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Abstract
Classification of wood species using computer-related technology is not only significant in the modernization of wood 
industrialization, but also makes it easier for nonwood professionals to identify different wood types accurately and avoid 
being deceived. Presently, most wood classification methods use a single feature to describe the wood, which is restrictive 
and provides incomplete information. In this study, macroscopic transverse section images and spectral curves of wood 
were used as the research objects, and 50 species of wood were classified. A wood species identification method based on 
the fusion of spectral features and texture features is proposed, which has the advantages of convenient data collection, fast 
identification speed, high identification accuracy, and anti-noise interference. First, a digital camera and a spectrometer were 
used to acquire the image and spectral curve from the wood transverse sections. The acquired spectral and texture features of 
the wood transverse sections were extracted with the fractal method and the local binary pattern theory method, respectively, 
and both extracted features were fused using the canonical correlation analysis feature fusion method. The fused features 
were then classified using a support vector machine classifier. The experimental results demonstrated that the classification 
accuracy of the texture and spectral features alone was 91.96% and 92.67%, respectively, whereas that of the fused features 
was 99.16% in the “leave-one-out” cross-validation. The wood classification method outlined in this paper has higher clas-
sification accuracy than existing mainstream methods. In addition, even after adding noise to the image and spectrum, it was 
observed that the classification accuracy did not decrease significantly, which indicates that the method described in this 
paper achieves excellent classification even in the presence of noise interference.

1  Introduction

During industrial production of wood, prior classification 
of the species is of great significance. The classification 
of wood species can be divided into the following broad 
categories. The first kind of method uses the anatomical 
characteristics of the wood species (Da Silva et al. 2017), 
which although providing a higher classification accuracy, 
requires the wood to be sliced to observe its anatomy, has a 
complex sample preparation procedure, and is not amenable 

to nondestructive testing. The second kind of method uses 
the genetic information of the wood to identify the wood 
species (Yu et al. 2017; Jiao et al. 2019). This method is 
often applied to the identification of endangered and ancient 
wood species. However, it also has the same problems that 
are encountered during anatomical testing and is not suitable 
for mass classification of wood species. The third kind of 
method is to use stress waves to classify wood (Rojas et al. 
2011). This kind of method is novel, but it requires quiet 
environmental conditions of data collection without noises. 
The fourth kind of method uses the macroscopic character-
istics of wood for classification. Macroscopic features refer 
to the textural, spectral, macroscopic structural (pores, wood 
rays, etc.), odor-related, and other features of wood. This is 
a very simple and convenient wood classification method as 
such features are usually easy to obtain and have a strong 
ability to describe the samples.

When classifying wood through its macroscopic features, 
any section, whether transverse, radial, or tangential, can be 
used. However, certain scholars have noted that transverse 
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sections are better suited in research to obtain wood classifi-
cation and identification (Barmpoutis et al. 2018). Recently, 
several scholars have used the macroscopic characteristics 
of the transverse sections to classify wood species. Rosli 
et al. (2019) trained the texture feature of tropical wood 
transverse sections using a gray level co-occurrence matrix 
(GLCM) and back propagation (BP) neural network, and 
the method identified tropical tree species in less than one 
second. Zamri et al. (2016) extracted the textural features of 
transverse sections using the improved basic gray level aura 
matrix (I-BGLAM), compared them with those obtained 
with GLCM, and achieved a final classification accuracy of 
97.01%. There are numerous ways to classify images using 
texture features. Armi and Fekri-Ershad (2019) pointed out 
that most extraction methods which use texture features 
have rotation invariance; nonetheless, such features are also 
extremely sensitive to noise, so that the classification of 
wood by using only texture features has inevitable defects. 
In addition to textural features, the statistical features of the 
pores on the wood transverse section can also be used to 
classify the wood species. Zamri et al. (2016) used a fuzzy 
statistical analysis of the pores in wood transverse sections 
to classify 52 tropical wood species. Experimental results 
showed a significantly higher accuracy using this method 
than that of the GLCM texture feature recognition method. 
Ibrahim et al. (2018), a part of the same research team, fur-
ther improved the identification accuracy of wood species 
by using fuzzy classification of the statistical features of the 
pores in the wood transverse sections and the texture clas-
sification with BGLAM. However, the above mentioned two 
methods have certain problems: first, the pore size of wood 
is obscure, and the clear pores of all hardwood species on 
the macroscopic scale cannot be captured; second, the trans-
verse sections of several wood species have similar statistical 
features; third, this type of method cannot be used for clas-
sifying mixed samples of hardwood and coniferous wood. 
Deep learning has also been widely applied to the identifi-
cation of wood species recently. De Geus et al. (2021) used 
a deep learning model based on transfer learning to iden-
tify images of wood cross-sections. Hu et al. (2019) used 
Densenet to identify the types and defects of wood. The use 
of spectral features to classify wood is also feasible. Pozhi-
daev et al. (2019) used near-infrared spectroscopy to identify 
archaeological wood samples. However, spectral classifica-
tion requires a very stable data acquisition environment and 
high data acquisition cost. Meanwhile, the spectral feature 
also undergoes changes due to impurities, colors, and other 
components on the wood surface.

There are many studies which have shown that consider-
ing multiple features can provide a better performance than 
using any single feature alone (Chen et al. 2016; Zhang et al. 
2019). Presently, the data type that can comprehensively 
describe the macroscopic characteristics of wood transverse 

sections is hyperspectral data, which simultaneously takes 
into account both the image and spectral information of the 
wood. However, owing to the large amount of hyperspectral 
data and the slow data acquisition speed, it is still impossi-
ble to realize wood classification and recognition on a large 
scale. Therefore, a 1-dimensional spectrometer and digital 
camera were used in this study to collect the spectral and 
image information, respectively, from the wood transverse 
section, which can reduce the cost of data acquisition and 
storage and relatively accelerate the classification and iden-
tification speed.

The research purpose of this paper is to use the spectral 
information and image information of wood transverse sec-
tions for wood species recognition, since the fused feature 
may have more abundant and complimentary classification 
information. Therefore, first it was considered how to extract 
effective feature vectors through the spectral information 
and image information of wood transverse sections, and 
then how to fuse the two kinds of features to form a more 
representative feature vector, and finally verify the effect of 
the feature fusion on wood classification by experimental 
comparisons.

2 � Materials and data acquisition

For the experiments, 50 wood species samples were used 
in this study (as described in Table 1). The samples were 
mainly from the Beijing Panzhuang and the Shanghai Furen 
global timber markets. The research team procured the sam-
ples in batches to prevent them from being from the same 
tree. The wood sample set included not only hardwood and 
coniferous wood, but also wood samples of the same genus 
(e.g., wood species 23, 24, 25 in Table 1 are biologically 
similar species which belong to the same genus).

More than 25 logs for each tree species were prepared. 
It is important to use logs from the tree trunk, irrespective 
of the exact size and location. The logs were then cut into 
small pieces measuring around 2 × 2 × 3cm and the size of 
the wood transverse section was retained at 2 × 2cm . The 
wood samples were additionally subjected to polishing and 
cleaning intended to highlight the anatomical features of the 
wood. Two small pieces of samples were randomly selected 
from each log and 50 samples were selected from each tree 
species, and the sample number of the data set is 2500.

Figure  1 shows the spectrum and image acquisition 
equipment. The spectrum capturing equipment comprised 
an Optics USB2000-VIS–NIR miniature optical fiber spec-
trometer, light source, and acquisition software. The image 
acquisition equipment comprised a charge-coupled device 
(CCD) lens, optical microscope, light emitting diode (LED) 
light source, and acquisition software. The magnification 
range of the optical microscope is 5–100 times, LED light 
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source is white light, and CCD lens supports a maximum 
resolution of 1920 × 1080 pixels.

When collecting information from the wood transverse 
section, data collection was performed on two acquisi-
tion platforms in sequence. To prevent confusion between 
samples, it is necessary to label the wood samples and pay 
attention to both sides of the samples. The RGB images 

and spectral reflectance curves of the 50 wood species in 
Table 1 are given in Appendix 1 and Appendix 2 in Sup-
plementary Information, respectively. It is worth mention-
ing that the RGB images of some tree species out of the 
total 50 are visually very similar (for example, tree species 
4 and 5 and tree species 18 and 33), which are difficult to 
distinguish with naked eye observation.

Table 1   Wood species information

NUM Botanical name Category NUM Botanical name Category

1 Acer davidii Diffuse-porous hardwood 26 Pinus sylvestris Softwood
2 Amygdalus davidiana Diffuse-porous hardwood 27 Platanus orientalis Semi-diffuse-porous hardwood
3 Aucoumea klaineana Diffuse-porous hardwood 28 Pometia pinnata Diffuse-porous hardwood
4 Betula alnoides Diffuse-porous hardwood 29 Populus alba Diffuse-porous hardwood
5 Betula platyphylla Diffuse-porous hardwood 30 Populus cathayana Diffuse-porous hardwood
6 Calophyllum inophyllum Diffuse-porous hardwood 31 Populus tomentosa Diffuse-porous hardwood
7 Chamaecyparis nootkatensis Softwood 32 Pouteria speciosa Diffuse-porous hardwood
8 Cinnamomum camphora Diffuse-porous hardwood 33 Prunus avium Diffuse-porous hardwood
9 Cyclobalanopsis glauca Diffuse-porous hardwood 34 Pseudotsuga menziesii Softwood
10 Dipterocarpus alatus Diffuse-porous hardwood 35 Pterocarpus soyauxii Diffuse-porous hardwood
11 Entandrophragma candollei Diffuse-porous hardwood 36 Quercus mongolica Ring-porous hardwood
12 Fraxinus mandshurica Ring-porous hardwood 37 Quercus acutissima Ring-porous hardwood
13 Fraxinus chinensis Ring-porous hardwood 38 Rhodamnia dumetorum Diffuse-porous hardwood
14 Guibourtia demeusei Diffuse-porous hardwood 39 Robinia pseudoacacia Semi-diffuse-porous hardwood
15 Guibourtia ehie Diffuse-porous hardwood 40 Sailx matsudana Diffuse-porous hardwood
16 Intsia bijuga Diffuse-porous hardwood 41 Shorea contorta Diffuse-porous hardwood
17 Juglans mandshurica Semi-diffuse-porous hardwood 42 Shorea laevis Diffuse-porous hardwood
18 Juglans nigra Semi-diffuse-porous hardwood 43 Sophora japonica Ring-porous hardwood
19 Larix gmelinii Softwood 44 Swietenia mahagoni Diffuse-porous hardwood
20 Magnolia fordiana Diffuse-porous hardwood 45 Tectona grandis Semi-diffuse-porous hardwood
21 Millettia laurentii Diffuse-porous hardwood 46 Terminalia cattapa Diffuse-porous hardwood
22 Picea asperata Softwood 47 Tilia mandshurica Diffuse-porous hardwood
23 Pinus radiata Softwood 48 Toona ciliata Ring-porous hardwood
24 Pinus koraiensis Softwood 49 Ulmus glabra Ring-porous hardwood
25 Pinus massoniana Softwood 50 Vernicia fordii Ring-porous hardwood

Fig. 1   Data acquisition system 
a. Spectral acquisition system b. 
Image acquisition system
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3 � Theory and method

3.1 � Use of fractal theory to extract spectral features

The fractal-dimension geometry describes the data through 
self-similarity, and the fractal dimension is used to extract the 
features of the spectrum with strong stability. To describe the 
spectral characteristics comprehensively, the spectrum must 
be segmented (Mukherjee et al. 2013). Thus, multiple fractal 
dimensions are obtained. Assuming P is the step size, W is 
window size, S is spectral data, and Nr represents the length 
of the spectral curve, the number of spectral segments Nf  is 
calculated by Eq. (1) (Liu et al. 2016). Nf  can also be defined 
as the characteristic dimension. The dimension reduction of 
the spectrum can be achieved by adjusting the size of W and P. 
Figure 2 depicts the meanings represented by W and P in the 
spectral curve. It can be seen from the figure that in the case 
of a small P value, there will be a large common part between 
adjacent windows.

To estimate the fractal dimension of the spectrum, it is nec-
essary to use the variogram estimator to further decompose 
each segment of the spectrum. Let the spectral data after seg-
mentation be Si

(
i ∈

{
1,2…Nf

})
. The length of Si is W , and 

��(t) is calculated by Eq. (2) (Gneiting et al. 2012). Here, Si
u
 

and Si
u+t

 are two points separated by the lag of t. When � = 1 , 
Eq. (2) gives the average of the differences in absolute values, 
and when � = 2 , Eq. (2) is the average of difference squares.

(1)Nf =
Nr −W

P
+ 1

(2)��(t) =
1

2
E|Si

u
− Si

u+t
|�

It is evident from Eq. (2) that different values of t  will 
obtain a corresponding ��(t) using linear regression analysis 
on logt and log��(t) to solve the equation of the linear regres-
sion line. The angle of inclination for the slope ki is �i . The 
fractal dimension Di is solved according to Eq. (3). Figure 3 
shows the scatter diagram and regression line with logt as 
the abscissa and log��(t) as the ordinate, where W = 100 nm, 
P = 50 nm, and t = {2,4,… 2n}(2n ≤ W) . The calculation 
method of the feature extraction Fi is shown in Eq. (4); Ei 
represents the energy of Si.

3.2 � Extraction of color image texture feature based 
on LBP

Local binary pattern (LBP) is an image-texture feature 
description operator and is widely used in face recognition 
(Ahonen et al. 2004). In this section, a color image feature 
extraction algorithm based on LBP is proposed, which can 
be used to effectively identify the wood species tested in this 
study by combining the wood texture and color information. 
The algorithm is described as follows.

Let the size of a color image I be M×N×3 . The matrix 
corresponding to the three-channel RGB of the color image 
is IR, IG , IB , respectively, and the dimension of this matrix is 
M×N . We define a 3 × 3 × 3 matrix w whose central element 
is w(2,2, 2) ; it has 26 elements around it. According to Eqs. 
(5) and (6), the eigenvalue of the central element w(2,2, 2) 
is calculated as v.

(3)Di = 2 −
�i

2

(4)Fi = Di × Ei(Ei =
∑W

j=1
(Si

j
)
2
)

Fig. 2   Illustration of W and P Fig. 3   Illustration of fractal dimension calculation
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The eigenvalue v can be any integer num-
ber between 0 and 26. By placing w in the upper 
left corner of the color image I and traversing all 
the pixels, a matrix IwG of size (M − 2) × (N − 2) 
can be achieved. The central element will now 
be  I(m, n, 2)(m ∈ {2,3,…M − 1}, n ∈ {2,3,…N − 1}) . To 
take into consideration the characteristics of the remaining 
channels, we changed the order of the three channels of 
the RGB image and recombined them to obtain new BRG 
and GBR images. Two new matrices IwR and IwB can be 
obtained by reusing the above method. In Table 2, several 
characteristic matrices under different wood color chan-
nels are presented.

Next, the feature vectors are extracted. Taking all the 
values xi(xi ∈ {0,1, 2,… 26}) in each eigenmatrix IwG,IwR, 
and IwB as the abscissa, respectively, let yi be equal to the 
number of elements whose values are xi . The feature vector 
was established with the value of yi∕((M − 2) × (N − 2)) as 
the ordinate. There are three such feature vectors. Finally, 
these feature vectors are connected in series to obtain the 
final feature vector. Figure 4 displays the feature vectors 
of the four wood species in Table 2. It can be intuitively 

(5)v =

3∑

i=1

3∑

j=1

3∑

k=1

S(w(2, 2, 2) − w(i, j, k))

(6)S
(
xi − xc

)
=

{
1 xi > xc
0 xi ≤ xc

seen from Fig. 4 that the characteristic curves of different 
tree species are less similar.

3.3 � Feature fusion method based on CCA​

Presently, fusion methods mainly include data-level, feature-
level, and decision-level fusion. In this study, because the 
spectral and texture features of wood transverse sections 
were extracted, data-level fusion cannot be conducted. Here, 
a feature-level fusion method based on canonical correlation 

Table 2   Characteristic matrices of different wood species

Original image characteristic matrix characteristic matrix characteristic matrix

Cyclobalan

opsis glauca

Populus 

cathayana

Pseudotsug

a menziesii

Larix 

gmelinii

Fig. 4   Eigenvectors of the four wood species in Table 2
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analysis (CCA) was used (Sun et  al. 2005; Haghighat 
et al.2016). In this method, two feature vectors can be fused 
to produce a new feature vector, and the fused feature vec-
tor has a better classification and recognition effect than the 
sole use of one type of feature vector. Prior to the fusion of 
the eigenvectors, the principal component analysis (PCA) 
dimension reduction is performed to reduce the dimensions 
of the two vectors and remove the dimension of the eigen-
value less than 10−6.

It is assumed that the spectral and texture feature vectors 
are FS = [x1, x2 … xn] and FT = [y1, y2 … yn] , respectively; 
xi ∈ Rp1 , yi ∈ Rp2 , where p1 and p2 represent the dimensions 
of the spectral and texture feature vectors, respectively. After 
defining the linear combinations X∗ = WT

x
FS , Y

∗ = WT
y
FT , 

then WT
x
 and WT

y
 corresponding to the maximum value of the 

Pearson correlation coefficient can be calculated as given 
in Eq. (7).

To calculate the Pearson correlation coefficient, the 
covariance matrix S is introduced. S is defined in Eq. (8) 
(Haghighat et al. 2016), where S contains all the relevant 
information in FS and FT . In Eq. (7), var

(
X∗

)
= WT

x
SxxWx , 

cov
(
X∗,Y∗

)
= WT

x
SxyWy , var

(
Y∗

)
= WT

y
SyyWy. Under the 

condition that var
(
X∗

)
= var

(
Y∗

)
= 1 , the Lagrangian mul-

tiplication is used to maximize Eq. (7).

(7)corr
(
X∗,Y∗

)
=

cov
(
X∗,Y∗

)

var
(
X∗

)
.var

(
Y∗

)

According to the literature (Sun et al. 2005), there are 
two schemes for implementing feature-level fusion: “Con-
cat” and “Sum”. The features after fusion are defined as 
typical correlation discriminant features and are denoted 
as Z . The two feature-level fusion methods can be calcu-
lated according to Eqs. (9) and (10):

The feature-level fusion process of texture features 
and spectral features is shown in Fig. 5. First, the texture 
features of RGB images were extracted by LBP feature 
extraction, then the spectral features of wood cross section 
were extracted by fractal theory, and finally the two feature 
vectors were fused by CCA feature fusion to make them 
into a single feature vector.

(8)S =

[
cov

(
FS

)
cov

(
FS,FT

)

cov
(
FT ,FS

)
cov

(
FT

)
]
=

[
Sxx Sxy
Syx Syy

]

(9)Z1 =

(
X∗

Y∗

)
=

(
WT

x
FS

WT
y
FT

)
=

(
WT

x
0

0 WT
y

)(
FS

FT

)

(10)Z2 = X∗ + Y∗ = WT
x
FS +WT

y
FT =

(
Wx

Wy

)T(
FS

FT

)

Fig. 5   Texture and spectral feature-level fusion diagram with CCA 
algorithm (the wood species is Amygdalus davidiana, and the frac-
tal parameters are P = 20 , W = 200 . Texture feature dimension is 81, 

spectral feature is 96, and the fused feature with “concat” operator is 
88 while that with “sum” is 44)
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4 � Results and discussions

4.1 � Classification of wood species using spectral 
features

In this section, the influence of different W  and P in 
Sect. 2.1 on wood classification accuracy is examined to 
find the optimal values, and the classification accuracy 
under different P is discussed. The classifier used in this 
study is a SVM (support vector machine) classifier. To 
obtain a reliable and stable model, the “leave-one-out” in 

the cross-validation (Browne 2000) is used as the evalua-
tion method of classification results; that is, only one sam-
ple is left as the test set, and the remaining samples are the 
training set. Thus, the sample set data can be fully utilized.

As can be seen from Fig. 6, the value P is inversely pro-
portional to the classification accuracy to some extents. The 
change in W  and � values has little influence on the accu-
racy. The reduction of W  and P values leads to an increase 
in the feature dimension, which not only increases the 
feature extraction time but is also traced to the increase in 
post-processing amount. Table 3 displays the detailed val-
ues of cross-validation classification accuracy Ac , feature 

a b

c d

Fig. 6   Influence of variables P and W on cross-validation (a � = 0.5 , b � = 1 , c � = 2 , d � = 4)

Table 3   Effects of variables P 
and W

W P Ac (%) Ti (s) Di W P Ac (%) Ti (s) Di

50 20 91.96 0.0027 96 50 60 90.92 0.0015 32
150 20 91.26 0.0019 91 150 60 90.64 0.0011 31
250 20 91.36 0.0017 86 250 60 90.84 0.0011 30
350 20 91.20 0.0013 81 350 60 90.56 0.0011 28
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extraction time Ti , and feature dimension Di , corresponding 
to W  and P when � = 2 in Fig. 6.

Table 3 lists the average of 50 feature extraction times. 
After comprehensive consideration, it is suggested using 
larger W and P values, namely the optimal value W = 350, 
P = 40, � = 4 in Fig. 6d. The corresponding classification 
accuracy is 91.40%, while the feature dimension is 41 and 
the feature extraction time is 0.0013 s.

4.2 � Classification of wood species using texture 
features

In this section, it is discussed whether the wood texture clas-
sification method described in Sect. 2.2 has higher recogni-
tion accuracy in different neighborhood ranges and different 
color spaces. Four field points are illustrated in Fig. 7. The 
black cube represents the pixel points that need to be con-
sidered. When all pixels around the central pixel are consid-
ered, as illustrated in Fig. 7a, we obtain feature dimension 
81. If only a few pixels near the central pixel are considered, 
as shown in Fig. 7b, c, their feature dimensions are 57 and 
45, respectively. Figure 7d considers 74 pixel points near the 
innermost pixel; feature dimension 225 is obtained.

Table 4 shows the classification accuracy and feature 
extraction time of the four eigenvectors under the SVM clas-
sifier. It can be seen that the higher the feature dimension, 
the higher the accuracy; however, the influence of the feature 
dimension on the classification accuracy is not strong, and 
the increase in the feature dimension will lead to a signifi-
cant increase in the feature extraction time.

In addition, Table 4 also considers the influence of 81D 
feature vectors on the classification accuracy under differ-
ent color spaces. It can be seen from the results that there 
are great differences in the classification accuracy in differ-
ent color spaces. If the RGB space is converted into NTSC 
or HSV space, the classification accuracy is significantly 
reduced.

Table 5 shows images of wood transverse sections in 
different color spaces. In Table 5, Image_1, Image_2 and 
Image_3 represent the grayscale images in three different 

channels, respectively. Table 5 shows that all three chan-
nels of RGB images have relatively clear texture structure, 
while texture information of some channels in NTSC and 
HSV space is not obvious. To further explain the problem, 
Table 5 also gives the mean (Mean), contrast (Con) and 
entropy (Ent) of the gray difference histogram (the larger 
the value of Mean, Con and Ent variables, the greater the 
difference between adjacent pixels of the image) (Li and 
Liu 2009; Wu et al. 1992). It can be found from the results 
that the difference between adjacent pixels in RGB image is 
large and the texture is obvious. Because of this, the clas-
sification accuracy of NTSC and HSV is lower than that of 
RGB color space.

4.3 � Classification of wood species by fusion 
features

In this section, the effect on classification after the fusion 
of spectral and texture features is discussed and the best 
parameters that ensure the most accurate classification of 
texture and spectral features are found.

Figure 8 shows the feature classification results of texture 
and spectral features using CCA in different fusion schemes 
under different parameters. The classification effect of using 
“Concat” fusion scheme is similar for both 57D and 45D 
texture and spectral features, with the highest classification 
accuracy being up to 99.16% in the “leave-one-out” cross-
validation. The classification rate using “Concat” fusion 
scheme is greater than that using “Sum” fusion scheme.

It is worth mentioning that the accuracy of wood clas-
sification using a single feature increases in proportion to 

Fig. 7   Four characteristic cases of textural feature classification a all 26 adjacent pixels are considered; b a few pixels are considered; c other 
pixels are considered; d all 74 adjacent pixels are considered

Table 4   Classification accuracy and feature extraction time

Feature dimensionality 81D 57D 45D 225D

Cross validation 90.53% 90.13% 88.53% 92.67%
Time (single sample) 2.376 (s) 1.854 (s) 1.564 (s) 5.094 (s)
Color space RGB NTSC HSV
Cross validation 90.53% 36.93% 71.60%
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the size of the dimension. However, after a feature fusion 
with CCA, an increase in dimension does not yield higher 
classification accuracy. Table 6 shows the detailed data 

corresponding to the highest accuracy for each method 
depicted in Fig. 8. Di-T and Di-S represent the feature 
dimensions of texture and spectrum, respectively, and Ti 

Table 5   Image of wood in different color spaces

Color 

Space
Image Image_1 Image_2 Image_3 Mean Con Ent

RGB 58.52 3427.7 11.46

NTSC 44.23 2225.5 7.06

HSV 44.90 4405.7 9.83

a b

Fig. 8   Results of feature fusion classification accuracy a P = 20; b P = 40

Table 6   Classification results 
after feature fusion in the 
“leave-one-out” cross-validation

Scheme Concat Sum

P W Di-T Di-S Ti (s) AC (%) W Di-T Di-S Ti (s) AC (%)

P = 20 200 81 88 2.416 98.92 200 81 88 2.433 98.04
200 57 88 1.834 99.12 200 57 88 1.829 98.48
250 45 86 1.584 99.16 200 45 88 1.579 98.48

P = 40 250 81 43 2.376 98.40 250 81 43 2.376 97.40
200 57 44 1.831 98.96 250 57 43 1.811 98.20
250 45 43 1.521 98.92 250 45 43 1.514 98.20
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represents the total time required for extracting the two fea-
tures, feature fusion and classification for one wood sample.

To reflect the complementary effect of feature fusion in 
this study, the dataset was divided, and 35 samples of each 
tree species were randomly selected as the training set and 
the remaining 15 samples as the test set. It should be empha-
sized that the classification accuracy of the test set in this 
division-validation was lower than that in the “leave-one-
out” cross-validation. The classification accuracy on the test 
set was 96.20% in this division-validation. Figure 9 shows 
the classification results of 750 samples in the test set after 
using spectral and texture features alone and with feature 
fusion. The abscissa in Fig. 9 represents the serial number 
of the wood sample, which can be divided by 15 to obtain 
the actual label serial number, and the ordinate represents 
the label serial number of the wood species. The “*” and the 
“+” represent the error sample distributions of wood classifi-
cation using spectral and texture features alone, respectively, 
and the “O” represents the error sample distributions after 
“Concat” feature fusion.

It can be seen from Fig. 9 that the number of error sam-
ples after fusion is significantly smaller than when only 
spectral and texture features are used. In other words, spec-
tral and texture features complement each other and fur-
ther improve the classification accuracy of wood. In sum-
mary, the highest observed classification accuracy rate was 
99.16%, with parameters W = 250 and P = 20 , when “Con-
cat” was used as the fusion strategy and 45D as the texture 
feature.

The classification degree of texture feature, spectral fea-
ture and fusion feature is also discussed. The sample set X 

is defined as having C classes (in this study C = 50 ). There 
are a total of nj samples in each class j (in this study nj = 50 ), 
the sample’s mean feature of each class j is mj , the mean of 
all wood samples is m , Pj is the prior probability for class 
j. The intra-class divergence matrix Sw and the inter-class 
divergence matrix Sb are computed in Eqs. (11) and (12), 
respectively. The dispersion criterion function J is shown 
in Eq. (13). Obviously, the larger J is, the more divisible 
its feature is.

Table 7 presents the separability results of texture fea-
tures, spectral features and fused features after CCA fusion. 
From Table 7, it can be seen that fused features after CCA 
fusion have stronger separability.

4.4 � Comparison with other methods

In this section, the proposed method is compared with 
mainstream wood classification methods. The compari-
son methods mainly discussed in the literature include the 
GLCM texture classification method (Rosli et al. 2019), 

(11)
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Fig. 9   Sample classification after fusion
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Improved-Basic Gray Level Aura Matrix (I-BGLAM) 
method (Zamri et al. 2016), Fuzzy + SPPD (statistical prop-
erty of pores distribution) + I-BGLAM method (Ibrahim 
et al.2018, 2017), kernel genetic algorithm (GA) (Yusof 
et al. 2013), color moment feature method (Zhao 2013), 
multidimensional texture method (Barmpoutis et al. 2018), 
and spectral extraction method (Peng and Yue 2019). In 
addition, some pre-trained networks were used to classify 
wood images, including GoogLeNet (Szegedy et al. 2015), 
SqueezeNet (Iandola et al. 2016), ResNet18 (He et al. 2016) 
and Vgg16 (Simonyan and Zisserman 2014). The training 
parameters of these networks have been predetermined and 
trained using transfer learning, which requires the use of the 
Deep Learning Toolbox™ in Matlab (Beale et al. 2020). The 
highest classification accuracy obtained by each algorithm 
on the present dataset is shown in Table 8.

As evident from Table 8, the classification accuracy of the 
methods cited in the GA (GA + KDA, kernel discriminant 
analysis) and Fuzzy + SPPD + I-BGLAM is low because 
they all use the statistical features of pores. There are three 
main problems with using pore statistical features from the 
dataset used in this study. First, not all the wood species in 
the present dataset have pores, which makes it impossible 
to extract the pore features for such wood species. Second, 
capturing the macroscopic characteristics of the wood trans-
verse section in the pore segmentation is difficult. Third, 
the number of wood samples containing white pores in the 
dataset is relatively small. The method of identifying wood 

species by using texture features has not achieved satisfac-
tory results because a large number of wood species sampled 
in this study have similar textures. Although the use of color 
moments can provide a higher classification accuracy, the 
color of the wood surface is not durable and wood cross-
sections change color frequently. Therefore, it is generally 
not considered as a reliable basis for the classification of 
wood species. The methods of using convolutional neural 
network can obtain higher wood species recognition accu-
racy, but the accuracy of these methods is still lower than 
that of the current feature fusion method.

4.5 � Influence of noise on classification accuracy

When using the spectral reflectance curves and macroscopic 
images of wood transverse sections to classify wood, the 
influence of the external environment on data collection can-
not be avoided. Several factors affect the spectral reflectance 
curves, including light conditions, wood surface impurities, 
and calibration frequency. The factors affecting the qual-
ity of macroscopic images mainly include light conditions, 
shooting equipment and others. The CCD camera used in 
this study was not high definition, and the person who cap-
tured the image was not a professional. The experimental 
results show a good classification accuracy, which indirectly 
indicates that the method proposed in this paper can deliver 
high accuracy even with ordinary shooting equipment.

Table 7   Feature separability 
measurement

Feature LBP texture Spectrum CCA(Concat) fusion CCA(Sum) fusion

Dimension 81D 57D 45D 96D 88 84 84 44 42 42

J 123.86 107.68 102.48 110.88 189.06 226.10 234.43 148.28 149.36 151.01

Table 8   Classification accuracy 
of mainstream algorithms in the 
cross-validation

Methods Cite reference Feature dimen-
sion

Accuracy (%)

GLCM Rosli et al. (2019) 8 41.73
I-BGLAM Zamri et al. (2016) 136 58.26
Spectrum Peng and Yue (2019) 7 85.73
Color moment Zhao (2013) 9 78.00
GA Yusof et al. (2013) 79 20.67
GA + KDA Yusof et al. (2013) 51 23.33
Multidimensional texture Barmpoutis et al. (2018) 160 76.67
GoogLeNet Szegedy et al. (2015) Convolutional 

neural net-
work

92.80
SqueezeNet Iandola et al. (2016) 86.27
ResNet18 He et al. (2016) 94.40
Vgg16 Simonyan and Zisserman (2014) 83.37
Fuzzy + SPPD + I-BGLAM Ibrahim et al. (2018) and Ibrahim 

et al. (2017)
157 26.53

Method of this article 84 99.16
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In this section, the influence of noise on the classification 
accuracy is discussed. A certain amount of noise was added 
to the spectral reflectance curve and the image, to simulate 
the influence of external factors, and the term SNR (signal 
noise ratio) was assigned for spectral reflectance noise. The 
noise added to the image was “Gaussian noise”, with a con-
stant mean value 0, and the variance was used as the descrip-
tion of the noise. Figure 10 shows the changes in classifi-
cation accuracy after adding noise, with parameter P = 20, 
W = 250, texture feature dimension 54. It can be seen from 
Fig. 10 that the classification accuracy is still maintained at 
a high level after the addition of noise.

Table 9 shows the classification accuracy after noise addi-
tion. The columns Noise 1 and Noise 2 depict the classifica-
tion accuracy after a large amount of noise is added to the 
spectrum and the image, respectively, and Noise 3 describes 
the classification accuracy after adding a large amount of 
noise to both the spectrum and image. It can be seen from 
Table 9 that adding a large amount of noise to the spectrum 
or image alone does not significantly reduce the classifica-
tion accuracy, which is maintained at approximately 96%. 
Even after simultaneously adding a large amount of noise 
to the spectrum and image, more than 80% accuracy can 
still be ensured. In other words, even after a little distortion 
during the spectral or image acquisition process, the method 
proposed in this paper can still ensure a high classification 
accuracy.

5 � Conclusion

In this study, after obtaining spectral and image data of 50 
wood species transverse sections, their spectral and texture 
features were fused after extracting them using the fractal 
and LBP operator, respectively. The SVM classifier was 
then used to classify these wood species. The experimental 
results showed that the classification accuracy of fused fea-
tures increased significantly, and the classification accuracy 
of 99.16% is higher than that achieved with single features 
alone. Therefore, wood classification accuracy can be further 
improved by using CCA fusion to integrate spectral features 
and texture features.

The experimental results also show that the present 3D 
LBP feature extraction operator has certain advantages in 

Fig. 10   Influence of noise on classification accuracy in the “leave-
one-out” cross-validation

Table 9   Classification accuracy after adding noise to image, spectrum or both

Original Noise 1 Noise 2 Noise 3

image

spectrum

Variance - 0.001 0.095 0.095

SNR - 1 40 1

Ac (%) 99.16 96.92 96.16 84.64
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texture classification of wood images, and its classifica-
tion accuracy is higher than that of GLCM and I-BGLAM 
texture feature extraction operators. Moreover, the method 
described in this paper has good anti-interference ability. 
In the case of noise interference to spectral data or image 
data, it can still identify wood species accurately, that is 
to say this method has low requirement for the external 
environmental conditions.

In conclusion, the proposed method can recognize all 
kinds of wood species, including some visually similar 
wood species and biologically similar wood species within 
the same genus. The experimental equipment (i.e., as illus-
trated in Fig. 1) for spectral and image data collections 
is relatively cheap compared to hyperspectral imaging 
device, and these two equipments can collect both image 
and spectral information. Therefore, it has a certain appli-
cation potential in the classification of wood species based 
on multiple features.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00107-​021-​01728-9.
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