic and anti-Sjögren's syndrome antigen-A (SS-A/Ro) antibodies in female blood donors. Clin Immunol Immunopathol 36:120–128
- 26. Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, Schaller JG, Talal N, Winchester RJ (1982) The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 25:1271–1277
- 27. Kuhl D, Skehel P (1998) Dendritic localization of mRNAs. Curr Opin Cell Biol 8:600–806
- 28. Kiebler MA, Hemraj I, Verkade P, Kohrmann M, Fortes P, Marion RM, Ortin J, Dotti CG (1999) The mammalian staufen protein localizes to the somatodendritic domain of cultured hippocampal neurons: implications for its involvement in mRNA transport. J Neurosci 19:288–297

- 29. Kohrmann M, Luo M, Kaether C, DesGroseillers L, Dotti CG, Kiebler MA (1999) Microtubule-dependent recruitment of staufen-green fluorescent protein into large RNA-containing granules and subsequent dendritic transport in living hippocampal neurons. Mol Biol Cell 10:2945–2953
- Vasudevan S, Peltz SW, Wilusz CJ (2002) Non-stop decay-a new mRNA surveillance pathway. Bioessays 24:785–788
- 31. Danckwardt S, Neu-Yilik G, Thermann R, Frede U, Hentze MW, Kulozik AE (2002) Abnormally spliced beta-globin mRNAs: a single point mutation generates transcripts sensitive and insensitive to nonsense-mediated mRNA decay. Blood 99:1811–1816
- 32. Wilusz CJ, Wormington M, Peltz SW (2001) The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol 2:237–246
- 33. Arbuckle MA, Reichlin M, Harley JB, James JA (1999) The development of lupus humoral autoimmunity for anti-Sm autoantibodies is consistent with predictable sequential B-cell epitope spreading. Scand J Immunol 50:447–455
- 34. Monneaux F, Muller S (2002) Epitope spreading in systemic lupus erythematosus-Identification of triggering peptide sequences. Arthritis Rheum 46:1430–1438
- Schmitz M, Bachmann M, Laubinger J, Thijssen JP, Pruijn GJ (1997) Characterization of murine monoclonal antibodies against the Ro52 autoantigen. Clin Exp Immunol 110:53–62
- 36. Kelekar A, Saitta MR, Keene JD (1994) Molecular composition of Ro small ribonucleoprotein complexes in human cells: intracellular localization of the 60- and 52-kD proteins. J Clin Invest 93:1637–1644
- 37. Rhodes DA, Ihrke G, Reinicke AT, Malcherek G, Towey M, Isenberg DA, Trowsdale J (2002) The 52 000\MW Ro/SS-A autoantigen in Sjögren's syndrome/systemic lupus erythematosus (Ro52) is an interferon-gamma inducible tripartite motif protein associated with membrane proximal structures. Immunology 106:246–256
- Lerner MR, Steitz JA (1979) Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosus. Proc Natl Acad Sci USA 76:5495–5499
- Tan EM (1989) Antinuclear antibodies: diagnostic markers for autoimmune diseases and probes for cell biology. Adv Immunol 44:93–151