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surface features 

This paper presents a multispectral system for evolution of 
linear algorithms for prediction of wood surface features 
important for automatic inspection of lumber. The selec- 
tion of training samples, the imaging spectrograph scan- 
ning method, raw data representation, evaluation of linear 
algorithms and testing of performance is discussed. A 
possible on line implementation for high speed wood 
scanning with a smart sensor is outpointed. An example, 
showing the evolution of linear algorithms for prediction 
of compression wood in softwood species (Picea abies, 
Pinus sylvestris), is reported, showing verified 92-94% 
correct classification. It is shown that compression wood 
classification could be reduced to an uncomplicated linear 
model using just a few spectral components where the 
most important one is around the limit for visible light 
going to the Ultraviolet spectra. This almost univariate 
behaviour for the model is not the common behaviour for 
other wood surface features (Brunner et al., 1996; Hagman, 
1995; Hagman, 1996). 

Multivariate Vorhersage der Eigenschaften von 
Holzobeffl&hen mit Hilfe eines Bild-Spektrographen 

Diese Arbeit beschreibt ein Mehrkanalsystem zur Ent- 
wicklung eines linearen Algorithmus, der es gestattet, Ei- 
genschaften yon Holzoberfl/ichen ffir eine automatische 
Gfitesortierung von Schnittholz vorherzusagen. Die Aus- 
wahl von Testproben zum Kalibrieren des Systems, die 
Bilderzeugung dutch Abrastern mit dem Bildspektrogra- 
phen, die Darstellung der Rohdaten, die Beurteilung des 
linearen Algorithmus und die Eignung des Systems werden 
diskutiert. Die m6gliche On-Line-Implementierung in ein 
Hochgeschwindigkeitsprfisystem ffir Schnittholz mit Hilfe 
eines schnellen Sensors wird aufgezeigt. Als BeispieI wird 
der lineare Algorithmus zur Vorhersage von Druckholz- 
anteilen in Nadelholz (Picea abies, Pinus sylvestris) be- 
schrieben, der eine 92-94% richtige Klassifizierung 
erm6glicht. Es konnte gezeigt werden, daft die Erkennung 
von Druckholz auf ein einfaches Modell reduziert werden 
kann, das nur wenige spektrale Komponenten erfordert, 
wobei die wichtigsten Wellenl~ingen im Bereich vonde r  
Grenze des sichtbaren Lichts bis zum UV-Bereich liegen. 
Dieses fast univariate Verhalten des Modells ist allerdings 
fiir die Bewertung anderer Oberfl/icheneigenschaften nicht 
der Fall. 
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1 
Introduction 
Today every piece of wood is examined and classified 
several times in the production chain from the forest to the 
finished wood product. The classification has so far been 
based on human judgements after visual inspection. The 
classification is often combined with some kind of human 
"optimization" process. 

The workers do often have to make up to 30 classifi- 
cation/"optimization" decisions every minute. The con- 
sequence of this situation is many sub-optimal decisions 
and a very high mental load on the workers. Furthermore 
an incorrect classification has a very big impact on the 
production economy. Consequently very big efforts have 
been made in order to replace man in this kind of classi- 
fication- optimization work. 

For some simple classification- optimization tasks re- 
placement of man has been successful. However in many 
cases attempts to replace man have failed due to the fact 
that the implemented systems have not been robust en- 
ough to handle the variability of wood. The main reason 
for these failures is that we do not have basic knowledge 
about the relationship between reflected or transmitted 
electromagnetic waves and different wood features. 

Today classification and analysis of wood and its fea- 
tures are important field for industrial applications and 
research. Methods used are often based on image analysis 
using defect related features within the spatial- and fre- 
quency domain. By introducing the RGB-technique some 
industrial applications has also started (Vogrig et al., 1993) 
to use spectral information for defect separation. 

In research multispectral approaches have been tested 
using spectral information from more than three wave- 
lengths using Multivariate Image Analysis (MIA) (Esben- 
sen et al., 1989) as a tool to create more reliable and sharp 
classification algorithms. However there is so far no 
method that gives a perfect solution to the classification 
and prediction problems due to the fact that wood itself is 
a polymer material with a large variation within species, 
within population and within each object. 

The measured variations are due to primary factors 
such as: 

- chemical composition 
- cellular structure and orientation 
- surface roughness 
- light and sensor arrangement 

These primary factors are dependent on a lot of secondary 
factors such as wood species, growth conditions, inheri- 
tance, machining method, angle between surface and an- 
nular rings, drying conditions, storing conditions, light 
conditions, type of sensor etc. The measured value on a 
certain place of the object is a l s o  d e p e n d a n t  on the w o o d  

features in the neighbourhood. This clearly shows that 
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measurement, classification and analysis of wood and its 
features is a multivariate problem. It is not possible to 
develop robust scanning systems for automatic wood 
classification with trial and error methods. A systematic 
approach is needed. 

In order to perform a systematic approach we need 
fundamental knowledge about the relationship between 
reflected, transmitted or absorbed electromagnetic waves 
and different wood features. The objective with this project 
is to investigate and describe these relations and the create 
well performing and stable prediction algorithms. 

2 
Materials and methods 
A wood surface is characterized by the reflected or 
transmitted electromagnetic waves from the surface. The 
response, i.e. the number and energy of photons reaching 
the sensor element, is a combination of reflected or 
transmitted waves from the area of the scene that corres- 
pond to a certain sensor position and scattered waves from 
the surrounding scene areas. The scattering effect is a 
problem that must be taken into consideration. 

The responses are mainly measured by a multispectral 
image scanner. This scanner is a linescanner with the 
possibility to generate spectral images within the wave- 
lengths 400-720 nm. Spectral resolution and integration is 
varying due to the sensitivity of the used sensor in the 
examined spectral area. The imaging spectrometer uses a 
CCD- matrix camera and a PGP imaging spectrograph 
developed by VTT Finland (Hyv~irinen, 1993) for evalua- 
tion of raw data. This gives a maximal spectral resolution 
of 768 discrete levels and a spatial resolution of 512pixels/ 
scanwidth. In addition to the multispectral image scanner 
we also use x-ray scanners, CT scanning and SEM mic- 
rographs. 

The scene, in this case the piece of wood, is described 
and characterized with aid of the results from SEM-anal- 
ysis, surface roughness measurements, lighting conditions, 
neighbourhood description and macroscopic description 
of different biological features such as type of knot, heart- 
sapwood, early-latewood, compression wood etc. 

How the sensor response depend on the different wood 
characteristics will be analysed with aid of MIPLS - tech- 
nique (Multivariate Image Projections to Latent Struc- 
tures) (Hagman, 1996). The method based on the Kernel 
algorithm (Lindgren et al., 1993) is an application of the 
PLS (Martens, Naes, 1989) concept and gives a possibility 
to investigate several, parallel, interacting depending 
variables using images. MIPLS is used as a typical prob- 
lem-dependent strategy for image decomposition guided 
by the nature of the dependent-variable and/or training 
data set delineation in the (independent, dependent) image 
domains. The method is introduced in chemometrics 
(Esbensen et al., 1992) and is also implemented in multi- 
spectral image analysis of wood (Hagman, Grundberg, 
1993). 

In order to analyse the problem systematically the ex- 
perimental design is of great importance. It is, however, 
hard to find biological samples that vary according to the 
experimental design. Thus it is only the above described 
secondary factors that can be controlled by choosing 
samples that enable a large variation, regarding to relevant 
variables, to be obtained. The samples are chosen from an 
extremely well-substained population of trees from all over 
Sweden. There exist a well described transform between 
the wood samples (logs, boards, defects), the digital image 

stacks and the segmented and classified models for the log 
and some of it's features. These models wilt be used for 
simulation and testing of error estimations. 

Evaluated models for feature classification could be 
used for developing of a wood surface scanner with se- 
lected chromatic filters optimized for certain features 
(Brunner et al., 1993) or as tested by ,~strand et al., 1995 
using the MAPP-sensor with the PGP where the linear 
discriminant functions extracted by MIA and MIPLS or by 
using an unconstrained optimization strategy are calcu- 
lated using variable exposure times and analog summation 
ofpixel data. After A/D-conversion the sums are compared 
and classified pixels are output from the sensor chip. This 
method not fully evaluated for wood feature classification 
but demonstrated on more straight forward applications 
(Astrand et al., 1995). 

3 
Prediction and classification of compression wood 
A test and training set containing samples from five dif- 
ferent pine (Pinus sylvestris) logs and three different 
spruce (Picea abies) logs, Fig. 1 was trained and classified 
to three different classes Clearwood (CW), Compression 
wood (Compr) and Black knot (knot). Images obtained by 
using a linear scanner, a Nikkor 20 mm lens, a PGP 
imaging spectrometer, a MTI matrix CCD-cameras and a 
Macintosh Quadra 950 are stored in a three dimensional 
(X,Y,2) image stack (Fig. 2). Two similar methods (MIA/ 
MIPLS and PLS) is tested to obtain prediction models. The 
reason for using two methods is first to compare the ability 
and validate the image based algorithms to the more tested 
iterative method PLS and second to test if the performance 
operators (sensitivity) could be used with similar results 
for both methods. The calculation for the MIPLS predic- 
tion performance is somewhat more complicated, using 
image subtraction between predicted image and training 
image and the calculating areas belonging to false positive 
respective false negative predictions. 

3.1 
Image compression 
The initial multiSpectral image stack with the size X 
(transverse the board) and Y (lengthwise the board) of 258 
by 226 pixels and 2, 768 spectral ievels representing the 
VIS spectra from 400 to 720 nm were reduced to a 258 (X) 
by 226 (Y) by 56 (2) voxel image stack for MIA/MIPLS 
analysis and to a 557 (points on surface) by 56 (2) matrix 
for PLS. In Fig. 3 the MIA/MIPLS stack is shown in three 
different cuts, XY, X2, and Y2. 

C,9 

Entrance slit Lenses and PGP component Matrix detector 

Fig. 1. Schematic layout of prism-grating-prism (PGP), from 
Hyverin~in 1993, and matrix-sensor combined to image spec- 
trometer 
Bfld 1. Schema des PGP-Systems (Prisma-Gitter-Prisma), nach 
Hyverin/in 1993, so, vie des Matrix-Sensors in Verbindung mit 
dem Bildspektrometer 



Fig. 2. The train and test set board scanned at 470 nm wavelength with the PGP imaging spectrometer, showing a pine board with 
black knots, down left, a hole down middle, some streaks of compression wood and 11 eleven samples containing more or less 
compression wood 
Bild 2. Zusammengesetztes Probebrett zum Trainieren und Testen des Systems. Die Probe wurde bei 47o nm eingescannt. Das Bild 
zeigt ein Kiefernbrett mit Totast (links), einem Loch (mitte, unten) und einigen Streifen Druckholz sowie ~1 Teile mit mehr oder 
weniger hohem Druckholzanteil 
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Fig. 3. MIA/MIR reduced spectral image stack represented by 
three cuts, XY (upper left), X). (down left), and Y2,(upper right) 
respectively. The X2 and Y2 planes are sliced as indicated by 
white lines in XY plane. XY plane is cut in the 470 nm spectra 
Bild 3. Ein mittels MIA/MIR reduziertes spektrales Bild einer 
Holzoberfl/iche, dargestellt in drei Schnittebenen: XY (links 
oben), X2 (links unten) und Y2 (rechts oben). Die beiden letzten 
Ebenen werden entsprechend den weiflen Linien in der XY-Ebene 
geschnitten. Die XY-Ebene wird bei 470 nm gescannt 

4 
Results and discussion 
A MIA analysis was done, pc-score plots shown in Fig. 4, 
indicat ing that the wanted classes are separable in the 
score scatter plots pc2 against pc3 (Fig. 5). A training set 
was obtained by  mascing in the score plot  pc2/pc3 re- 
sulting in the Y-dummy images shown in Fig. 6. Fig. 7 
shows selected training areas containing clearwood areas, 
compress ion wood areas and knot  areas represent ing the 
main features in the scene. The selected training areas 
covers approximate ly  12% of the scene. 

The PLS training set was selected using a "sawing in the 
XY view" operation,  where rectangular  shaped pixel set 
was selected within the different feature areas (Fig. 7). 

The selected training set was converted to text files, 
d u m m y  variables added and then exported to Simca for 
PLS analysis. 

Fig. 4. PC score plots showing principal component 1 to 7, pcl-6 
contain information clearly correlated to the scanned board but 
pc7 is showing another mechanism, probably variation in the X- 
direction of the CCD-sensor 
Bild 4. PC-Auswertung der Hauptkomponenten 1 bis 7 eines 
Oberfl/ichenscans. Die Plots 1-6 zeigen deutlich Korrelationen mit 
Eigenschaften des Brettes. Plot 7 zeigt einen anderen Mechanis- 
mus, der m6glicherweise durch Abweichung des CCD-Sensors 
con der X-Richtung herrfihrt 
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Fig. 5. PC-score scatter plot with areas masced for dummy seg- 
mentation marked with white borders. A score scatter plot is a 
two dimensional histogram (indicated by grey histogram outside 
the plot) where grey-scale (or preferably colour tones) levels in- 
dicate increased density of pixels with identical score values in 
pc2 and pc3 
Bild 5. PC-Auswertung yon Probefl~chen, die mit weiflen 
Grenzlinien markiert waren. Die Auswertung beruht auf einem 
zweidimensionalen Histogramm (s. Histogramme rechts und 
unten), wobei die Grauskalen (oder vorzugsweise Farbt6ne) als 
erh6hte Pixeldichte angeben, wo die beiden Plots (ps2 und pc3) 
fibereinstimmen 
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Fig. 6. Y-dummy image showing segmented compression wood 
areas in the training image 
Bild 6. Y-Teilbild eines Testbildes mit Segmenten yon Druck- 
holzbereichen der Trainingsprobe 

The MIPLS modelling result was that after 3 principal 
components the problem was solved i.e that 2 pc:s was 
needed the first is just a mean value transformation. The 
regression coefficients (Fig. 8) indicate that the separating 
information is within the blue spectra and the bluer the 
better, except when reaching near 400 nm where the sen- 
sor sensitivity decreases the signal/noise ratio. The PLS 
modetl is somewhat different, a bit sharper, in selecting 
prediction coefficients and it is clear that the modell 
complexity could be reduced rather dramatically. Test with 
a reduction to 5 x-variables 429, 487, 575, 639 and 679 nm 
or even 3 x-variables, 429, 487 and 575 nm are showing 
almost equal results. 

Fig. 7. Position of selected training areas. POs 1-24 compression 
wood areas, 25-z6 knot areas and 27-33 clear wood areas. 12 
object pixels are chosen from every position 
Bild 7. Positionen ausgew~hlter Trainingsbereiche. Pos. 1-24: 
Druckholzfl~ichen; Pos. 25-26: Astanteile; Pos. 27-33 fehlerfreie 
Oberfl~che. Yon jedem Testobjekt werden x2 Pixels ausgew~ihlt 

The performance of the model prediction can be shown 
in contingency tables (Table 1 and 2). A prediction is here 
considered correct for an prediction value (considered as a 
probability for that feature (Hagman, 1993)) for correct 
feature higher than 0.5. 
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Fig. 8. Regression coefficients for 
predicting compression wood in 
training and testing area using 
PLS and MIPLS methods 
Bild 8. Regressionskoeffizienten 
flit die Vorhersage yon Druck- 
ho!zanteiten in Trainingsfl~chen 
Nach der PLS- und MIPLS- 
Methode 



Table 1. Contingency table for compression wood feature pre- 
diction PLS model (%) 
Tabelle 1. Trefferquoten beim Sch~itzen der Druckholzanteile 
nach dem PLS-Modell (%) 

Status Facit pos Facit neg 

Pred pos 93.8 5.6 
Pred neg 6.2 94.4 

Table 2. Contingency table for compression wood feature pre- 
diction MIR model (%) 
Tabelle 2. Trefferquoten beim Sch~itzen der Druckholzanteils 
nach dem MIR-Modell (%) 

Status Facit pos Facit neg 

Pred pos 92 3 
Pred neg 8 97 

Fig. 9. Resulting image after adding the thresholded predicted 
image and the traning image. Grey areas are correctly predicted, 
white areas are false positive and black areas are false negative, 
respectively 
Bild 9. Ergebnis nach (lberlagerung des ausgewerteten Bildes mit 
dem Trainingsbild. Graue Fl~ichen bedeuten korrekte Sch~itzung, 
weifle Fl~ichen falsche Sch~izung bei positiver Vorhersage, 
schwarze Fl~ichen falsche Sch~itzung bei negativer Vorhersage 

The resulting images from the performance calculation 
are indicating good performance for the prediction model, 
this is intuitively realised by a human  being when knowing 
that grey areas are good behaviour. 

The models where validated by comparing the predic- 
tions of compression wood to the SEM micrographs, 
Fig. 10, showing good model behaviour, in fact in some 
cases better than the initial visual classification, which 
were wrong for two areas. 

The strong and stable almost univariate model obtained 
for compression wood model for is rather unique for wood 
surface features. Other models evaluated for knots, rot, 
and blue stain that are published in Hagman, 1996, are 
more multivariate in their nature and uses more variations 
in the spectrum. The strong dependency in deep blue 
spectra is probably due to the high contents of  lignin in 
compression wood. Compression wood cells could be 
found not only in clearly visible compression wood streaks 
but also in other part of  the stem and some of  the miss 

Fig. 10. SEM micrographs as indicators of compression wood 
areas within the training surface: a Compression wood (Cow) 
stripe on the frame board (Norwegian spruce (Ns)); b Cow stripe 
Ns; c Narrow Cow stripe (Scots pine (Sp)); d Cow stripe Ns; e Cow 
stripe Sp; f Narrow Cow stripe Ns; g Clear wood frame board; h 
Cow stripe Ns; i Narrow Cow stripe Sp; j Cow stripe Ns; k Late 
wood with high pitch content Sp; 1 Cow stripe Ns; m Cow stripe 
Ns. 
Bild 10. REM-Aufnahmen als Indikatoren fiir Druckholzanteile in 
den Testfl~chen: a Streifen mit Druckholz (=Cow) im Hauptbrett 
(Fichte = Ns); b Druckholz in Ns; c schmaler Druckholzstreifen 
in Kiefer (Sp); d Druckholz in Ns; e Druckholz in Sp; f schmaler 
Druckholzstreifen in Ns; g fehlerfreies Holz im Brett; h Druckholz 
in Ns; i schmaler Druckholzstreifen in Sp; j Druckholz in Ns; k 
Sp~itholz mit hohem Harzgehalt; l Druckholz in Ns; m Druckholz 
in Ns 

classified areas in the validation test has after SEM analysis 
been judged as correct. The classification of  compression 
wood could be essential for detecting light sound knots in 
spruce, because the large amount  of  that feature in the 
knot. 
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5 
Conclusion 
To summarise the project exemplified in this paper, the 
claimed contributions to the field are the following: 

�9 The use of  experimental design for wood surface object 
concentration on the test boards as a practical data 
compression method to reduce the amount of  scanning 
needed. The designed variation is required to determine 
the variable space needed to get a proper description of  
the classes. Classes are used for describing the quality 
grade of a piece of  softwood lumber. 

* The introduction of  PLS and MIPLS as soft modelling 
tools for calibration and prediction modelling of  wood 
features. 

* The evaluation of the imaging spectrograph/MIPLS 
concept to model the spectral behaviour of the inter- 
action between visible light, the wood surface and the 
sensor. 

�9 The power of  a multivariate concept (PLS, MIA and 
MIPLS) to determine latent variables in low and high 
resoluted measurements of  wood is identified. It is 
shown that models based on these compressed data can 
be used for prediction of  objects appearing on the 
surface of lumber. 

�9 The decomposition into latent variables also makes it 
possible to separate unwanted mechanisms that occur 
from the mechanisms caused by physical, chemical or 
optical features in the wood surface, thus making 
spectral classification possible. These external effects 
can be due to external influences such as moisture 
variations, drying, light exposure or angular effects. 

�9 Latent variables based on principal component  com- 
pression can be found for complex scenes that often are 
based on the dominating relationships in the measured 
(X) data or by correlation between X and dependent (Y) 
variables. These latent variables can be studied and give 
causal insight into complex mechanisms such as the 
interaction between light and wood surfaces, i.e. trac- 
held effects, dichromatic modelling etc. 

�9 The necessity of  decomposit ion of the data into infor- 
mation and noise before modelling is demonstrated. 

Further examples of  multispectral modelling of wood 
features are found in Hagman, 1996. 
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