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1  Introduction

Particleboard, as presented in Fig. 1, is a composite panel 
manufactured from wood flakes and other lignocellu-
losic materials with a combination of different types of 
adhesives under high temperature and pressure. Additives 
are also mixed with the flakes during manufacturing to 
improve additional characteristics of the final product (EN 
309:2005). In general, the density of particleboard ranges 
between 640 and 800 kg/m3 (American Society for Testing 
and Materials 2010). Some advantages of particleboard over 
solid wood-based materials include its cost, higher density, 
and uniformity. It is widely used as underlayment, furniture 
manufacture, kitchen cabinets, and building units. Accord-
ing to FAO (2023), Thailand has several particleboard 
plants with an annual production capacity of approximately 
4 million cubic meters contributing more than $7 billion to 
the economy of Thailand in 2021.
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Abstract
Fine adjustment of manufacturing parameters as a function of the experience of the technical manpower plays a vital 
role in any production line. The objective of this study was to propose an adaptive controller framework to improve the 
overall accuracy of the parameters regulating particleboard manufacturing. This framework has four main steps: (1) In the 
data gathering process, the production parameters and the sample test results were collected from the randomly picked 
and tested specimens in each round, (2) Relevance analysis was used to select high-power relevant variables influencing 
the overall quality of the final product. Those relevant variables will be inputs to construct the classification model, (3) 
A decision tree was employed to construct the classification model and reveal split points of the process parameters to 
determine the distinction between passed and failed panels, and (4) The production parameters in the next round will be 
adjusted according to the defined split points so the quality of the particleboard can be enhanced. Continuous improvement 
of the production parameters, within the perspective of the proposed framework, enables us to go back to step (1) again 
as desired, especially in the long production run. Based on the findings of this work, the experimental results revealed that 
the model could classify the failed particleboard with a specific rate of 92.50%. The model also demonstrated that resin 
characteristics, namely pH value and viscosity, impacted the overall performance of the particleboard.
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In a typical commercial-scale production, it is difficult to 
determine the manufacturing parameters required to produce 
the desired quality of particleboard when operating condi-
tions are modified. To control the product quality and cost, 
only 3% of production capacity can be rejected because of 
defects such as delamination, weak internal bonding, and 
low strength. One of the best solutions to handle such waste 
is to develop advanced knowledge, understand the compli-
cations of process parameters, and quantify the interrelation 
between process parameters and the expected quality of the 
final product.

The particleboard manufacturing process includes vari-
ous workstations, as illustrated in Fig.  2. Shmulsky and 
Jones (2019) describe that the small logs are cut into wood 
chips and processed into flakes. Next, flakes are dried to 
decrease the moisture content to 2–3% w/w before they are 
screened into different fractions according to their size to 
be used for the surface and core layers. The screened flakes 
are mixed with thermosetting adhesives and other additives. 
The resinated flakes are formed into the mat. Later, the mat 
is compressed at high pressure and temperature before cool-
ing and sanding operations are carried out. Finally, the fin-
ished panels are tested for their different properties.

Fig. 2  The adaptive controller framework of the particleboard manufacturing process

 

Fig. 1  Three-layer particleboard 
and rubberwood flakes
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The internal bond strength (IB) is the tensile strength 
required to rupture bonds perpendicular to the board sur-
face. It is a critical quality index to measure the bond 
strength between flakes in particleboard. According to EN 
319:1993, the samples with 50 mm × 50 mm in dimension 
are pulled cross-section apart to maximum stress until they 
fail. Unfortunately, IB cannot be evaluated during the pro-
duction line until samples are examined in the laboratory 
using destructive tests. The data collection found that there 
could be a 60–90-min gap between production and testing, 
during which a large amount of production occurred. Sup-
pose the resulting IB of the processing parameters of the 
particleboard can be predicted, and the parameters can be 
continuously adjusted throughout the production time. This 
can improve the process, reduce raw materials, and decrease 
the number of rejected panels. This method could result in 
cost savings from precisely forecasting the real-time IB.

From the literature reviews, several studies have used 
machine learning to improve the manufacturing process of 
particleboard, Medium Density Fiberboard (MDF), and var-
ious products (André et al. 2008; Ismail et al. 2011; Wong 
et al. 2021; Zhang et al. 2022). Most research focuses on the 
prediction of the quality of the final product. Ismail et al. 
(2011) used a multilayer perceptron neural network (MLP) 
to construct a prediction model of MDF properties. They 
recommended that manufacturers could perform only the 
2-h board properties test and omit the 24-h test to save time 
and cost because the results were enough based on the 2-h 
test. Riegler et al. (2013) proposed a real-time process adap-
tation in manufacturing high-density fibreboards. When 
predicting the IB of fibreboards using the real-time dataset 
in the current process, the regression model is regularly val-
idated, and, if necessary, calibration is carried out with the 
offline database using datasets from the most recent previous 
process. Zhang et al. (2022) constructed a nonlinear regres-
sion prediction model using grey relation analysis (GRA) 
and support vector regression (SVR) to predict the internal 
bond strength of particleboard based on the particle gluing 
parameters in the production process. The predicted values 
were in good agreement with the experimental values. Vari-
able selection in multivariate analysis was quite an essential 
step. André et al. (2008) utilized genetic algorithms (GA) to 
select variables and used several statistical methods, such 
as radial basis function (RBF) neural networks, to predict 
IB of MDF. The prediction models performed better than 
those without variable selection. Wong et al. (2021) com-
pared and evaluated three different neural network models 
for modeling the elastoplastic response of Medium Density 
Fiberboard (MDF) based sandwich structures. The results 
suggested the optimal number of hidden neurons to form 
the neural network structure with the highest performance.

Interpretability refers to the level of understanding and 
insight that the predictor provides. Neural networks (NN) 
and even modern algorithms such as deep learning (DL) 
have high learning performance but low interpretability. It 
is difficult for humans to interpret the symbolic meaning 
behind the network’s learned weights and hidden neurons 
(Han et al. 2022). Furthermore, it is difficult to determine 
how one variable affects another variable and the quality 
of the final product. Therefore, the predictive models used 
in the previous research are unsuitable for suggesting tun-
ing the value of parameters in the particleboard manufac-
turing process. Neural networks require several parameters 
typically best determined empirically, such as the network 
structure. They also need massive data and a long training 
time to construct a good model.

The decision tree, one of the classification algorithms, is 
a helpful tool for selecting a subset of relevant variables and 
defining split points of the process variable’s value in places 
that may help improve classification accuracy (Han et al. 
2022). Moreover, it takes much less time to train the model 
and is very interpretable. Humans can easily understand the 
decision-making conditions that affect the output. There-
fore, this model type allows us to recommend fine-tuning 
variables in the particleboard production process.

The most prediction models from the literature reviews 
mentioned above were created to predict the quality char-
acteristics of the final product from experimental or his-
torical data of the finished production line. As a result, the 
manufacturing process would reduce the number of actual 
laboratory tests, effort, and raw material costs of the later 
production line. Another group of researchers aims to sug-
gest fine adjustments to the parameters in the current manu-
facturing process to have high-quality panels. However, it is 
a known fact that the value of the process parameters affect-
ing the final product quality may not be the same in every 
production line. It clearly depends on the production envi-
ronment, such as the value of different process parameters, 
board specifications, and raw material characteristics. The 
production model created from only historical data could 
also not accurately predict the quality of the final product in 
the later production environment.

To solve the shortcomings mentioned above, the objec-
tive of this study was to build and evaluate the adaptive 
controller framework that can identify variables that play an 
important role in the quality of the particleboard in a given 
production run. Moreover, the results proposed the signifi-
cant manufacturing parameters influencing the particle-
board performance and indicated the optimum parameters 
that enhance the board’s internal bonding strength to meet 
the required standard. The framework aims to enable the 
machine learning method for automatic parameter tuning 
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production line at 1-h periodic intervals or when the prod-
uct type was changed. These samples were tested for tensile 
strength perpendicular to the plane of the board according 
to EN 319:1993.

2.2  Data gathering

All production parameters and the results from the sample 
tests were collected into the computer database for analysis. 
All data were also further analyzed to fine-adjust the param-
eter values to obtain the higher-quality particleboard. The 
above process was an iterative loop that took around 90 min 
per cycle until the board properties reached the standard 
requirement. Then, the production continued until the prod-
uct quantity was achieved.

2.3  Dataset preparation

According to BS EN 312:2010, the minimum allowed IB 
value for particleboard type P2 is 0.35  MPa. Therefore, 
samples with IB value more than 0.35 MPa were classified 
as pass, while samples with IB value less than 0.35  MPa 
were classified as fail. In this study, 172 samples were cat-
egorized as pass (49 samples) and fail (123 samples).

The 172 samples are randomly divided into a training set 
(2/3) for model construction and a test set (1/3) for accuracy 
estimation. Table 1 shows 114 samples for the training set 
and 58 samples for the test set, with approximately the per-
centage of each class in the overall database.

2.4  Relevance analysis

Variable selection in multivariate analysis is crucial to 
exclude non-informative variables that produce better results 
even with simpler models (André et al. 2008). Relevance 
analysis can be used to perform variable relevance analy-
sis and filter out statistically irrelevant or weakly relevant 
variables from the descriptive mining process (Han et al. 
2022). The experiment used the attribute selection function 
of Weka software version 3.8.6 (www.cs.waikato.ac.nz/ml/
weka), a collection of machine learning algorithms for data 
mining tasks, to select variables important to the class. In 
this case study, class means the quality of the particleboard 
(pass/fail). Five evaluators were used for attribute selection 
as displayed in Table 2 and were selected common variables 
from them. For evaluators using the ranker search method, 
the results are relevance scores of each variable, so the 
variables with the top three relevance scores are selected. 
For evaluators using the GreedyStepwise and BestFirst, the 
results are variables recommended by the evaluator, so all 
recommended variables are selected.

to produce high-quality particleboard-although which is not 
currently possible.

2  Methodology

The adaptive controller framework of the particleboard 
manufacturing process consists of six parts, namely data 
description, data gathering, dataset preparation, relevance 
analysis, model construction, and parameter adjustment.

2.1  Data description

This study’s dataset was obtained from a particleboard man-
ufacturer in Thailand as part of a research confidentiality 
agreement. Variable names in the datasets were altered to 
respect the terms of the confidentiality agreement.

In this case, the particleboards (E2-grade) with a nominal 
thickness of 15 mm were compiled and used for analysis 
because their IB values did not pass the standard require-
ment (BS EN 312:2010). Therefore, they were selected for 
analysis to find the cause and finely tune the variables in the 
real production in the future. The dataset of both pass and 
failed particleboards (as shown in Table  1) was produced 
and tested between January to February 2022.

Figure  2 shows a typical chart of the particleboard 
manufacturing process, collection of a total of 31 variables 
including resin viscosity, resin gel time, resin pH, resin 
density, resin content in the surface layer, resin content in 
the core layer, emulsion content in the surface layer, emul-
sion content in the core layer, catalyst content in the sur-
face layer, catalyst content in the core layer, surface layer 
moisture content, core layer moisture content, water spray 
content on the top surface, water spray content on the bot-
tom surface, surface layer bulk density 1 and 2, core layer 
bulk density, surface layer proportion 1 and 2, core layer 
proportion 1 and 2, mat weight, press speed, press factor, 
pressing temperature zone 1–6, and IB data gathered from 
the destructive testing lab.

The dried and screened flakes were mixed with urea-
formaldehyde adhesive with Grade E2, and other additives 
were processed through forming steps until the mats were 
hot-pressed into the final product. It is a continuous process 
with an approximate duration of 30 min.

According to the company’s standard testing and work 
instructions, six samples were randomly collected from the 

Table 1  Description of the dataset used in the experiment
#Sample #Pass particleboard #Failed particleboard

Dataset 172 49 (28.49%) 123 (71.51%)
Training 
set

114 31 (27.19%) 83 (72.81%)

Test set 58 18 (31.03%) 40 (68.97%)
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2.6  Parameter adjustment

The production parameters have an important impact on 
particleboard performance. Due to the lack of theoretical 
guidance related to the production parameters, tuning its 
parameters can only be completed based on the actual expe-
riences of staff. It is challenging to meet the accuracy of 
parameter regulation in the process.

Workers could use the recommendation from the deci-
sion tree model or extracted rules to adjust the variable’s 
value in the process. All production parameters are saved in 
the database for data analytics in the next round.

3  Results and discussion

3.1  Relevance variables

With the five evaluators mentioned above, the experimental 
results reveal that five of the 31 variables are significantly 
relevant to particleboard class, i.e., resin pH, mat weight, 
resin viscosity, resin gel time, and resin density.

3.2  Recommended optimum parameters from the 
model

The five variables obtained from the preliminary selection 
in the previous step were used in the experiment. The deci-
sion tree model for classifying the quality of the particle-
board class (pass/fail) is shown in Fig. 3. The results show 
that the resin pH and viscosity are selected as relevant vari-
ables, and the recommended split points are shown in the 
model. This case study can be considered a class imbalance 
problem; the dataset distribution reflects a significant major-
ity of one class and a minority of another. In this case, we 
aimed to investigate failed particleboard; therefore, we used 
specificity to evaluate the model. The experimental results 
on the test set showed that the model had a “Fail” particle-
board specificity rate of 92.5%.

The decision tree model in Fig. 3 can be converted to clas-
sification IF-THEN rules easier for humans to understand.

Rule1: IF (Resin pH > 8.39) THEN particleboard = Fail.
Rule2: IF (Resin pH < = 8.39 AND Resin Viscos-
ity > 284.5) THEN particleboard = Fail.
Rule3: IF (Resin pH < = 8.39 AND Resin Viscos-
ity < = 284.5) THEN particleboard = Pass.

It should be noted that the split point is often taken as the 
midpoint of two known adjacent values of the attribute, and 
it may not be a preexisting attribute value from the training 
data.

2.5  Model construction

A decision tree is one of the most popular machine-learning 
algorithms for supervised learning problems. It has been 
widely used and is still being actively researched since it 
shows relatively good predictive performance and provides 
easy-to-understand and interpretable decision rules (Hwang 
et al. 2020). The attribute selection method in decision tree 
induction specifies a heuristic procedure for selecting the 
attribute that best discriminates the given samples according 
to class (Han et al. 2022). This method also determines the 
splitting criterion that tells us which attribute (variable) is 
best to separate and may indicate a split point. The splitting 
criterion is chosen so that, ideally, the resulting partitions at 
each branch are as pure as possible. A partition is pure if all 
its samples belong to the same class.

The variables obtained from the preliminary selection 
in the previous step were used in this step. Other variables 
which were irrelevant could then be excluded from consid-
eration. We used the C4.5 decision tree in Weka software 
version 3.8.6 for selecting a subset of relevant variables 
and defining split points of the process variable’s value in 
places that may help improve the particleboard classifica-
tion accuracy.

Metrics for evaluating the model include accuracy, sen-
sitivity as true positive rate, and specificity as true negative 
rate. True positive (TP), the number of pass particleboard 
(positive samples), were correctly classified by the model. 
True negative (TN), the number of failed particleboard 
(negative samples), were correctly classified by the model. 
False positive (FP), the number of failed particleboard, 
were incorrectly classified by the model (e.g., samples of 
failed particleboard for which the model classified as pass 
particleboard). False negative (FN), the number of pass par-
ticleboard, were incorrectly classified by the model (e.g., 
samples of pass particleboard for which the model classified 
as failed particleboard).

Accuracy rate = (TP + TN) / (P + N) ,

Sensitivity rate = TP/P,

Specificity rate = TN/N,

where P is positive samples, and N is negative samples.

Table 2  The evaluator for variable selection
Evaluator Search method
ReliefF Ranker
Cfs GreedyStepwise
Cfs BestFirst
Correlation Ranker
GainRatio Ranker
InfoGain Ranker
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and increasing the pH level being more than 8 to achieve a 
suitable shelf life or storage life (Dunky and Pizzi 2002). It 
is well-known fact that UF resin is an acid-catalyzed cur-
ing resin, and under the hot-pressing process, the pH of 
UF resin is decreased by an acidic addition, which quickly 
causes the resin to cure (Maloney 1993). Xing et al. (2006) 
reported that the initial pH value of UF resin played a sig-
nificant role in the beginning of the resin-curing rate. They 
explained that when the pH value of UF resin was above 
neutral, the gel time of UF resin dramatically increased, 
which affected the bonding strength of wood composites. To 
achieve a shorter resin gel time, adding an acid catalyst can 
increase and accelerate the curing rate of UF resin. Thus, its 
pH should be kept at neutral, which is around 7, where this 
resin stores well, and it can be quickly brought to curing pH 
by adding a small amount of the acid catalyst.

The results also showed that the initial viscosity of liquid 
resin influences IB value. The IB does not satisfy the EN 
standard requirement when viscosity exceeds 284.5 Center-
Point. The effect of resin viscosity on the bonding interface 
area might explain this circumstance. Gavrilović-Grmuša et 
al. (2012) reported that UF resin with low viscosity pen-
etrated deeper into the wood than UF resin with high viscos-
ity. They also explained that since the amount of adhesive 
on the particles creating a good glue line provides bond per-
formance, strengthening the wood in the interface will affect 
bond strength and stiffness.

It is well-accepted that various processing parameters 
have affected the resultant particleboard performances, par-
ticularly internal bonding strength (Kelly 1977; Riegler et 
al. 2015; De Palacios et al. 2018; Zhang et al. 2022). How-
ever, the results of this dataset analysis show that resin 
characteristics, namely pH value and viscosity, significantly 
affected the internal bond strength of the samples.

3.3  Influence of resin characteristics

Resin characteristics such as resin types, resin content, resin 
reactivity, chemical structure and composition, degree of 
condensation, molar mass distribution, mole ratio, viscos-
ity, and resin curing rate affect the bonding strength of wood 
composites (Hse et al. 1994; Gavrilović-Grmuša et al. 2012; 
Gadhave et al. 2017; Gonçalves et al. 2018; Jeong and Park 
2019).

Based on the decision tree analysis, the resin’s pH 
affected the samples’ IB value. When the pH value exceeds 
8.39, the IB does not meet the EN standard requirement. 
It can be explained by the effect of resin pH value on the 
curing rate. The condensation reaction between urea and 
formaldehyde makes UF resin. It is an acid-catalyzed curing 
resin. This resin can be cured quickly in the presence of an 
acid catalyst and by applying heat. In industrial production, 
UF resin is manufactured in two main steps. In the first step, 
the addition reaction is carried out in a pH range of 8–9 to 
formulate Hydroxymethylureas.

In contrast, the mixture is carried out under acidic condi-
tions, generally in the range of 4.8–5.3, and the condensation 
reaction is completed until it reaches the desired viscosity in 
the second step. Then, the reaction is arrested by cooling 

Fig. 3  The decision tree model for particleboard classification
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significant relationships among variables that can be used to 
predict the performance of particleboard.
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