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Abstract
In this research, the costs as well as flexural and tensile strength of bamboo reinforced concrete material were predicted and 
optimized using artificial neural network (ANN) and non-dominated sorting genetic algorithm-II (NSGA-II). The inputs to the 
ANN were curing days and percentage bamboo content in the bamboo reinforced concrete material, while the outputs were 
cost, flexural and tensile strength. The ANN predicted the experimentally determined values of the tensile strength, flexural 
strength and costs of the bamboo reinforced concrete material excellently with correlation coefficients of 0.99635, 0.99739 
and 1, respectively. Subsequently, the ANN was used as the fitness function for NSGA-II for multi-objective optimization 
of the cost, flexural and tensile strength of bamboo reinforced concrete material. The Pareto optimal solution obtained could 
serve as a design guide for engineers for optimal design of structures using cost, flexural and tensile strength of bamboo 
reinforced concrete material.

1 Introduction

Ideally, the engineer would like concrete to reach the 
required strength at minimum time, thereby reducing con-
struction time and saving costs. However, to achieve this, 
the use of higher quality materials is often required, which 
is usually costly. Hence, there must be a trade-off between 
concrete strength and the cost of achieving the strength. This 
is amenable to multi objective optimization where the con-
flicting objectives of cost and strength need to be optimized.

The use of bamboo as building material has been estab-
lished in the literature. Research by Moroz et al. (2014) 
showed that bamboo reinforcement in concrete presents 
a potential alternative to steel reinforcement for low-cost 
housing application. Agarwal et al. (2014) performed several 
tests to show the behaviour of bamboo reinforced concrete 
members under loading. The test results suggest that bam-
boo with proper treatment has potential to substitute steel as 

reinforcement. Javadian et al. (2016) stated in their research 
that bamboo is potentially superior to timber and to con-
struction steel in terms of its weight to strength ratio. Their 
research equally showed that the new bamboo-composite 
reinforcement they developed could replace steel reinforce-
ment in concretes.

Having established that bamboo is a good building mate-
rial, there is the need to model and predict its mechanical 
properties, which would be of great importance to engineers. 
Accurate modelling and prediction of mechanical properties 
of concrete is invaluable to engineers (Nwobi-Okoye and 
Umeonyiagu 2013, 2015; Nwobi-Okoye et al. 2013; Umeo-
nyiagu and Nwobi-Okoye, 2013, 2015a, b). In modern times, 
due to advances in computer technology and artificial intel-
ligence, soft computing techniques, such as artificial neural 
network (ANN), fuzzy logic, adaptive neuro-fuzzy infer-
ence system (ANFIS), genetic algorithm (GA), simulated 
annealing etc., are widely used in modelling and prediction 
of mechanical properties of engineering materials (Atuanya 
et al. 2014; Nwobi-Okoye and Umeonyiagu 2013, 2015, 
2016; Nwobi-Okoye et al. 2013; Umeonyiagu and Nwobi-
Okoye, 2013, 2015a, b).

Khademi et al. (2016) used ANN, ANFIS, and multiple 
linear regression (MLR) to predict the 28-day compressive 
strength of recycled aggregate concrete (RAC). They used 
14 different input parameters for the study. The study results 
concluded that prediction of 28-day compressive strength 
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of RAC was better by ANN and ANFIS in comparison to 
MLR. Douma et al. (2017) used ANN to predict the proper-
ties of self-compacting concrete (SCC) containing fly ash 
(FA) as cement replacement. They used six input param-
eters, namely total binder content, FA replacement percent-
age, water–binder ratio, fine aggregates, coarse aggregates 
and super-plasticizer to predict the four output parameters 
slump flow, L-box ratio, V-funnel time and compressive 
strength at 28 days of SCC. The study result shows that 
ANN could be used effectively for predicting accurately the 
properties of SCC containing FA. Qi et al. (2018) used ANN 
and particle swarm optimization (PSO) for predicting the 
unconfined compressive strength (UCS) of cemented paste 
backfill (CPB). The ANN was used for modeling the non-
linear relationship between the input and output variables, 
while PSO was used for optimizing the architecture of the 
ANN. The ANN inputs were tailings type, cement-tailings 
ratio, solids content, and curing time. The results obtained 
showed that PSO was effective in optimizing the architecture 
of the ANN. The results equally showed that ANN model 
was very accurate in predicting CPB strength based on a 
comparison of the predicted UCS values with experimental 
values. Naderpour et al. (2018) used ANN to predict the 
compressive strength of RAC. The input parameters to the 
ANN were water cement ratio, water absorption, fine aggre-
gate, natural coarse aggregate, recycled coarse aggregate, 
and water-total material ratio. The results obtained showed 
that the ANN is an effective tool for predicting the compres-
sive strength of RAC, which is comprised of different types 
and sources of recycled aggregates. Ahmadi et al. (2017) 
used ANN to predict the steel-confined compressive strength 
of concrete in circular concrete filled steel tube (CCFT) col-
umns under axial loading. Their findings showed the preci-
sion and efficiency of ANN model for predicting the capac-
ity of CCFT columns. Cascardi et al. (2017) used ANN to 
predict the strength of FRP-confined concrete. The results 
showed that the proposed model could effectively be used 
for the design of FRP-confined concrete and guarantees an 
improved accuracy with respect to the available competi-
tors. Eskandari-Naddaf and Kazemi (2017) used ANN to 
predict the compressive strength (Fc) of mortar mixtures 
containing different cement strength classes of CME 32.5, 
42.5, and 52.5 MPa. The inputs to the ANN were six water/
cement ratios (W/C) (0.25, 0.3, 0.35, 0.4, 0.45, and 0.5) and 
three sand/cement ratios (S/C) (2.5, 2.75, and 3) along with 
the three types of cement strength classes mentioned above. 
Based on the inputs they prepared 54 different experimen-
tal samples. The experimental samples were subsequently 
used to train, validate and test the network. The results they 
obtained showed that in comparison with two other exist-
ing models, the developed ANN model had precise and 
accurate predictions and performed better than the other 
two models in predicting the compressive strength of the 

mortar. Kellouche et al. (2019) used ANN for predicting 
the carbonation of fly-ash concrete taking into account the 
most influential parameters, including mixture proportions 
and exposure conditions. They considered six input param-
eters namely, binder and fly-ash content, water-to-binder 
ratio,  CO2 concentration, relative humidity, and time of 
exposure; one output is carbonation depth for developing 
the ANN model. Their findings showed a high correlation 
between the experimental and the ANN predicted values of 
the carbonation depth. Rebouh et al. (2017) used an ANN 
model optimized by GA for the prediction of the compres-
sive strength of concrete containing natural pozzolan. They 
used more than 400 experimental data collected from past 
studies in building this model. They compared hybrid ANN-
GA model with ANN model using the same architecture and 
found that the ANN-GA model performed better than the 
non-optimized ANN. The hybrid ANN-GA model predicted 
effectively the compressive strength of concrete containing 
natural pozzolan with a correlation coefficient of 0.93. Boga 
et al. (2013) studied the effects of using ground-granulated 
blast furnace slag (GGBFS) and calcium nitrite-based 
corrosion inhibitor (CNI) on the mechanical and durabil-
ity properties of concrete (compressive strength, splitting 
tensile strength, chloride ion permeability) using ANN and 
ANFIS. The results of the study showed that experimental 
data can be predicted with a very high degree of accuracy 
by the ANN and ANFIS models. Duan et al. (2013) used 
ANN model to predict the compressive strength of the RAC. 
The results of the research show that ANN could be used 
effectively as a tool for predicting the compressive strength 
of RAC prepared with varying types and sources of recycled 
aggregates. Three different models of MLR model, ANN, 
and ANFIS were trained, tested and used by Khademi et al. 
(2017) for predicting the 28-day compressive strength of 
concrete with 173 different mix designs. A comparison of 
the three models showed that ANN and ANFIS performed 
better in predicting the compressive strength than MLR, 
which performed poorly. Mashhadban et al. (2016) used 
ANN and particle swarm optimization algorithm (PSOA) 
to generate a polynomial model for predicting SCC proper-
ties. The obtained results showed that the mechanical prop-
erties can be significantly improved by fiber reinforcement, 
and workability of the SCC decreases with increasing fiber 
content. In addition, the research findings showed that PSOA 
integrated with the ANN is a flexible and accurate method 
for prediction of mechanical properties of fiber reinforced 
SCC properties. Mashrei et al. (2013) proposed a back-
propagation neural network (BPNN) model for predicting 
the bond strength of FRP-to-concrete joints. They used a 
database of one hundred and fifty experimental data points 
from several sources for training and testing the BPNN. 
The results of the research showed that the BPNN is a very 
good alternative method for predicting the bond strength 
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of FRP-to-concrete joints when compared to experimental 
results and those from existing analytical models. A para-
metric regression model (RM), neural network (ANN) and 
an adaptive network-based fuzzy inference system (ANFIS) 
model were developed by Sadrmomtazi et al. (2013) for 
predicting the compressive strength of EPS concrete for 
possible use in mix-design framework. The results showed 
that the elite ANN model constructed with two hidden lay-
ers and comprised of three neurons in each layer could be 
used effectively for prediction. In addition, the ANN model 
performed better than the ANFIS model, which also gave 
good predictions, but the RM was found to be poor in the 
compressive strength predictions. Wang et al. (2015) used 
RM, ANN and fuzzy inference system model (FIS) for pre-
dicting the free expansion strain of SSC under wet curing 
conditions. They used 730 experimental data to develop the 
model. A comparison of the results showed that the values 
predicted by the RM, the ANN and FIS models are close 
to the experimental results, but the RM was found to be 
less accurate than the ANN method and the FIS method. 
An ANN was used by Yaprak et al. (2013) to predict the 
compressive strength of concrete. They used a data set con-
taining a total of 72 concrete samples for the research. The 
input parameters consisted of two distinct W/C ratios, three 
different types of cements, three different cure conditions 
and four different curing periods. The study results showed 
that ANN provides a good alternative to the existing com-
pressive strength prediction methods.

A very important use of modelling in civil engineering 
is for multi-objective optimization. According to Zavala 
et al. (2014), in civil and industrial engineering, structural 
design optimization problems are usually characterized by 
the presence of multiple conflicting objectives, as to get the 
minimum investment cost and the maximum safety of the 
final design. One of the interesting findings of Zavala et al. 
(2014) is that non-dominated sorting genetic algorithm-II 
(NSGA-II) and strength Pareto evolutionary algorithm 2 
(SPEA2) are still the most commonly used multi-objective 
metaheuristics in the literature on structural optimization. 
Güneyisi et al. (2014) carried out a multi-objective optimiza-
tion analysis on the strength and permeability related proper-
ties of high performance concretes made with binary and ter-
nary cementitious blends of FA and metakaolin (MK). They 
used statistical-based RMs and the response surface method 
with the backward stepwise techniques in the multi-objective 
optimization analysis by maximizing compressive strength 
while minimizing chloride permeability, water sorptivity, 
and water absorption. The research results showed that the 
ternary use of FA and MK with the approximate cement 
replacement values of 13.3% and 10%, respectively provided 
the best results for the testing age of 90 days, when the opti-
mized strength and permeability based durability properties 
of the concretes are concerned.

The aim of this study was to carry out a multi-objective 
optimization of bamboo reinforced concrete material in 
order to optimize tensile strength and cost, as well as flex-
ural strength and cost. The study used ANN and NSGA-II 
to achieve these objectives.

2  Materials and methods

2.1  Bamboo acquisition

The species of bamboo used was Bambusa vulgaris. Bam-
boo showing pronounced brown colour was used. The 
brownish coloration signified maturity. The longest diam-
eters of the culm were selected for large splint. It was known 
from literature that the longest length of bamboo splint was 
approximately 19 mm—providing the maximum area with 
the least amount of curvature (Janseen 1988). The bamboo 
was not cut in the rainy season or early dry season. This is 
because culms are generally weaker due to increased fibre 
content in the rainy season. The bamboo was allowed to 
dry and was seasoned after cutting. The culms were split 
into splints approximately 19 mm wide using a circular saw 
machine. The seasoned bamboo received a waterproof coat-
ing to reduce swelling when in contact with concrete. Bitu-
men with grade S125 was used in this experimental work as 
coating material. A thin coat of bitumen was applied on the 
bamboo splint using a paint brush. Immediately after the 
application of the bitumen coat, fine sand was applied on 
the coated bamboo to increase the bonding strength. Next, 
the bamboo splints were left for 24 h to dry prior to being 
handled.

The tests carried out on the bamboo showed a density of 
the dried specimen of 589 kg/m3, average tensile strength of 
105.6 MPa (N/mm2), average flexural strength of 122.4 MPa 
(N/mm2), and average compressive strength of 53.4 MPa (N/
mm2). The modulus of elasticity in tension was 3593 MPa 
(N/mm2), while the modulus of elasticity in compression 
was 10,404.2 MPa (N/mm2).

2.2  Preparation, curing and testing of concrete 
beam samples

In general, the technique used in conventional reinforced 
concrete has not been changed, when bamboo was used as 
the reinforcement. The materials for concrete production 
were dried in the laboratory for at least 2 weeks prior to the 
commencement of the project. Ordinary Portland cement 
was used; river sand (sharp sand) as the fine aggregate and 
locally sourced coarse aggregate or gravel (with a maximum 
size of 25 mm) were also used.

A reinforced concrete mix design of 1:2:4 with a 
water–cement ratio of 0.54 was used. The weight of the 



934 European Journal of Wood and Wood Products (2019) 77:931–947

1 3

different materials per rectangular beam (150 × 150 × 600)
mm and per cylindrical beam (150 × 300) mm are given in 
Table 1. The water used in preparing the concrete samples 
satisfied the conditions prescribed in BS 3148 (1980). The 
required concrete specimens were made in threes in accord-
ance with the method specified in BS 188: Part 109 (1983) 
and cured in accordance with BS 1881: Part 111 (1983). The 
beams were tested in accordance with BS 1881: Part 118 
(1983) using the flexural testing machine.

2.3  Determination of costs of concrete and bamboo

The costs of the reinforced concrete were determined with 
the following formula:

Cost of reinforced concrete = cost of concretematerial + bamboo cost.

Cost of concrete = N20∕kg.

Cost of bamboo = N5∕kg.

1kg of concretewas used for the analysis.

1% of bamboo in concrete = 0.01 kg.

Cost of 1% of bamboo in concrete = 0.01 × 5 = N0.05.

3  Soft computing techniques for modelling 
material properties

Soft computing techniques are computational and artificial 
intelligence techniques used in modelling and optimization 
of processes and systems. Soft computing techniques used in 
prediction of material properties such as ANN, fuzzy logic, 
ANFIS etc. are often easier to develop than mathematical 
models, and most of the time more accurate than mathe-
matical models. Soft computing tools used in optimization 
include GA, simulated annealing, ant colony optimization, 
particle swarm optimization etc.

With the cheap costs and easy accessibility of cheap 
powerful computing tools, soft computing tools used for 
optimization are increasingly used in everyday engineering 
application.

3.1  Artificial neural networks (ANNs)

Artificial neural network is one of the soft computing tools 
inspired by nature. ANN simulates the working principles 
of neurons in the brain and nervous system to solve real life 
computational problems. ANN consists of layers namely: 
input, hidden and output layers. These layers are made up 
of artificial neurons that are linked together to form a net-
work. Most ANNs are feedforward multilayer perceptron 
networks. Feed forward networks use backward propagation 
algorithms for learning. Some learning algorithms used by 
ANN include gradient descent algorithm, Levenberg–Mar-
quardt algorithm, GA or other natural optimisation algo-
rithms (Russell and Norvig 2003; Haupt and Haupt 2004).

The basic unit of the ANN is the artificial neuron. ANNs 
mimic the way neurons operate in the nervous systems of 
living organisms. The structure of the neuron is shown in 
Fig. 1. An ANN as shown in Fig. 1 consists of nodes or units 

Table 1  Weight of constituents per beam specimen

Sample Water (kg) Cement (kg) Fine aggre-
gate (kg)

Coarse 
aggregate 
(kg)

Flexural 2.50 4.63 9.26 18.52
Tensile 0.98 1.82 3.64 7.28

Fig. 1  An artificial neuron

Wj,i = weights xi = inputs ai = output ac�va�on

W1,i

W2,i
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Wn,i
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x1

xn

Ini g(Ini)

ai



935European Journal of Wood and Wood Products (2019) 77:931–947 

1 3

connected by links. Consider a node i linked by node j where 
aj is the activation from node j to node i. Each link has a 
numeric weight Wj,i assigned to it, which is the determining 
factor of the strength and sign of the connection.

Each unit or node i first computes a weighted sum of its 
inputs:

inputi is used as the variable to an activation or transfer func-
tion g(x) to obtain the activation ai at node i such that:

The transfer function is typically a threshold transfer 
function such as a sin function, a sigmoid function, hyper-
bolic tangent function etc. Higher preference is given to 
transfer functions that are differentiable. Similarly, nonlin-
ear transfer functions, such as the sigmoid function, per-
form better than linear transfer functions. A typical transfer 
function, the sigmoid activation function, is given by the 
equation:

Based on the mathematical and computational foun-
dations of ANN, stated above, consider an ANN shown 
in Fig. 2. The ANN consists of two input units, two hid-
den units and one output unit. Given an input vector 
X = (x1, x2,… xn) , the activations of the input units are set 
to (a1, a2,… an) = (x1, x2,… xn) . The computational working 
of the network for two inputs is stated in Eqs. (4) and (5):

(1)ini =

n
∑

j=0

Wj,iaj,

(2)ai = g(ini) = g

(

n
∑

j=0

Wj,iaj

)

.

(3)ai = g(Ini) =
1

1 − e−Ini
.

(4)a5 = g(W3,5a3 +W4,5a4),

The sum of squares error is used by the network to com-
pare actual and computed values. The objective function of 
the network learning is therefore to minimize the sum of 
squares error. The ANN learning process uses optimisation 
algorithms such as Levenberg–Marquardt algorithm, gradi-
ent descent algorithm, GA or other natural optimisation algo-
rithms (Russell and Norvig 2003; Haupt and Haupt 2004). The 
learning process is called training. Training the network could 
be supervised or unsupervised training. In supervised train-
ing, the network is provided with the inputs and appropriate 
outputs; hence, the network is trained with a data set consist-
ing of actual/experimental input parameters and the responses. 
In unsupervised/adaptive learning, the network is provided 
with inputs but not the outputs. In this present application, 
the supervised learning was used; hence, the appropriate net-
work architecture is the feed-forward architecture as shown in 
Fig. 2. Generally, developing ANN models consists of three 
steps, namely training, validation and testing. A certain per-
centage of the experimental data, usually 70%, is used to train 
the network. After training the performance of the network is 
validated by another data set, usually 15% of the experimental 
data. After training and validation, the ANN model is tested 
by the remaining data set.

Consider a training example with input x and output y. The 
network error E is given by:

Here
y = the true/experimental value,

hW(x) is the output of the perceptron.

(5)
a5 = g(W3,5g(W1,3a1 +W2,3a2) +W4,5g(W1,4a1 +W2,4a2).

(6)E =
1

2
Err2 ≡

1

2
(y − hW (x))

2.

(7)Ŷ = hW (x),

Fig. 2  Two-input feed forward 
neural network model Input layer Hidden layer Output layer
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Assuming the gradient descent algorithm is used as the 
learning algorithm, the following is obtained:

In gradient descent algorithm where the objective is to 
reduce the weight, the weight update is given by:

To compare the performance of any network configura-
tion, a statistical measure known as the coefficient of corre-
lation  (R2) between the predicted output and the experimen-
tal responses is the most commonly used criterion, where 
 (R2) is given by (Khademi and Jamal 2016):

ANNs are used for prediction, clustering, classifica-
tion, pattern recognition etc. ANNs can predict complex 
input–output relationships without using any mathematical 
model to do so. The inputs to ANN used in this research 
are number of days for curing and the percentage bamboo 
content in reinforced concrete, while the outputs are flexural 
strength and tensile strength of the reinforced concrete mate-
rial. Predicting the process parameter accurately is absolutely 
necessary in many engineering applications as the quality, 
economics and optimal performance of the process depend 
on this. Development of a good ANN model is very crucial to 
achieving this objective. The developed ANN model could be 
an excellent fitness function for a GA used for multi objective 
optimization of the bamboo reinforced concrete.

3.2  Genetic algorithm

Genetic algorithm is one of the most widely used soft com-
puting techniques for optimization. The algorithm used to 
develop GA is based on the theory of evolution (Piuleac 
et al. 2013). The algorithm is based on the fact that cross 
breeding and mutations are used in nature to obtain the 
fittest organisms that survive from generation to genera-
tion. GA starts with an initial population called the starting 
population (Igboanugo and Nwobi-Okoye 2011; Okiy et al. 
2017). A fitness function is used to select the fittest among 

(8)
�E

�Wj

= Err ×
�Err

�Wj

,

(9)
�E

�Wj

= Err ×
�

�Wj

(

y − g

(

n
∑

j=0

Wjaj

))

,

(10)
�E

�Wj

= −Err × g�(in) × xj,

(11)Wj ← Wj + � × Err × g�(in) × xj.

(12)R2 =

�
∑n

i=1
(yi − ȳ)(ŷi −

̄̂y)
�2

∑n

i=1
(yi − ȳ)2

∑n

i=1
(ŷi −

̄̂y)2
.

the population that will move to the next generation. Usu-
ally, half of the initial population is selected for the next 
generation (Igboanugo and Nwobi-Okoye 2011; Okiy et al. 
2017). The selected population undergoes cross breeding 
and mutation in the next generation to reach the size of the 
initial population before selection. Theoretically, the opti-
mum is reached when the fitness of a population member 
in a certain generation cannot be improved in subsequent 
generations (Igboanugo and Nwobi-Okoye 2011; Okiy et al. 
2017). Sometimes, the optimum may be a local optimum, 
which would ultimately give a wrong result, but modern 
sophisticated GA software often give results that are global 
optima or close to it.

3.3  ANN‑NSGA‑II procedure

The non-dominated sorting genetic algorithm (NSGA-II) 
was used in this study. NSGA is a variant of the classical 
GA used for multi-objective optimization. The algorithm as 
shown in Fig. 3a uses the evolutionary procedure of selec-
tion, crossover and mutations to obtain the optimal values of 
a multi-objective function on the Pareto front. In NSGA II, 
based on the ordering of Pareto dominance, the population 
is sorted into a hierarchy of subpopulations. An assessment 
of how similar members of each sub group are is done on 
the Pareto front, and the resulting groups and measures of 
group similarity are used to promote a diverse front of non-
dominated solutions.

Evaluation of the fitness of the population members in 
NSGA-II algorithm shown in Fig. 3a is done using a fitness 
function. Usually, a mathematical function relating the input 
parameters to the outputs is used. However, in this study, no 
mathematical function was used. Instead, ANN was used as 
the fitness function.

Figure 3b shows the conceptual model of the procedure 
developed for the multi-objective optimization of bam-
boo reinforced concrete beams using ANN and NSGA-II 
algorithm.

It is important to note that in most experiments in mate-
rials science and engineering, the exact mathematical rela-
tionship between the input parameters and responses are 
unknown. Hence, the exact mathematical model of the black 
box is often impossible to find, giving rise to development of 
mathematical or computational models to approximate the 
behaviour of the black box. Often, computational models 
using soft computing tools such as ANN and ANFIS per-
form better than mathematical models as earlier noted. This 
necessitated the use of ANN as a fitness function in NSGA-
II models used in this study.

In the conceptual model shown in Fig. 3b, the first step 
during the development of the ANN-NSGA-II procedure 
is the acquisition of experimental data of the variation of 
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Fig. 3  a NSGA-II algo-
rithm, b conceptual model of 
ANN-NSGA-II multi-objective 
optimization system Generate ini�al

Popula�on: size 
Evaluate
Fitness

Non-dominated
ranking

Stop?Return the 
final Pareto 
front
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reinforcement cost with percentage bamboo content (bam-
boo%) and curing days as well as the variation of tensile 
and flexural strength with percentage bamboo content (bam-
boo%) and curing days. Then, an ANN function named 
NET1 was trained with the experimentally obtained rein-
forcement cost data. Another ANN function named NET2 
was trained and developed with experimentally obtained 
tensile and flexural strength data obtained. Subsequently a 
multi output function (multiObjective function) was devel-
oped with MATLAB with the outputs being cost and tensile/
flexural strength and the inputs being curing time (days) and 
bamboo (%) in reinforcement using NET1 and NET2. The 
operating characteristics of an NSGA-II algorithm described 
in Fig. 3a was set with objective function being the multi 
objective function earlier developed. After setting the upper 
and lower limits of the inputs (curing time (days) and bam-
boo (%)), the GA program was run and the Pareto optimal 
solution was obtained as the output.

4  Results and discussion

4.1  ANN modeling and results

The feedforward backward propagation neural network was 
used for the modelling. For tensile and flexural strength pre-
dictions, the number of hidden neurons, which gave opti-
mum performance, was 20. The training algorithm used for 
all the ANNs was Levenberg–Marquardt, which performed 
better than others. One hundred and twenty (120) experi-
mental inputs and responses were used for ANN training, 
testing and validation. Seventy percent (70%) of the data 
(84) were used for training, while fifteen percent (15%) each 
(18) were used for testing and validation, respectively.

The network architecture consists of two input units, 
twenty (20) hidden units and one output unit, as shown in 
Fig. 4. This structure performed better than other configura-
tions tested. The inputs consist of percentage bamboo con-
tent and ageing time in days, while the outputs consist of the 
tensile strength and flexural strength values.

For the tensile strength prediction, the optimum network 
performance was reached at an epoch of 71. The epoch was 
set at 1000 to ensure that the network was well-trained. Fig-
ure 5 shows the training state of the ANN for tensile strength 
prediction. The errors were repeated 6 times after epoch 65 
and the test was stopped at epoch 71. This error repeats start-
ing at epoch 11 show over-fitting of the data. Hence, the 

H1

H2

H3

H4

-

-

-

H18

H19

H20

Days

Bamboo (%)

Tensile/Flexural Strength

Fig. 4  The three-input, 20 hidden units feed foreword neural network 
model (2-20-1)

Fig. 5  Training state of the ANN model used in tensile strength pre-
diction

Fig. 6  Performance of ANN for tensile strength prediction
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epoch 10 is taken as the base and its weights taken as the 
final weights. It is important to note that the validation check 
is equal to 6 due to the fact that the errors are repeated 6 
times before stopping the process.

Figure 6 shows the performance of the ANN for tensile 
strength prediction during training, validation and testing 
as well as the mean squared error (MSE) of the network. 
As shown in Fig. 6, the error started at high value during 
training, validation and testing but gradually reduced as the 
number of epochs increased. The training process continues 
until the validation error increased for six iterations. Hence, 
the training stopped at epoch 71 to avoid overfitting the 
data sets. As Fig. 6 shows, the best validation performance 
occurred at epoch 65, and after 6 error iterations, the process 
stopped at epoch 71. The results shown in Fig. 6 are similar 
to those in Fig. 5. For tensile strength predictions, the MSE 
of the network during training, validation and testing was 
9.9467 × 10−7, 9.48917 × 10−6 and 6.90235 × 10−6, respec-
tively, as shown in Fig. 6.

Figure 7 shows the error histogram of the ANN for tensile 
strength prediction. As the error histogram shows, most of 

Fig. 7  Error histogram with 20 bins for the training, validation and 
testing of ANN for tensile strength prediction

Fig. 8  ANN predictions of 
tensile strength vs experimental 
data

a b

c d
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the errors fall between 0.0025 and − 0.0025. The zero error 
is in a vertical line parallel to the ordinate with 33 instances 
during training.

The regression coefficient of correlation between the 
experimentally obtained tensile strength and the ANN pre-
dicted tensile strength during training, validation and test-
ing is shown in Fig. 8a–c with values of 0.99926, 0.99099 
and 0.98921, respectively. The regression coefficient of the 
network (training, testing and validation) was 0.99742, as 
shown in Fig. 8d.

For the flexural strength prediction, the optimum network 
performance was reached at an epoch of 22. The epoch was 

set at 1000 to ensure that the network was well-trained. 
Figure 9 shows the training state of the ANN for flexural 
strength prediction. The errors were repeated 6 times after 
epoch 16, and the test was stopped at epoch 22.

Figure 6 shows the performance of the ANN for flexural 
strength prediction during training, validation and testing 
as well as the MSE of the network. For flexural strength 
predictions, the MSE of the network during training, vali-
dation and testing was 1.60710 × 10−2, 3.09230 × 10−1 and 
1.41846 × 10−1, respectively as shown in Fig. 10.

Figure 11 shows the error histogram of the ANN for flex-
ural strength prediction. As the error histogram shows, most 
of the errors fall between 0.3500 and − 0.3500. The zero 
error is in a vertical line parallel to the ordinate with 33 
instances during training.

The regression coefficient of correlation between the 
experimentally obtained flexural strength and the ANN pre-
dicted flexural strength during training, validation and test-
ing is shown in Fig. 12a–c with values of 0.99949, 0.99177 
and 0.99204, respectively. The regression coefficient of the 
network (training, testing and validation) was 0.99733 as 
shown in Fig. 12d.

For the cost predictions, a network with three hidden 
neurons was enough to predict the variations of the age 
hardening cost with process parameters. As in the network 
for tensile strength and flexural strength predictions, one 
hundred and twenty (120) experimental inputs and responses 
were used for ANN training, testing and validation. Seventy 
percent (70%) of the data (84) were used for training, while 
fifteen percent (15%) each (18) were used for testing and 
validation, respectively.Fig. 9  Training state of the ANN model used in flexural strength pre-

diction

Fig. 10  Performance of ANN for flexural strength prediction
Fig. 11  Error histogram with 20 bins for the training, validation and 
testing of ANN for flexural strength prediction
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Fig. 12  ANN predictions of 
flexural strength vs experimen-
tal data

a b

c d

Fig. 13  Training state of the ANN model used in cost prediction Fig. 14  Performance of ANN for cost prediction
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Figure 13 shows the training state of the ANN for cost 
prediction. The errors were repeated 0 times after epoch 9 
and the test was stopped at epoch 9.

Figure 14 shows the performance of the ANN for cost 
prediction during training, validation and testing as well 
as the MSE of the network. The MSE of the network for 
cost prediction during training, validation and testing was 
5.64326 × 10−21, 3.62883 × 10−21 and 1.76017 × 10−20, 
respectively as shown in Fig. 14.

Figure 15 shows the error histogram of the ANN for flex-
ural strength prediction. As the error histogram shows, most 
of the errors fall between 9.1 × 10−12and − 9.1 × 10−12. The 
zero error is in a vertical line parallel to the ordinate with 68 
instances during training.

The regression coefficients of correlation between the 
experimentally obtained flexural strength and the ANN pre-
dicted flexural strength during training, validation and test-
ing were all 1 and are shown in Fig. 16a–c. The regression 

Fig. 15  Error histogram with 20 bins for the training, validation and 
testing of ANN for cost prediction

Fig. 16  ANN predictions of 
cost vs experimental data

a b

c d
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coefficient of the network (training, testing and validation) 
was 1 as shown in Fig. 16d.

Tables 2 and 3 show some ANN predictions of the experi-
mental responses for tensile and flexural strengths, respec-
tively. Table 2 is used to draw Fig. 8, while Table 3 is used 
to draw Fig. 12.

4.2  Result of process multi‑objective optimization 
using NSGA‑II algorithm

The results of execution of the algorithm described in 
Sect. 3.3 using the ANNs developed in Sect. 4.1 are stated 
here. A MATLAB function, which is a well-trained ANN 
as previously described, was used as the fitness function 
for a multi objective GA to carry out the optimization of 
the concrete reinforcement process. The upper and lower 
limits of the experimental variables were used as the 

upper and lower bounds of the optimization algorithm as 
described in Sect. 3.3. For tensile strength optimization, 
the negative values of the tensile strength were used dur-
ing the optimization because the objective of the GA is 
to minimize the objective function. The population size 
used by the NSGA-II algorithm was 50 while the crosso-
ver and mutation rates were 0.8 and 0.1, respectively. The 
optimized Pareto front achieved after 107 iterations is 
shown in Fig. 17. The inputs (days and percentage bam-
boo content) corresponding to the obtained tensile strength 
and cost values on the optimized Pareto front are shown 
in Table 4. The maximum and minimum values of ten-
sile strength returned by the multi objective optimization 
algorithm were 0.169 and 0.105, respectively, as shown in 
Table 4. The difference between the reinforcement cost for 
the minimum and maximum tensile strength values in the 
Pareto front was 1.24.

Table 2  Some experimental 
responses and predicted 
responses for tensile strength

S/no. Days %wt of bam-
boo (kg)

Tensile strength (N/mm2) Unit cost (Naira)

Measured ANN predicted Observed ANN predicted

1 3 0 0.850 0.931 20.00 20.00
2 6 0 0.910 0.827 20.00 20.00
3 9 0 0.102 0.179 20.00 20.00
4 12 0 0.110 0.107 20.00 20.00
5 15 0 0.114 0.127 20.00 20.00
6 18 0 0.121 0.115 20.00 20.00
7 21 0 0.122 0.106 20.00 20.00
8 24 0 0.128 0.117 20.00 20.00
9 27 0 0.130 0.129 20.00 20.00
10 30 0 0.134 0.141 20.00 20.00
11 3 1 0.111 0.157 19.85 19.85
12 6 1 0.113 0.082 19.85 19.85
13 9 1 0.115 0.116 19.85 19.85
14 12 1 0.116 0.121 19.85 19.85
15 15 1 0.120 0.123 19.85 19.85
16 18 1 0.123 0.115 19.85 19.85
17 21 1 0.126 0.114 19.85 19.85
18 24 1 0.134 0.125 19.85 19.85
19 27 1 0.136 0.136 19.85 19.85
20 30 1 0.140 0.144 19.85 19.85
21 3 2 0.114 0.076 19.70 19.70
22 6 2 0.117 0.118 19.70 19.70
23 9 2 0.118 0.142 19.70 19.70
24 12 2 0.120 0.122 19.70 19.70
25 15 2 0.127 0.115 19.70 19.70
26 18 2 0.130 0.124 19.70 19.70
27 21 2 0.132 0.136 19.70 19.70
28 24 2 0.139 0.140 19.70 19.70
29 27 2 0.140 0.142 19.70 19.70
30 30 2 0.144 0.144 19.70 19.70
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For flexural strength optimization, the negative values 
of the flexural strength were used during the optimization 
for the same reason as stated above. The population size 
used by the NSGA-II algorithm was 50 while the crosso-
ver and mutation rates were 0.8 and 0.1, respectively. The 
optimized Pareto front achieved after 145 iterations is 
shown in Fig. 18. The inputs (days and percentage bamboo 
content) corresponding to the obtained flexural strength 
and cost values on the optimized Pareto front are shown 
in Table 5. The maximum and minimum values of tensile 
strength returned by the multi objective optimization algo-
rithm were 18.827 and 10.685, respectively, as shown in 
Table 5. The difference between the reinforcement cost for 
the minimum and maximum tensile strength values in the 
Pareto front was 0.73.

Table 3  Some experimental 
responses and predicted 
responses for flexural strength

S/no. Days %wt of bam-
boo (kg)

Flexural strength (N/mm2) Unit cost (Naira)

Measured ANN predicted Observed ANN predicted

1 3 0 1.120 1.354 20.00 20.00
2 6 0 1.400 1.467 20.00 20.00
3 9 0 1.490 1.657 20.00 20.00
4 12 0 2.600 2.126 20.00 20.00
5 15 0 2.870 2.266 20.00 20.00
6 18 0 3.650 2.815 20.00 20.00
7 21 0 3.800 3.962 20.00 20.00
8 24 0 4.420 4.573 20.00 20.00
9 27 0 4.680 4.751 20.00 20.00
10 30 0 4.970 4.772 20.00 20.00
11 3 1 8.640 8.396 19.85 19.85
12 6 1 8.710 8.678 19.85 19.85
13 9 1 9.120 8.991 19.85 19.85
14 12 1 9.320 9.537 19.85 19.85
15 15 1 9.590 9.566 19.85 19.85
16 18 1 10.370 10.367 19.85 19.85
17 21 1 12.150 12.116 19.85 19.85
18 24 1 12.650 12.713 19.85 19.85
19 27 1 12.810 12.850 19.85 19.85
20 30 1 12.960 12.942 19.85 19.85
21 3 2 9.170 9.058 19.70 19.70
22 6 2 9.300 9.303 19.70 19.70
23 9 2 9.490 9.540 19.70 19.70
24 12 2 9.590 9.938 19.70 19.70
25 15 2 10.010 9.991 19.70 19.70
26 18 2 11.170 11.112 19.70 19.70
27 21 2 12.510 12.460 19.70 19.70
28 24 2 13.440 13.273 19.70 19.70
29 27 2 13.510 13.498 19.70 19.70
30 30 2 13.690 13.672 19.70 19.70
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19.20

19.40

0.080 0.090 0.100 0.110 0.120 0.130 0.140 0.150 0.160 0.170 0.180

Co
st

Tensile Strength (N/mm2)

Fig. 17  Pareto optimal set of solutions obtained for the tensile 
strength
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5  Conclusion

The following conclusions are drawn from this research:

1. It was discovered that as the percentage of bamboo in the 
concrete increases, the tensile strength increases until 
a certain percentage content when the strength starts 
decreasing. Equally, the tensile strength increases as the 
ageing days increase.

2. As the percentage of bamboo in the concrete increases, 
the flexural strength increases until a certain percentage 

Table 4  Concrete strengthening parameters and tensile strength on 
the Pareto front

S/no. Days %wt of bam-
boo (kg)

Tensile strength 
(N/mm2)

Cost (Naira)

1 26.8 6.33 0.159 19.05
2 29.9 8.23 0.159 18.77
3 28.0 5.74 0.169 19.14
4 29.7 13.99 0.105 17.90
5 29.7 13.99 0.105 17.90
6 27.7 6.04 0.166 19.09
7 29.5 9.44 0.145 18.58
8 29.7 12.08 0.121 18.19
9 29.0 12.24 0.119 18.16
10 29.9 8.78 0.154 18.68
11 29.8 12.59 0.117 18.11
12 29.9 9.17 0.149 18.62
13 29.8 11.04 0.131 18.34
14 29.7 13.65 0.107 17.95
15 29.7 10.71 0.134 18.39
16 29.6 12.92 0.113 18.06
17 29.9 9.95 0.141 18.51
18 28.6 6.22 0.161 19.07
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18.00
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18.20

18.30

18.40

18.50

18.60

18.70

8.000 10.000 12.000 14.000 16.000 18.000 20.000

Co
st

Flexural Strength (N/mm2)

Fig. 18  Pareto optimal set of solutions obtained for the flexural 
strength

Table 5  Concrete strengthening parameters and flexural strength on 
the Pareto front

S/no. Days %wt of bam-
boo (kg)

Flexural strength 
(N/mm2)

Cost (Naira)

1 30.0 9.14 18.827 18.63
2 29.7 10.91 16.003 18.36
3 29.4 11.75 12.905 18.24
4 29.8 10.27 17.828 18.46
5 29.7 10.49 17.303 18.43
6 29.5 10.95 15.844 18.36
7 29.7 12.53 11.341 18.12
8 29.3 11.13 15.128 18.33
9 29.9 11.72 13.098 18.24
10 30.0 10.38 17.614 18.44
11 29.3 12.03 12.170 18.20
12 29.5 10.68 16.740 18.40
13 29.4 12.20 11.822 18.17
14 29.5 11.61 13.382 18.26
15 29.5 10.64 16.876 18.40
16 29.7 11.67 13.201 18.25
17 29.6 11.86 12.630 18.22
18 29.9 11.54 13.680 18.27
19 29.6 11.23 14.776 18.31
20 29.3 10.17 17.961 18.48
21 29.7 11.09 15.342 18.34
22 29.8 11.32 14.479 18.30
23 30.0 14.00 10.685 17.90
24 29.5 11.94 12.398 18.21
25 30.0 9.90 18.409 18.51
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content when the strength starts decreasing. Equally, the 
flexural strength increases as the ageing days increase.

3. The Pareto optimal values can serve as a design guide 
for structural engineers in designing structures optimally 
with the material compositions and curing period.

4. GA with ANN as fitness function (GA-NN system) is an 
excellent tool for multi-objective optimization of bam-
boo reinforced concrete structures.
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