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Abstract
The lignin, cellulose and hemicelluloses in wood are polymers that behave similarly to the artificial polymers and are 
bonded together in wood. Lignin differs from the other two substances by its highly branched, amorphous, three-dimensional 
structure. Under appropriate conditions, the moist lignin incorporated in the wood softens at about 100 °C and allows the 
molecules of it to deform in the cell walls. There are many advantages and disadvantages to this phenomenon. If we know 
this process accurately and the industrial areas where it matters, we may be able to improve these industrial processes. This 
article provides a brief theoretical summary of lignin softening and the woodworking processes where it plays a role: wood 
welding, pellet manufacturing, manufacturing binderless boards, solid wood bending, veneer manufacturing, and solid wood 
surface densification.

1  Introduction: thermoplastic behavior 
of lignin

Wood is actually a mixture of polymers, composed of par-
tially crystalline cellulose microfibrils and large amorphous 
hemicellulose and lignin molecules. In lignin, phenyl pro-
pane units create chains, which are crosslinked in an amor-
phous, three-dimensional structure, linked to the cellulose 
fibrils via hemicelluloses (Sakakibara 1991; Zandersons 
et al. 2004; Rowell et al. 2005). Lignin can be classified 
based on the chemical structure of its monomer units. Three 
major groups can be distinguished: grass lignin, softwood 
lignin and hardwood lignin. Depending on the configuration 
of guaiacyl (G), syringyl (S) and p-hydroxyphenylpropane 
(H) units, grass lignin is classified as a GSH lignin, softwood 
lignin is classified as G lignin and GS in case of hardwoods 
(Sarkanen 1975; Stelte et al. 2011b; Sakakibara 1991). The 
amount of lignin varies between species, and also between 
individual tissues such as bark, earlywood, latewood, normal 
wood and compressed wood, branch wood, wood from the 
roots; also by cell types (parenchyma or fibers), and cell 
wall layers, for example middle lamella, primary and sec-
ondary wall layer, and cell corners. Lignin and its chemical 

composition can be examined by various techniques, such as 
ultraviolet microscopy (Lange 1954; Scott et al. 1969; Adler 
1977; Fergus and Goring 1970a, b) densitometric analysis 
(Scott et al. 1969), interference microscopy (Donaldson 
1985), SEM-EDXA (Westermark et al. 1988), transmission-
electron-microscopy (Fromm et al. 2003), and by confocal 
Raman microscopy (Gierlinger and Schwanninger 2006). 
The greatest concentrations of lignin were found in the com-
pound middle lamella and in the cell corners; lower concen-
trations were found in the secondary cell walls (Fergus et al. 
1969; Scott et al. 1969; Fergus and Goring 1970a; Donald-
son 1985; Saka and Goring 1985; Westermark et al. 1988; 
Fromm et al. 2003; Gierlinger and Schwanninger 2006). 
Although the lignin concentration in the middle lamella and 
in the cell corners is high, these regions have a lower tissue 
volume than the secondary cell wall layers, so these regions 
accommodate only about one quarter of the total amount of 
lignin; indeed, most of the lignin is located in the secondary 
walls (Fergus and Goring 1970a, b; Adler 1977; Saka and 
Goring 1985). The lignin concentration of the vessel wall 
is higher than that of the fiber, while ray parenchyma cells 
have a lower lignin concentration than the fibers (Saka and 
Goring 1985).

A polymer can be amorphous or partially crystalline, 
determined primarily by the chemical structure of the pol-
ymer. If the molecule has large side groups and/or many 
branches, or it is irregular in structure, it cannot crystallize 
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when the melted condition cools down. It remains disor-
dered. These are the amorphous polymers.

The state of the polymer can be glassy, elastic and melted. 
In the glassy state, parts of the polymer macromolecule can 
only oscillate. By increasing the temperature, the internal 
energy is increased, the individual parts and segments of the 
molecules can move, and deform, but the relative position of 
the center of the mass of the molecular does not change; the 
polymer has a high degree of reversible deformation. This is 
a flexible state. As a result of further internal energy growth, 
a plasticized condition occurs where the molecules move 
relative to one another and the polymers flow. The transi-
tions between the individual states occur at temperatures 
typical of the particular polymer (Bánhegyi 2005; Hargitai 
2011; Miskolczi 2012). Since polymers do not have a spe-
cific molecular weight, but a density distribution within a 
range, the conversion temperature also influences the range. 
It is known that many amorphous polymers change from a 
glassy state to a rubbery, elastic state above a certain tem-
perature, as they plasticize (Hatakeyama and Hatakeyama 
2010; Medved 2010). The temperature range where the 
glassy to rubbery, plasticized state transformation occurs is 
the glass transition temperature  (Tg) (Back and Salmén 1982; 
Bánhegyi 2005; Hargitai 2011; Miskolczi 2012). The glass 
transition temperature can be examined by several methods 
(both static and dynamic): differential scanning calorimetry 
(DSC), differential thermal analysis (DTA) and thermogravi-
metric analysis (TGA), dynamic mechanical analysis (DMA/
DMTA), dielectric thermal analysis (DETA), and torsional 
pendulum analysis (Hatakeyama et al. 1972; Kelley et al. 
1987; Wolcott 1989; Lenth and Kamke 2001; Miki et al. 
2007; Hatakeyama and Hatakeyama 2010; Miki et al. 2007; 
Gellerstedt 2015; Kong et al. 2017).

The temperature required by lignin at glass transition  (Tg) 
is influenced by a number of factors, such as the presence 
of rigid phenolic side groups on the main chain, the pres-
ence of crosslinking, the number of bonds between chains, 
hydrogen bonds, its molecular weight, isolation method, 
species, lignin conformation, and thermal prehistory, etc. 
(Chow and Pickles 1971; Hillis and Rozsa 1978; Olsson 
and Salmén 1992, 1997; Lenth and Kamke 2001; Windeisen 
and Wegener 2008; Gellerstedt 2015; Furuta et al. 2008, 
2010; Hatakeyama and Hatakeyama 2010). When dry, the 
differences in the glass transition temperature of cellulose, 
hemicellulose and lignin are not big: 200–250 °C for the 
amorphous region of cellulose, 150 to 220 °C for hemicellu-
loses, and 205 °C for lignin (Goring 1963; Back and Salmén 
1982). These values are difficult to validate because hemi-
cellulose and lignin degrade near this temperature (Schaffer 
1973; Back and Salmén 1982). Lignin seems to be the most 
thermally stable component of wood, but various changes 
occur below 200  °C (Sehlstedt-Persson 2005). Lignin 
decomposes over a broader temperature range (200–500 °C) 

than cellulose and the hemicellulose. Degradation studies 
performed on different types of lignin showed an endother-
mic peak at 100–180 °C, as a result of the elimination of 
humidity, followed by two exothermal peaks, the first from 
280 to 390 °C and the second one around 420 °C (Brebu 
and Vasile 2010).

Many researchers have studied the effect of moisture 
content on the  Tg of extracted hemicelluloses and lignin 
(Goring 1963, 1971; Back and Salmén 1982; Irvine 1984) 
or in situ hemicelluloses and lignin (Irvine 1984; Kelley 
et al. 1987; Morsing and Hoffmeyer 1998). Moisture dra-
matically affected the  Tg (Goring 1963; Becker and Noack 
1968; Sakata and Senju 1975; Back and Salmén 1982; Kel-
ley et al. 1987; Wolcott 1989; Wolcott et al. 1990; Bouajila 
et al. 2006; Miki et al. 2007; Hatakeyama and Hatakeyama 
2010; Sen et al. 2013). The structure of lignin is rich in 
phenolic hydroxyl and it offers the possibility to create 
intermolecular hydrogen bonds. Water molecules can break 
these hydrogen bonds and segmental motion can occur eas-
ily (Hatakeyama and Hatakeyama 1998, 2010). The  Tg of 
lignin decreases with increasing moisture content until the 
wood or the lignin reaches its water saturated point. The 
number of hydroxyl groups influences the amount of water 
bound to lignin (Hatakeyama and Hatakeyama 2010). The 
difference between the results could stem from the equilib-
rium and non-equilibrium moisture conditions. For example, 
Salmén (1984) maintained strict moisture control during the 
temperature changes, while Kelley et al. (1987) and Irvine 
(1984) conditioned the samples to an initial moisture content 
and then provided no explicit control for moisture content 
during the tests (Wolcott et al. 1990) (Table 1).

Softwoods contain more lignin than hardwoods, and 
there also are structural differences between softwood and 
hardwood lignin (Sehlstedt-Persson 2005). Softwood lignins 
have higher glass transition temperatures (138–160 °C) 
while hardwood lignins have a lower  Tg range 110–130 °C 
under dry conditions (Sen et al. 2013). The main struc-
tural differences between the two types of lignin is a lower 
content of free phenolic hydroxyl groups. A substantially 
higher content of methoxyl groups is found in hardwood and 
less in softwood lignins, and the hardwood lignins are less 
cross-linked than the softwood lignins (Olsson and Salmén 
1992). The result of Horváth et al. (2011) contradicts though 
this argument above. They examined the thermal softening 
behavior of genetically modified aspen trees with reduced 
lignin content and/or increased S/G ratio, and their results 
suggest that the higher content of methoxyl groups and thus 
less cross-linked lignin did not alter the softening behav-
ior of lignin. The modification of lignin can shift the  Tg: 
sulfonation of the lignin lowered the  Tg depending on the 
degree of sulphonation (Back and Salmén 1982) while lignin 
esterification decreases  Tg (Thiebaud and Borredon 1995; 
Lisperguer et al. 2009). Finally, yellow poplar juvenile wood 
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exhibited a lower  Tg than mature wood. In case of southern 
pine, this trend was reversed (Lenth 1999).

Of course, other wood constituents in a native wood can-
not be separated from lignin. The softening temperature of 
native hemicellulose under dry conditions is high, around 
180 °C (Goring 1965; Alfthan et al. 1973; Back and Salmén 
1982; Olsson and Salmén 2003). Water works like a plasti-
cizer and decreases the glass transition temperature: at 20% 
water content it is around 50 °C, at 30% it is around room 
temperature (Back and Salmén 1982; Olsson and Salmén 
2003; Placet et al. 2008; Navi and Sandberg 2012). The 
amorphous regions of cellulose behave similarly. During 
veneer production and bending, the wood is saturated with 
water, and during pellet production, it also contains a signifi-
cant amount of water. During these processes, hemicellulose 

is already above its  Tg, so raising the temperature does not 
cause a change in the hemicellulose structure. On the other 
hand, as the wood dries, the lignin softening is reduced, 
and the hemicellulose softening becomes more important. 
Most of these processes take place at elevated temperatures, 
which will dry wood. However, with wood welding, bind-
erless board manufacturing or surface densification, the 
temperature is usually above 180 °C, which softens both 
hemicellulose and lignin. Because there is more than one 
parameter involved, the plasticization does not occur at a 
fixed temperature, the  Tg is also affected by pressure, and 
as certain operations (e.g. pellet production) take place at 
high pressure, the increase in the  Tg is not negligible. Based 
on previous works, a linear relationship can be established 
between the  Tg and pressure (Ichihara et al. 1971; Zoller 
1982; Zoller et al. 1989; Andrews and Gruclke 1999; Krev-
elen 2009). All in all, the importance of lignin is highlighted 
in the literature, so we can also study these wood industry 
processes examining lignin.

This type of wood softening—mainly the lignin—is used 
in several industrial processes, namely: pellet manufactur-
ing, binderless panel manufacturing, wood welding, wood 
bonding, wood surface compacting, and veneer manufactur-
ing by peeling. Of course, during these industrial processes, 
in addition to softening, other physical and chemical reac-
tions take place, all of which contribute to the end result 
of the process. The aim is not to describe these reactions 
in detail, but rather to provide a summary of the industrial 
processes where lignin softening may play a role.

2  Wood welding

Frictional welding is a relatively new technology for creating 
wood joints but this technique is widely used in the plas-
tics industry (Ganne-Chédeville et al. 2006). Sutthoff et al. 
(1996) made the first efforts to join wood by pressure and 
frictional heat. During the welding process, no other mate-
rial is added to the system, the welded pieces of wood are 
frictioned together to provide the necessary energy. In doing 
so, the components of wood (lignin, cellulose and other pol-
ymers) are melted and partially decomposed by heat and are 
subject to chemical reactions during the process.

At the beginning of the welding process, Coulomb fric-
tion causes the surfaces to heat up. After a few seconds 
(3–10 s), at a temperature of about 320–350 °C, the wood 
surfaces start to decompose at the increased temperature. 
The temperature of 180 °C is reached quickly at the inter-
face/surface but at less than 1 mm below the interface, the 
temperature is still 20 °C lower (160 °C). The wood next to 
the rubbed surfaces starts to soften, forming a viscous film. 
After reaching the maximum temperature about 420–450 °C, 
the frictional movement is terminated, and the joined parts 

Table 1  Moisture content effect on the glass transition temperature of 
lignin

References Moisture content Tg (°C)

Urakami and Nakato (1966) Sat 50
Stelte et al. (2011b) Sat 53
Nakajima et al. (2008) Sat 60
Kelley et al. (1987) 30 60
Östberg et al. (1990) 25 60
Irvine (1984) 25 62
Wolcott (1989); Wolcott et al. (1990) 10–15% 70
Hillis and Rozsa (1978) Sat 72–128
Gašparík and Barcík (2014) Sat 77–128
Becker and Noack (1968) Sat 78
Furuta et al. (2000) Sat 80
Furuta et al. (1997) Sat 80
Sadoh (1981) Sat 80
Kong et al. (2017) 20% 80–94
Salmén (1984) Sat 82–100
Uhmeier et al. (1998) Sat 85
Östberg et al. (1990) 6.5 86
Goring (1963) 27% 90
Stelte et al. (2011b) Sat 91
Bouajila et al. (2006) Sat  ~ 100
Irvine (1984) 7 108
Sen et al. (2013) Dry 110–160
Jonsson (2009) 8–15% 110–135
Back and Salmén (1982) Sat 115
Kelley et al. (1987) 5 115
Atack (1972) Sat 120–135
Koran (1979) – 125
Wert et al. (1984) Dry 132–192
Ibach (2010) – 170
Goring (1963) Dry 195
Back and Salmén (1982) Dry 205
Sadoh (1981) Dry 235
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are held together. The final cooling down leads to solidifica-
tion of the interfacial film forming the connection between 
the wood parts (Stamm et al. 2005b). No preparation of 
the welded surfaces is required and the time necessary to 
complete the bond is shorter than one minute (Stamm et al. 
2005b).

The mechanism of welding, in addition to the chemical 
reactions that take place due to the temperature-induced 
softening, is chemical activation, flowing and solidification 
of the intercellular material, mainly amorphous polymers: 
lignin and hemicelluloses (Stamm et al. 2005a; Windeisen 
and Wegener 2008). This flow of material induces high den-
sification of the bonded interface (Leban et al. 2005; Ganne-
Chédeville et al. 2006; Pizzi 2017). The physical entangle-
ment of the fibers interconnected as a result of friction can 
improve the connection. In the brief pressure-holding phase 
immediately after welding, chemical reactions occur. The 
main reactions are the formation and self-condensation of 
furfural and the cross-linking reaction of lignin with carbo-
hydrate-derived furfural (Pizzi 2017).

Sun et al. (2010) suggested that the chemical changes 
when applying friction welding are similar to changes dur-
ing fast pyrolysis at a lower pyrolysis temperature. This is 
a transformation of a nonvolatile compound into a volatile 
mixture by heat in the absence of oxygen. During these pro-
cesses, bonds are broken, free radicals are formed, which 
re-polymerize and create side-chains (Kawamoto 2017). In 
these temperature ranges, only the amorphous components 
of wood are affected, particularly lignin and hemicelluloses, 
and to a lesser extent, amorphous cellulose. First, hemicel-
luloses degrade through acid hydrolysis and dehydration, 
which starts above 100 °C, but the weight loss of hemi-
celluloses takes place mainly in the temperature range of 
220–315 °C. The mono- and oligosaccharides change into 
furfural and 5-hydroxymethylfurfural as they dehydrate. 
Xylan is more affected than mannan, because the glyco-
sidic bonds of xylan are more susceptible to acidic attack 
(Stamm et al. 2005a). The changes of the amorphous cellu-
lose are similar to those of hemicelluloses and levoglucosan 
and furan and the same kind of compounds produced. The 
effects of heat on lignin occur within a wide temperature 
range. The proportion of the C–C and C–H bonds decreases, 
while those of C–OH, C–O–C, C=O and O–C–O increase. 
First –OH groups are thermo-oxygenated and aldehydes 
are formed. Chemical substances which contain oxygen-
ated functionality are also formed and move to the weld-
ing zone: terminal hydroxymetyl groups from the G-type 
lignin side chains leave in the form of formaldehyde, which 
then can contribute to condensation reactions of lignin frag-
ments generated during the welding. The amount of typical 
bonds of phenilpropane units decreases, while furfural and 
furan derivatives react with the lignin (Gfeller et al. 2004; 
Kanazawa et al. 2005; Stamm et al. 2006; Delmotte et al. 

2008; Belleville et al. 2013). During friction, a new lignin-
carbohydrate complex is formed from the condensation reac-
tion between lignin fragments and furfural derivatives from 
hemicelluloses (Sun et al. 2010). Belleville et al. (2018) 
found that a higher proportion of lignin seems to be favora-
ble to condensation reactions during the welding process. 
According to another observation, fatty acids, terpenoids 
and other extractive compounds form covalent bonds with 
hydroxyl groups of other compounds. There is a degrada-
tion of fatty acids, which deform to carboxyl acids, mainly 
citric acid, which can improve the mechanical properties 
through chemical linkages (Belleville et al. 2018). The work 
of Ganne-Chédeville et al. (2008) summarizes the processes 
that take place at different temperatures during welding. 
The main components of the smoke emitted during weld-
ing are water vapor,  CO2 and decomposed compounds from 
wood polymeric carbohydrates and from lignin (Omrani 
et al. 2008). Delmotte et al. (2009) found that increasing 
the welding frequency from 100 to 150 Hz, the oxidation of 
the components decreased due to the much shorter welding 
time, which improved the joint strength.

Hardly damaged fibres, tracheids were observed immers-
ing in a mass of molten polymer. The welded bondline is 
then composed of a mass of entangled long wood cells 
immersed in a matrix of amorphous, fused intercellular 
material, mostly lignin but also including some hemicel-
luloses. The bonding line separates into (1) a melting zone, 
where the wood polymers melt, decompose and partly char; 
(2) to a fully plasticized zone and (3) a deformed zone, 
where the polymers are plasticized and the cells deform, 
and (4) a partially deformed region, where the cells are only 
slightly affected (Ganne-Chédeville et al. 2006).

The welding processes can be classified as linear, orbital 
and rotational friction welding (Ruponen et al. 2015). In 
linear welding, the wood samples are joined to each other 
with a 1.3–2 MPa pressure. The samples are vibrated with 
a displacement amplitude of about 2–3 mm and a vibration 
frequency of 100–150 Hz in the plane of the joint (Leban 
et al. 2005; Pizzi 2017). Specimens 1.0–1.8 m long can be 
welded and the welding takes 1.5–5 s and the holding time, 
still under pressure, after vibration has stopped, is 5 s too 
(Pizzi 2017). After linear welding, 10 to 11 MPa tensile 
strength was measured (Leban et al. 2005). With high-speed 
rotation welding, wooden dowels (usually 10 mm diameter) 
are inserted at high rotation speed into a smaller diameter 
pre-drilled hole (usually 8 mm diameter). In dowel welding, 
generally, cylindrically fluted beech dowels 10 mm in diam-
eter are used (Pizzi 2017). For best results, the drill rotation 
rate must be between 1500 and 1600 rpm. When bonding is 
achieved (1–3 s), the rotation of the dowel is stopped, and 
the pressure is briefly maintained.

The quality of a friction welding joint correlates with 
several welding parameters, such as welding pressure, 



515European Journal of Wood and Wood Products (2021) 79:511–526 

1 3

frequency, time, holding pressure and time, amplitude or 
displacement, wood species, orientation of the grains, equi-
librium moisture content and specimen dimensions, chemi-
cal composition etc. (Kanazawa et al. 2005; Properzi et al. 
2005; Ganne-Chédeville et al. 2006, 2008; Delmotte et al. 
2009; Omrani et al. 2009; Župčić et al. 2014; Ruponen et al. 
2015; Belleville et al. 2018; Zhu et al. 2019).

The limitation of linear welded wood is that the welded 
joint has low water resistance in other words the joint is 
more water sensitive. Water resistance can be increased by 
selecting appropriate welding parameters (Mansouri et al. 
2009; Vaziri et al. 2010, 2011; Vaziri 2011). In contrast to 
linear vibration welding, the rotation-welded dowel joints 
are completely resistant to water when immersed, which 
shows that proper geometry of the joint can improve water 
resistance (Pizzi et al. 2006).

3  Pellet manufacturing

Lignocellulosic materials can be densified by pelletizing, 
briquette or cube making. During this process, the particles 
are pressed together by applying a mechanical force to create 
inter-particle bonding (Tumuluru et al. 2010; Kaliyan and 
Morey 2010). The product becomes denser, more manage-
able and usually more durable. The name ‘pellet’ is usu-
ally used for products less than 15 mm in diameter, while 
‘briquette’ generally refers to larger dimensions. Several 
researchers examined the compression process of different 
raw materials such as wood, wood waste and bark (Chin 
and Siddiqui 2000; Demirbaş et al. 2004; Lehtikangas 2001; 
Li and Liu 2000; Rhén et al. 2005, 2007), forest residues 
(Lehtikangas 1999; Acda and Devera 2014), straws, grasses 
(wheat, barley, corn etc.) (Smith et al. 1977; Wamukonya 
and Jenkins 1995; Demirbaş 1999; Kaliyan and Morey 2006; 
Mani et al. 2004,2006a,, b; Ndiema et al. 2002; Olsson 2006; 
Shaw 2008; Gilbert et al. 2009; Lehmann et al. 2012; Stelte 
et al. 2012; Lee et al. 2013), alfalfa (Adapa et al. 2002; Tabil 
and Sokhansanj 1996a, b, 1997; Fasina and Sokhansanj 
1995), olive cake (waste) (Al-Widyan et al. 2002; Yaman 
et al. 2000), palm fiber and shell (Husain et al. 2002; Teno-
rio et al. 2016; Wattana et al. 2017). Since pellet production 
has been studied most frequently and in many detail, this is 
described further below. Thereby, most statements remain 
true for other densifying procedures (Tumuluru et al. 2010). 
There are many methods for characterizing the quality of a 
pellet, often referred to as the durability of the pellet. There 
are no standards given, but most methods model the impact 
and the shearing stresses as such (Oveisi-Fordiie 2003).

During the process, the size of the feedstock material is 
typically reduced by milling or grinding, and conditioned to 
an appropriate moisture content either by drying or moistur-
izing. In most cases, the particles of raw material are forced 

through a channel. Usually, in a pellet mill, the pressure is 
100–150–200 MPa (Kaliyan and Morey 2009). The pelletiz-
ing process generates heat that maintains the temperature 
of the operating die at 110–130 °C (Nielsen et al. 2009). 
Lignin and extractives in wood and other lingocellulosic 
materials have been reported to function as natural binding 
agents during the pressing of the pellets (Bradfield and Levi 
1984; Alakangas and Paju 2002; Gilbert et al. 2009; Nielsen 
et al. 2010; Berghel et al. 2013). During pelleting, in the raw 
material with 8–15% moisture content, the lignin softens 
around 110–135 °C (Lehtikangas 2001; Kuokkanen et al. 
2011; Kaliyan and Morey 2009), the drier raw material needs 
higher temperatures (Zhanbin 2003). According to Anglès 
et al. (2001), the following reactions occur during pellet-
ing: Partial hydrolysis of cellulose and hemicellulose; and 
then partial hydrolysis of lignin leading to a lower molecu-
lar weight material. At high steam temperatures, some low 
molecular weight lignin melts, flows, and partially coalesces 
into droplets. The thermally softened lignin contributes to 
the strength characteristics of pellets and briquettes made 
of lingocellulosic materials (Granada et al. 2002; Serrano 
et al. 2011). As the pellets cool, lignin hardens again and the 
pellet strength increases. Cooling stabilizes the pellets and 
stiffens the lignin melted on the surface of the pellets, and 
hence, the shape of the pellets remains unchanged (Alakan-
gas and Paju 2002). There is a positive relationship between 
pellet durability and lignin content (Lehtikangas 2001; Cas-
tellano et al. 2015). The lignin content of different straws is 
generally lower than in wood, and therefore straws produce 
less durable pellets (Lehmann et al. 2012; Stelte et al. 2012; 
Lee et al. 2013).

Macroscopically, two binding mechanisms can be distin-
guished: solid bridges between particles (Stelte et al. 2011a; 
Serrano et al. 2011) and other bonding without a solid bridge 
(Kaliyan and Morey 2010). Without a solid bridge, forces 
between particles can form bonds by hydrogen bridges, van 
der Waals’ forces, electrostatic and magnetic forces if the 
particles are close enough to each other. Due to the appli-
cation of high pressures and temperatures, solid bridges 
can develop by diffusion of molecules from one particle to 
another at the points of contact and be formed by a chemical 
reaction, hardening of the binders, and solidification of the 
melted components (Kaliyan and Morey 2010). Bio-based 
binding materials such as starch, protein, lignin, and pectin 
in the raw materials under high pressure are pressed out 
of the raw material, and cause inter-particle bonding. To 
produce a sufficient bonding area, especially in the absence 
of a binder, the plasticization of wood polymers above their 
glass transition temperatures is necessary (Back, 1987). 
Chung (1991) suggested that at the microscopic level, there 
are two criteria for bonding between particles: the molecules 
should be in contact of closer than 9 Å and the maximum 
attractive force should have a minimum potential energy. 
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When the maximum attractive force is near the minimum 
potential energy, chemical bonding is established. Pressure, 
heat above glass transition temperature may promote adhe-
sion by increasing the molecular contact. Samuelsson et al. 
(2012) added some further bonding mechanisms, they found 
that interfacial forces and capillary pressure in movable liq-
uid surfaces, adhesion and cohesion forces, and mechanical 
interlocking between particles can also strengthen internal 
bonding.

Several factors were found to influence the process and 
the result of the densification experiments (Rehkugler and 
Buchele 1969; Bradfield and Levi 1984; Granada et al. 2002; 
Shaw 2008; Kaliyan and Morey 2009). Increasing the tem-
perature and moisture content (MC) decreased the energy 
requirements for pellet manufacturing (Nielsen et al. 2009). 
A significant part of the energy for the pelletizing process 
is used to force the compressed sawdust from the surface 
of the die into the pressing channels. Increasing the tem-
perature of the die increases the pellet density, decreases the 
dimensional expansion, and increases the tensile strength 
of the pellets. The application of heat to the aggregated 
material during its formation confers greater cohesion to 
it, because at temperatures between 80 and 200 °C lignin 
becomes softer, and after cooling, it functions as a thermo-
plastic glue, depending on the materials (Kaliyan and Morey 
2006; Relova et al. 2009; Theerarattananoon et al. 2012).

Moisture acts as one of the binding agents in the pelleting 
process (Lehtikangas 2001), so the moisture content of the 
raw material is of high relevance. Decreasing the moisture 
content increases the pellet density as well as its dimensional 
stability (Shaw 2008). Increasing the moisture content to 
between 10 and 13%, the mechanical durability increases; 
a further increase of moisture causes a decline in durability 
(Wilfried et al. 2006; Ahn et al. 2014) because of the lignin 
softening and excessive vapor formation.

Decreasing the particle size increases the pellet density, 
decreases their expansion, which means higher dimensional 
stability, and increases the tensile strength of the pellets. A 
high surface area/volume ratio in each particle allows better 
penetration of moisture and heat, and consequently improves 
its strength properties (Lehtikangas 2001).

The biochemical characteristics of the raw material 
also are very important. Higher lignin and extract content 
have a positive effect on the durability of pellets (Bradfield 
and Levi 1984; Lehtikangas 2001; Stelte et al. 2011a; Ser-
rano et al. 2011; Filbakk et al. 2011). Several studies showed 
that pellets produced from bark have excellent durability 
(Lehtikangas 2001; Filbakk et al. 2011; Ahn et al. 2014). 
Bark usually contains higher levels of lignin than wood (Fil-
bakk et al. 2011), and contains higher levels of extractives. 
The effect of the bark is unclear; Ahn et al. (2014) found that 
up to 10% bark reduced the durability of larch pellets. Waxes 
on the surface of straw produced a weak waxy boundary 

layer, resulting in lower strength (Nielsen et al. 2009; Samu-
elsson et al. 2012; Castellano et al. 2015).

Pretreatment of the raw material generally increases the 
pellet density and durability.

During the steam pretreatment, the hemicellulose was 
removed and/or hydrolysed. As a result, a higher relative 
amount of lignin was present and this lignin was more 
readily available for binding, thus producing superior pel-
lets (Shaw 2008). Zandersons et al. (2004) suggested that 
during the steam explosion process, the lignin is activated 
and the cellulosic structure is changed which facilitates the 
formation of new bonds. Chemical activation with hydro-
gen peroxide resulted in a lower mechanical durability and 
reduced heating value, but thermal activation trials indicated 
a positive effect on their durability (Wilfried et al. 2006). By 
pre-treatment with microwave irradiation, the ester bonds 
between the lignin and hemicelluloses are disrupted, and 
the free lignin can create additional bonds thus increasing 
the strength and durability of the densified product (Thomas 
et al. 1998; Lu et al. 2014).

Pressing aids and adhesives can also increase the dura-
bility and strength of pellets (Obernberger and Thek 2004; 
Wilfried et al. 2006; Kuokkanen et al. 2011; Berghel et al. 
2013; Ahn et al. 2014; Lu et al. 2014).

In summary, a high lignin content and optimum MC 
coupled with a high pelleting temperature tend to improve 
biomass pellet durability (Relova et al. 2009; Whittaker and 
Shield 2017).

4  Wood surface densification

Compression is used to increase density and change the sur-
face properties of wood, for example hardness (Donghua 
et al. 2010; Petrič 2013). Densification of wood can also be 
achieved by impregnating its void volume with polymers, 
molten natural resins, waxes, sulphur, and even molten met-
als (Kutnar and Šernek 2007). Sandberg and Navi (2007) 
made a summary of these topics. The process of densify-
ing wood by compression requires four steps (Kutnar and 
Šernek 2007; Rautkari et al. 2011): (1) plasticization of the 
cell wall, (2) compression perpendicular to the grain in the 
softened state, (3) cooling and drying in the deformed state, 
and (4) fixation of the deformed state to eliminate the shape 
memory effect. The density is increasing, the color of the 
wood becomes darker and the EMC is reduced markedly 
(Donghua et al. 2010; Arruda et al. (2015).

Firstly the cell wall should soften. The temperature 
should be at least 25 °C higher than  Tg of lignin, between 
80 and 140 °C, and the moisture content near the saturation 
point. Under these conditions, lignin, hemicelluloses and the 
semi-crystalline cellulose can be deformed easily. Hemicel-
luloses in the cell wall are softened (at 54–56 °C), which 
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decreases the stiffness of wood. This enables wood fibers to 
adapt their cross-sectional shape to the applied forces. The 
softening of lignin (at 72–128 °C) in the cell wall and middle 
lamellae permit further cross-sectional movement within and 
between the fibers (Kutnar and Šernek 2007; Kutnar et al. 
2009; Tu et al. 2014; Rautkari et al. 2011).

Compression changes the wood morphology as the cell 
walls buckle and the volume of void spaces gets reduced 
while a non-uniform density profile across the sample is 
generated as the surface becomes denser. A higher degree 
of densification is achieved by a larger reduction in the 
void spaces of the wood and at high pressure, the volume 
of void spaces in the specimens is drastically reduced, and 
cell lumens are deformed. Usually the cells are deformed 
without fracturing the cell walls, while the rays appear to 
buckle (Kutnar et al. 2009).

When compressed wood is exposed to water, it tends to 
regain its original dimensions. This effect occurs because 
internal stresses are introduced into the cell walls during 
compression. This memory effect or spring back can be 
completely eliminated by different methods. Heat treatment 
and steam treatment are the most common ones (Morsing 
and Hoffmeyer 1998; Wolcott and Shutler 2003; Kutnar 
et al. 2009). Kutnar and Kamke (2012a, b) suggested that 
the stabilization of compressive deformation was more suc-
cessful when wood was compressed under saturated steam 
at 170 °C. In addition, heat treatment at 200 °C adds some 
improvement to dimensional stability.

Sandberg et al. (2013) published a review article about 
thermo-hydro and thermo-hydro-mechanical wood process-
ing, where also other applications of densified wood are 
discussed.

5  Binderless boards

Due to its environmentally friendly properties, many 
researchers tried to produce fiber or particle boards with-
out adhesive or using bio-based adhesives such as sugars 
or lignin. Wood-based binderless fibreboards without syn-
thetic resin binders have been produced for at least 80 years: 
several types of bio-raw material were used for binderless 
boards, for example wood bark (Chow 1975; Wellons and 
Krahmer 1973; Geng et al. 2006; Gao et al. 2011), rice 
and wheat straw (Zhao et al. 2013; Kurokochi and Sato 
2015a, b), kenaf (Xu et al. 2004), banana stems (Nongman 
et al. 2016), coconut husks (van Dam et al. 2004; 2006), 
bagasse (Mobarak et al. 1982), oil palm (Hashim et al. 2012; 
Baskaran et al. 2015), soybean straw (Song et al. 2020) and 
bamboo (Shao et al. 2009) etc. Recently, a review work on 
binderless fibreboards from agricultural residues was pub-
lished summarizing the related studies (Nasir et al. 2019).

Several parameters influence the physical and mechanical 
properties of wood panels: chemical composition (Widy-
orini et al. 2005; Lui et al. 2018), particle size and geom-
etry (Widyorini et al. 2011; Kurokochi and Sato 2015a, b; 
Lui et al. 2018; Ahmad et al. 2019; Ferrandez-Villena et al. 
2020), pressing temperature (Okuda et al. 2006a; Gao et al. 
2011; Hashim et al. 2011; Boon et al. 2013; Milawarni et al. 
2019; Song et al. 2020), pressing time (Xu et al. 2006; Gao 
et al. 2011; Boon et al. 2013; Ferrandez-Villena et al. 2020), 
pressure (Boon et al. 2013); water content (Widyorini et al. 
2005; Xu et al. 2006), and pretreatment (Xu et al. 2006; 
Takahashi et al. 2010), etc. Trichomes and wart-like protu-
berances on the epidermis of herbaceous straw might inhibit 
the bonding between particles. Wax-like substances on the 
epidermis of rice straw might contribute to the water resist-
ance of the board but inhibited the adhesion of the particles 
(Kurokochi and Sato 2015a, b).

The chemical composition of the different biomasses is 
similar and their main components are the same: cellulose, 
lignin, hemicelluloses. The bonds between the bioparticles 
are based on chemical and physical interactions occurring 
during the hot pressing between various components of the 
particles or their derivatives (Suchsland and Woodson 1987; 
Yelle 2001; Hubbe et al. 2018). In fiberboard production, 
during thermomechanical pulping, woodchips are converted 
to lignin-covered fibers by shearing wood fibers along the 
lignin-rich middle lamellae (Felby et al. 1997; Kharazipour 
et al. 1998). Goring (1971), Yelle (2001), van Dam et al. 
(2004), Bouajila et al. (2005), Okuda et al. (2006a, b), Hal-
varsson et al. (2009), Wang et al. (2017) and Laine et al. 
(2019) suggested that lignin has an important role in the 
production of binderless boards due to the softening of 
lignin at elevated temperatures and under pressure, fibers 
with lignin-rich surfaces fuse together as the softened lignin 
molecules flow from one fiber surface to another one, and 
possibly form covalent bonds too. If the water content of 
the raw material is above or near the saturation point, the 
 Tg of the cell wall polymers is relatively low. However, as 
the temperature of the materials rises during hot pressing, 
the water content of the particles or fibers decreases and 
as a result the softening temperature also increases. The  Tg 
of the polymers increases around 200 °C. The polymers of 
the raw material are in a plasticized state during a limited 
period and this period depends on their position within the 
panel (Bouajila et al. 2005). Water leaves the panel near its 
sides, and the  Tg rapidly increases. At elevated temperatures, 
irreversible softening of the lignin occurs due to dehydra-
tion and cross-linking reactions (van Dam et al. 2004), so 
the role of the softened lignin cannot be separated from the 
chemical changes.

Several chemical reactions were observed during hot 
pressing: hydrolysis of the hemicelluloses occurs (Runkel 
and Wilke 1951; Xu et al. 2006; Zhang et al. 2015), organic 
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acids, mainly furfural, are formed, but the amount of the 
resulting furfural depends on the chemical composition 
of the raw material and its water content, temperature etc. 
(Rowell and McSweeny 2008; Tshabalala et al. 2012). The 
monomers generate lignin–furfural linkages or undergo self-
polymerization during the pressing, which provide the main 
self-bonding strength of binderless fiberboards (Suzuki et al. 
1998; Zhang et al. 2015).

The surfaces of the particles and fibers can be activated 
by different pretreatments, which increase the amount of 
the chemical bonds. Fenton’s reagent contains ferrous chlo-
ride and hydrogen peroxide; hydroxyl radicals are gener-
ated by decomposition of hydrogen peroxide with the 
assistance of ferrous ions. In the end, reactive components 
formed in lignin and the properties of the boards improved 
(Kharazipour et al. 1998; Halvarsson et al. 2009; Zhang et al. 
2015).

Enzymatic systems can also activate lignin on fiber sur-
faces by generating free radicals, and create bonds between 
the surfaces of fibers and particles without the use of con-
ventional adhesives (Felby et al. 1997; Hüttermann et al. 
1998; Kharazipour et al. 1998). Laccase enzyme can oxidize 
the lignin and stable lignin radicals are formed (Hüttermann 
et al. 1998; Felby et al. 2004; Pereira et al. 2005; Nyanhongo 
et al. 2010). This lignin radical reacts with cellulose and 
other lignin molecules, so it can be used to produce com-
posite materials using lignin and fibers. Wet process boards 
produced in this manner have shown equal or better bonding 
properties than boards produced with phenolic adhesives 
(Hüttermann et al. 1998). The enzymatic activation of lignin 
for lignocellulosic products such as MDF and particleboard 
can improve the self-bonding properties of the biomass by 
oxidation of their surface lignin before being fabricated into 
boards (Widsten and Kandelbauer 2008).

Panel properties can be improved by steam explo-
sion (Suzuki et al. 1998; Anglès et al. 1999, 2001; Shao 
et al. 2009; Gao et al. 2011), because lignin droplets were 
observed on the surface of the fibers (Anglès et al. 1999). 
Steam injection during pressing has a similar result.

Due to the physical and chemical bonds formed by lignin, 
the addition of lignin to the raw material can improve the 
properties of the panels (Anglès et al. 2001; Hemmilä et al. 
2013; Milotskyi et al. 2019).

6  Solid wood bending

Wood bending is one of the oldest wood processing tech-
niques. Long experience has evolved from the practice of 
bending techniques and skilled craftsmen can apply them. 
Naturally, at normal moisture content and temperature, every 
wood has some plasticity, but this plasticity is not enough 
to bend solid wood. Heat and moisture make certain species 

of wood sufficiently plastic for bending operations. In gen-
eral, hardwoods are more readily softened than softwoods, 
and certain hardwoods more so than others. The purpose of 
all plasticizing treatments is to soften wood sufficiently to 
enable it to take the compressive deformation necessary to 
make a curve (Peck 1957). Hot wood is more plastic than 
cold wood, and wet wood is more plastic than dry wood. 
The plasticity of wood can be increased by increasing the 
moisture and/or temperature of the wood. Together, heat and 
moisture can produce a degree of plasticity 10 times that of 
dry wood at normal temperatures (Peck 1957). Hot water 
and steam are commonly used treatments to prepare wood 
for bending.

The glass transition temperature  (Tg) of the lignin in 
moist wood is 80–100 °C. Above  Tg, the lignin undergoes 
thermoplastic flow and resets in the modified configuration 
when cooling (Nakajima et al. 2009; Ibach 2010; USDA 
2010).

The temperature of saturated steam at atmospheric pres-
sure, about 100 °C or boiling or nearly boiling water, is gen-
erally sufficient to plastify wood for bending. In this con-
dition, the viscosity of the lignin decreases, which makes 
connections between the cellulose micro- and macrofibrils 
(Angelski 2014). If the raw material has a 20–25% moisture 
content, no additional moisture is needed, even for severe 
bends (Peck 1957). Technically these methods belong to the 
hydrothermal treatment. If thermal treatment is used, water 
or steam has no impact on the raw material. This method 
is implemented by contact of hot metal surfaces (Angel-
ski 2014). In another method, high frequency heating is 
used (Sandberg and Johansson 2005). The high-frequency 
microwave heating of wood is also used for plasticization 
(Ibach 2010; Gašparík and Gaff 2013). A longer plasticizing 
time increases the amount of microwave energy delivered to 
wood, on the other hand, the higher amount of energy also 
causes a higher moisture loss. Therefore, a suitable plasticiz-
ing time should be chosen (Gašparík and Gaff 2013).

Some chemicals can also soften wood. When chemicals 
are used for plasticization, the connections between the 
matrix (lignin) and cellulose and the ties between the cell 
walls loosen.

The chemical plasticization commonly uses water solu-
tions of ammonia, urea, dicyandiamide, ethylenediamine and 
liquid ammonia (FPL 1943; Schuerch 1963; Pentoney 1966; 
Bariska 1969; Davidson and Baumgardt 1970; Bariska and 
Schuerch 1977; Angelski 2014; Suleman 2015; Šprdlík et al. 
2016). Ammonia is a solvent with a similar molecular size 
but a greater hydrogen bonding capacity than water. Liq-
uid ammonia can swell and soften wood more than water. 
It breaks hydrogen bonds with all the components of the 
cell walls and creates new hydrogen bonds, not only with 
hemicellulose and lignin, but it can also separate the chains 
of the crystalline cellulose. When the ammonia evaporates, 
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new hydrogen bonds are formed in new positions and a new 
shape form.

7  Veneer manufacturing

Several factors have effects on veneer manufacturing and 
veneer quality (Olufemi 2012). Successful veneer production 
requires wood softening. The heating of green wood prior to 
peeling has traditionally been accomplished by soaking—
immersing the whole logs in hot water basins—or by steam-
ing them in vats. In both processes, water, as an integral part 
of wood, makes an ideal medium for heat transfer into wood 
(Daoui et al. 2007). The energy required for peeling can be 
reduced if less energy is required to move the cutting knife 
(Marchal et al. 2009; Dupleix et al. 2012; Dupleix 2013; Xu 
et al. 2017). If the shear strength of the wood decreases, it 
is sufficient to exert less pressure on the knife during peel-
ing (Bédard and Poulain 2000). This reduces the power 
consumption and reduces wear of the tools (Marchal et al. 
2004) and the quality of the veneer is improved reducing the 
formation of lathe checks and other surface quality defects 
(Lutz 1960; Aydin et al. 2006; Dundar et al. 2008; Marchal 
et al. 2009; Dupleix et al. 2012; Olufemi 2012; Rohumaa 
et al. 2016a, b, c; Frayssinhes et al. 2019).

During soaking or steaming the wood softens, and the 
deformability of wood increases (Baldwin 1975; Bardet 
et al. 2003; Yamauchi et al. 2005). Under optimal condi-
tions, shallower lathe checks form (Rohumaa et al. 2016a, b, 
c; Frayssinhes et al. 2019). For this purpose, the temperature 
should exceed the glass transition temperature  Tg, of lignin 
at the MC of green wood across the log. This temperature 
is lower than the  Tg of cellulose, while hemicelluloses are 
already above their  Tg (Engelund et al. 2013; Navi and Sand-
berg 2012). Therefore, lignin changes have the greatest influ-
ence on the behavior of wood. Reaching the  Tg of lignin also 
fluidizes wood resins and softens knots, which increases tool 
life. Rohumaa et al. (2017) suggested that the logs not only 
soften by heat, but irreversible changes occur in the wood 
material.

8  Stress relaxing

Heating logs in water or saturated steam relieves growth 
stress (Skolmen 1967). The temperatures of Eucalyptus 
grandis logs were determined and correlated with the cracks 
in the boards during steaming. Thermocouples were inserted 
in the centers of the logs, registering their temperatures dur-
ing steaming at 90 °C. It was found that the lengths of the 
cracks significantly decreased in logs that reached the glass 
transition temperature (Calonego et al. 2010).

9  Conclusion

We have seen that lignin softening plays a role in a variety 
of woodworking processes, which are basically divided into 
two groups. The first group includes processes where lignin 
softens or possibly liquefies, and the soft lignin penetrates 
into the gaps of adjacent particles and cell walls, and acts 
as an adhesive. This includes wood welding, the manufac-
ture of binderless boards or manufacturing pellets. The other 
group consists of processes where the wood has to undergo 
some deformation and therefore the cell walls and the mate-
rials that compose the cell wall must move relative to one 
another. This group includes veneer manufacturing, solid 
wood bending and surface densification.

The referred 257 articles show the great effort of scien-
tists to explore the composition characteristics, and behavior 
of the components of wood, especially focusing on lignin.
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