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Abstract
As an effect of changing forest management—away from softwood monocultures to more robust mixed stands—the avail-
ability of hardwood on the European timber market increases. Thus, a more diversified spectrum of hardwood products is 
required between the established uses in furniture and energy production. Glued timber products are a promising option in 
this respect. One important prerequisite for efficiently producing glued hardwood products is to establish hardwood strength 
grading. To this end, the current paper explored the potential of microwave scanning, stand-alone or combined with the 
measurement of dynamic stiffness, to estimate the tension strength of ash, beech, sweet chestnut and oak lamellas. In this 
preliminary study, combining microwave and dynamic stiffness measurement showed much potential for hardwood strength 
grading for all four species; for beech and sweet chestnut, coefficients of determination ( r2 ) beyond 60% could be achieved, 
which is on a level with established softwood grading principles. For ash and oak, r2 ≈ 45% was observed, which is acceptable 
for machine strength grading. The paper also considered measuring density using microwaves. Such a density measurement 
was found to be as accurate for hardwoods as for softwoods.

1 Introduction

In forestry, the basic principles of how stands should be 
managed and cultivated have changed a lot over the last 
decades. After massive forest devastations in the eighteenth 
and nineteenth century, spruce (Picea abies) reached a 
wide spread because of its high growth rates. Industry also 
adopted to spruce due to the good strength-density-ratio and 
the easy usability for sawing and gluing. Hardwood spe-
cies, on the other hand, have almost exclusively been used 
for furniture; all hardwood material of lower quality was 
allocated to energy production. On the other hand, spruce 
monocultures are prone to calamities like storms or bark 
beetle attacks; climate change increases the risk and sever-
ity of such calamities. Thus, the large mono-species spruce 
stands are now being converted to mixed stands with native 
tree species of the respective region. The result of this new 

development has been an increase in hardwood forest and 
standing volume, predominantly beech and oak, in Germany 
(BMEL 2016, 2017). In neighbouring countries, additional 
species have become relevant, for example, sweet chest-
nut (commonly called “chestnut”) and oak in France (IGN 
2014).

The increased availability of hardwoods has become more 
obvious recently because the new hardwood stands have now 
grown into stem dimensions suitable for sawing. At this 
point, the development of new industrial hardwood prod-
ucts with high added value is becoming attractive. Expected 
benefits include improved overall timber availability for the 
wood processing industry and a further increase in hardwood 
growth as targeted in the European forest policies.

Glued timber products, i.e. glued laminated timber (glu-
lam) or cross laminated timber (x-lam), are the most prom-
ising future hardwood products for construction. However, 
three key issues need to be solved. The first issue and the 
focus of this paper is strength grading of hardwoods, which 
is much less developed than strength grading of softwoods. 
The second and third issues are, respectively, adhesives suit-
able for bonding different hardwood species and European 
standardization as a basis for producing CE-marked hard-
wood glulam.
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1.1  Softwood strength grading technologies

For softwoods, machine strength grading has seen a big 
boost over the last twenty years and is now well estab-
lished in the European sawmilling industry. Technologies 
include bending machines, X-ray scanning, eigenfre-
quency or time-of-flight measurement, laser scanning and 
various types of microwave scanning. In the following, 
the principles, strengths and weaknesses of each method 
according to the current state of the art are outlined. As a 
basis for comparison with the results of the current paper, 
values for the coefficients of determination ( r2 ) are cited 
whenever available.

Bending machines operate by measuring the physi-
cal deflection of the piece and the force required for the 
deflection. For spruce, Boström (1994) observed r2 values 
with bending strength in the range from 40 to 75% depend-
ing on machine type and cross-section. Hanhijärvi and 
Ranta-Maunus (2008) reported spruce bending strength r2 
between 45% and 60%, spruce tension strength r2 between 
55% and 61%, and pine bending strength r2 between 63% 
and 72%.

X-ray scanning is used to measure board density; 
Bacher (2008) reported r2 = 89% with spruce density. For 
softwoods, knot density is considerably higher than clear 
wood density, so that knots can be detected by density 
measurement. As knots cause grain deviations, which 
in turn strongly influence strength (Kollmann and Cote 
1984; Denzler and Weidenhiller 2015), X-ray scanning 
can provide good strength estimates. The best r2 values 
of X-ray strength estimates with spruce bending, spruce 
tension and pine bending strength reported in Hanhijärvi 
and Ranta-Maunus (2008) are 53%, 49% and 69%, respec-
tively. Bacher (2008) achieved r2 = 52% for spruce tension. 
Strength limiting factors not directly related to knots or 
wood density cannot reliably be detected by X-ray board 
scanning; this includes global grain deviation and top rup-
ture (Denzler and Weidenhiller 2014; Hunger and van de 
Kuilen 2018).

Dynamic stiffness  (Edyn) depends on wood density and 
the speed of sound in the specimen, where the speed of 
sound can be calculated from specimen length combined 
with eigenfrequency or time-of-flight (Gil-Moreno and 
Ridley-Ellis 2015). Eigenfrequency is measured by excit-
ing longitudinal vibrations by a hammer and then meas-
uring the frequency by a laser interferometer (Viguier 
et  al. 2015); time-of-flight measures the time a stress 
wave takes to travel through the specimen (Wang 2013). 
 Edyn has high correlations to the stiffness determined by 
destructive tests (r2 ≈ 90% for spruce bending and tension 
and for pine bending tests, as reported by Hanhijärvi and 
Ranta-Maunus 2008). There are also good correlations to 

strength. Hanhijärvi and Ranta-Maunus (2008) observed 
r
2 values of  Edyn with spruce bending, spruce tension and 

pine bending strength of 57%, 58% and 69%, respectively. 
The results reported by Bacher (2008) and Denzler and 
Weidenhiller (2015) confirmed these r2 values. Combin-
ing  Edyn measurement with X-ray scanning can further 
improve the correlations; the best r2 values of such a sys-
tem with spruce bending, spruce tension and pine bend-
ing strength as reported in Hanhijärvi and Ranta-Maunus 
(2008) were 64%, 64% and 75%, respectively.

Laser scanning is based on the tracheid effect, i.e. on the 
observation that laser light is scattered more along wood 
fibres than perpendicular to wood fibres, so that a point 
laser directed on the specimen surface produces an ellipse 
image on the surface (Nyström 2003). Laser scanning can 
therefore directly measure grain deviation on the speci-
men surface; from the eccentricity of the ellipse, one can 
also obtain information about the diving angle of the wood 
fibres (Viguier et al. 2015). Viguier et al. (2015) used this 
information to calculate strength profiles for spruce boards; 
their models obtained r2 values of more than 60% for bend-
ing strength and 70% for tension strength, which could be 
improved to 78% for tension by including  Edyn. Olsson et al. 
(2013) derived estimates of local stiffness variation in com-
bination with an  Edyn measurement; their model achieved r2 
values of up to 71% with spruce bending strength. Informa-
tion about the interior of the specimen cannot be measured 
directly by laser scanning; Kandler et al. (2016) presented 
a method to infer knot geometry from surface grain devia-
tion. Strength predictors based on 3D knot geometry were 
reported to achieve r2 > 80% for spruce bending and tension 
(Lukacevic et al. 2015).

Microwaves interact with timber in an anisotropic man-
ner. The interaction depends on the distribution of water 
and density in the timber (Torgovnikov 1993). Therefore, 
microwaves can detect information about the internal struc-
ture of wood: density distribution, moisture content distribu-
tion and grain angle information (Schajer and Orhan 2005; 
Aichholzer et al. 2013; Denzler et al. 2013, 2014). Boström 
(1994) reported spruce bending strength r2 values in a range 
from 34 to 55%, depending on cross-section; the used grad-
ing machine was a combination of gamma radiation (for den-
sity) and microwaves (for moisture content and grain devia-
tion). Combining microwave grain angle measurements with 
 Edyn, Denzler and Weidenhiller (2015) found r2 values of up 
to 69% with spruce tension strength.

1.2  Hardwood strength grading technology

In contrast to the large amount of literature on softwood 
strength grading, results on hardwood strength grading are 
more limited. Diebold et al. (2000) reported tests including 
beech and oak specimens in addition to several softwood 
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species. They concluded that machine strength grading was 
feasible for all considered species and that knot information 
was useful for all examined scanning combinations. Ehrhart 
et al. (2016) found only a low r2 = 22% between  Edyn and 
tensile strength for beech. Knot information was identified 
as relevant for beech strength grading, even though there 
were relatively few knots in the timber. Knot-free timber 
also showed high strength variations, where main influenc-
ing factors were obvious grain deviation, discolouration 
and wavelike annual ring patterns (Ehrhart et al. 2016). For 
green oak timber, Kretschmann and Green (1999) observed 
an r2 = 32% between  Edyn and bending strength. Vega et al. 
(2012) reported up to r2 = 17% between  Edyn and bend-
ing strength for chestnut; by adding specimen length and a 
visual knot variable, r2 could be increased to 33%. Nocetti 
et al. (2016) found a slightly better coefficient of determi-
nation ( r2 = 24% ) between  Edyn and bending strength for 
chestnut; this was sufficient to derive settings according to 
EN 14081-2 (2012). Van de Kuilen and Torno (2014) found 
r = 0.44 (i.e. r2 = 19% ) between  Edyn and tensile strength for 
ash which they attributed to different measurement lengths 
for  Edyn (5 m) and tensile strength (0.2 m).

Concerning grain deviation, several approaches have 
already been tested on hardwoods. For red oak, black 
cherry and black walnut, Zhou and Shen (2003) demon-
strated that the tracheid effect is less effective in measuring 
grain deviation. They explained this by anatomical dif-
ferences between softwoods and hardwoods—smaller and 
shorter fibrous cells in comparison to softwood tracheid 
cells. They proposed a different evaluation method of the 
laser ellipse images on the wood surface to improve meas-
urement precision. For oak, Daval et al. (2015) even stated 
that grain deviation was not measurable using the tracheid 
effect; they suggested measuring the elliptical shape of 
heat conduction instead of laser light scattering. As heat-
ing the wood surface requires some time, industrial pro-
cessing rates are still out of reach for this method (Daval 
et al. 2015). Schlotzhauer et al. (2018) compared laser 
scanning, microwave scanning and electrical field strength 
measurement with manual reference measurements for 
ash, basswood, beech, birch, maple, oak and spruce. No 
system was capable of determining grain angle for ash; 
laser scanning failed on oak, confirming the observations 
by Zhou and Shen (2003) and Daval et al. (2015), but 
correlated well with the reference measurements on knot-
free samples of basswood, beech, maple and oak. Micro-
wave scanning worked well for maple, oak and spruce but 
had little correlation with the reference measurements 
on the other species. Electrical field strength measure-
ments worked well on beech, oak and spruce, less well 
on birch and maple and failed on basswood (Schlotzhauer 
et al. 2018). Ehrhart et al. (2018) observed that for beech, 
the spindles formed by the medullary rays were a good 

indicator of the strength-relevant grain deviation. They 
developed an automatic image analysis to calculate grain 
deviation from the spindle pattern and confirmed good 
correspondence with fracture patterns. They judged their 
method to be readily implementable in state-of-the-art 
strength grading machines and expected that it would also 
work for other species with similar anatomical structures, 
like for example oak.

Nocetti et al. (2016) noted that automatically measuring 
knots on chestnut is more difficult than on softwoods and 
that knots have a rather low influence on chestnut bending 
strength.

In view of the large number of tropical hardwood spe-
cies, which could be used for structural purposes, spe-
cies-independent timber grading would be of interest 
(Firmanti et al. 2005; Ravenshorst 2015). Firmanti et al. 
(2005) studied the prediction of bending strength by MOE 
from flatwise bending. On a dataset of 1094 specimens 
of uniform size, they achieved r2 = 55% but found that 
including species information would allow for r2 values in 
the range from 60 to 71%. Ravenshorst (2015) developed 
an approach based on density and  Edyn. According to his 
research, clear wood bending strength depends on density 
but not on species. He assumed that the main strength 
reducing factors are knots and global grain deviation, 
and that for each species, one of those factors dominates 
the other. This necessitated two strength models, one for 
each strength-reducing factor. He achieved r2 = 52% for a 
weighted nonlinear regression of bending strength based 
on density and  Edyn on a dataset of 2218 specimens from 
24 tropical hardwood species (Ravenshorst 2015).

Şahin Kol and Yalçın (2015) measured dielectric prop-
erties of small specimens of fir and oak using microwaves. 
With bending strength, they found r2 values of up to 46% 
for fir and up to 78% for oak.

1.3  Aim of the current paper

To sum up, there is a wealth of literature on softwood 
strength grading. The virtue of combining several scan-
ning technologies has been emphasized by many authors. 
For hardwoods, much less is known. Most hardwood 
strength models to date only use  Edyn, although the rel-
evance of other parameters like knots or grain deviation 
has been recognized. The current paper aims to improve 
on the current strength models, combining grain deviation 
measurement by microwave scanning with  Edyn measure-
ment. Four European hardwood species are considered in 
this preliminary study: ash (Fraxinus excelsior L.), beech 
(Fagus sylvatica L.), chestnut (Castanea sativa Mill.), and 
oak (Quercus robur L., Quercus petraea (MATT.) LIEBL).
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2  Materials and methods

The material for the study was collected in the context of 
the WoodWisdom-Net project European hardwoods for the 
building sector (see also the acknowledgements). In this 
project, data were gathered beginning at the stand, includ-
ing tree, log and board information. The calculations in the 
present paper are solely based on the board information. 
However, the information from which tree each board came 
was used for splitting the data into training and test series 
(Sect. 2.7).

2.1  Roundwood samples

The key data of the roundwood samples are summarized in 
Table 1. The sample of ash (Fraxinus excelsior L.) round-
wood came from a regular cutting in a mixed deciduous for-
est close to the city of Freiburg in south-western Germany. 
The beech (Fagus sylvatica L.) trees were sampled from 
thinnings of three beech stands in growth trial plots located 
in the north-eastern part of the Swabian Jura in southern 
Germany. For oak, eight trees were felled in a 102-year old 
pure oak stand in northern Baden-Württemberg. For this site, 
the oak species is not known, but only the genus Quercus 
ssp. However, with respect to the wood structure and the 
intrinsic mechanical wood properties of the two indigenous 
oak species in question, Quercus petraea (MATT.) LIEBL 
and Quercus robur L., it can be assumed that there would 
be no differences in the mechanical wood properties for 
both species. The roundwood of chestnut (Castanea sativa 
MILL.) originated from a 36-years old pure stand in the west 
of Baden-Württemberg.

2.2  Board samples

The logs were sawn into a total of 384 rough boards in a 
sawmill (chestnut, oak) or using a mobile horizontal band 
saw (ash, beech). Subsequently, all boards were kiln-dried 
to a target moisture content of 12 ± 2% and then planed on 
all faces with a four-side planer. Final cross-sections were 
25 × 120 mm² (nine oak boards), 30 × 200 mm² (62 ash 
boards) and 30 × 150 mm² (313 boards of all species). A 

total number of 116 ash, 86 beech, 97 chestnut and 85 oak 
boards were obtained.

Due to resource limitations, the preliminary study on the 
potential of microwave measurements for hardwood boards 
was restricted to about half of the available material and to 
one cross-section. From the ash, beech, chestnut and oak 
boards of cross-section 30 × 150 mm², 38, 42, 45 and 46 
specimens were selected, respectively. The aim was to pick 
20 defect-free specimens with low grain deviation and 20 
specimens with high grain deviation.

2.3  Measurements on boards

After drying and planing, the eigenfrequency (f) was meas-
ured with a Microtec ViScan machine. The board density 
value (ρ) required for calculating  Edyn from f was calculated 
from weight and board dimensions.  Edyn and ρ were cor-
rected to a moisture content of 12% according to EN 384 
(2010).

The test span for the tensile tests was 9 times 
the larger cross-sectional dimension, in this case 
9 × 150 mm = 1350 mm (EN 408 2012). Within the test span, 
all knots of a diameter equal to or larger than 5 mm were 
recorded manually and used to calculate the maximum total 
knot area ratio (tKAR) over a sliding range of 150 mm. In 
other words, for any range of 150 mm within the test span, 
all knots within that range were projected to the cross-sec-
tion of the piece. The total knot area ratio is the ratio of the 
area of this knot projection to the area of the cross-section. 
The largest of all these total knot area ratios for the different 
ranges of 150 mm within the test span of a single piece of 
timber was defined as the piece’s tKAR.

The test span was also scanned with the microwave scan-
ner described in Sect. 2.4. The measurement was taken on a 
grid of 12.5 × 12.5 mm² cells. This resulted in 108 grid col-
umns along the length of the board and 12 grid rows across 
the width of the board (Fig. 1).

Tensile strength was measured according to EN 408 
(2012). Required correction factors according to EN 384 
(2010) regarding moisture content and width were applied. 
During the tensile strength tests, one board each from the 
selected ash, beech and oak boards and two from the selected 
chestnut boards had to be excluded due to failure in the 
clamping section. Thus, 37, 41, 43 and 45 boards of ash, 

Table 1  Descriptive data for the 
logs, separated for species, and 
including the number of trees 
from which the logs came

N number of trees/logs, L log length, D log mid diameter

Species Origin Ntree Nlog Lmin (m) Lmax (m) Dmin (cm) Dmax (cm) Davg (cm)

Ash Mixed deciduous forest 8 14 3.4 4.9 31 48 37
Beech Growth trial plots 7 17 5.0 5.1 23 44 32
Chestnut Pure stand 8 24 3.9 4.7 17 30 25
Oak Pure stand 8 16 4.1 4.5 21 34 27
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beech, chestnut and oak respectively remained in the analy-
sis, in total 166 boards.

2.4  The microwave scanner

The microwave scanner used is a prototype constructed by 
TU Wien (Denzler et al. 2013; Denzler and Weidenhiller 
2015). It consists of an array of 28 transmitter antennas of 
12.5 mm width each located perpendicular to the feed direc-
tion of the timber (which is fed in lengthwise) and three 
receiver antennas, which are placed in a way that one meas-
ures transmission perpendicular to the wood surface, and 
the other two sensors measure transmission at 45° degree 
angles to the wood surface. The scanner is set up to capture 
measurements on a grid of 12.5 by 12.5 mm² cells on the 
larger face of the timber (width), whereas the information 
across the smaller cross-sectional dimension of the timber 
(thickness) is averaged for each cell.

The basic parameters obtained from the microwave 
receiver antennas are damping (energy loss through dissipa-
tion within the timber) and phase-shift (change in the loca-
tion of “hills” and “valleys” of the waveline), both in fibre 
direction and perpendicular to the fibre direction (Schajer 
and Orhan 2005). To obtain damping and phase-shift, micro-
waves are sent from transmitter antennas through the timber 
and measured by receiver antennas.

The following parameters are calculated for each cell: 
damping and phase-shift along ( attu and Φu ) and perpen-
dicular ( attv and Φv ) to the grain (Schajer and Orhan 2005; 
Denzler et al. 2014), fibre orientation projected to the larger 
face of the timber (horizontal angle ϑ; Schajer and Orhan 
2005; Aichholzer et al. 2013; Denzler et al. 2013), and fibre 
orientation projected to the smaller face of the timber (div-
ing angle ω; Koppensteiner et al. 2017).

2.5  Preparation of microwave data for the density 
models

Microwave attenuation and phase-shift correlate to timber 
density ρ and moisture content (Schajer and Orhan 2005; 
Denzler et al. 2014). In this paper, we only talk about infer-
ring density, but the approach to inferring moisture content 
is very similar. Wood density can be inferred from attenu-
ation and phase-shift by means of multivariate regression 
models; separate models may need to be derived for each 
wood species (Schajer and Orhan 2006). To apply the model 
to timber specimens of different thicknesses, thickness needs 
to be included into the regression (Denzler et al. 2014). In 
the present paper, focus was put on one thickness. While it is 
possible to determine density distributions across the timber 
surface (which might be interesting for detecting knots), the 
focus was on determining the average density of the entire 
board. As a basis for the regression model for average wood 
density, average values of damping and phase-shift along the 
grain ( attu and Φu ) and perpendicular to the grain ( attv and 
Φv ) were calculated.

2.6  Preparation of microwave data for the strength 
models

Tension strength is determined by the weakest section of 
the board, which in turn is often characterized by strong 
grain deviation (i.e. deviation of the fibre orientation from 
the axial direction of the board). For both horizontal angles 
ϑ and diving angles ω, three types of grain deviation were 
considered: global grain deviation, local grain deviation, and 
local changes in grain deviation.

Global grain deviation of a board was calculated as aver-
age ϑ or ω over all rows and columns (Fig. 1) resulting in 
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Fig. 1  Layout of microwave measurements. a of the whole board, only the test span was measured; broken line delineates the detail shown in b; 
b Detail of a; microwave measurements were arranged in rows and columns of height/width 12.5 mm
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two values per board. The calculation was repeated using 
only the central eight of the twelve rows, resulting in two 
further values per board.

For local grain deviation, moving averages were calcu-
lated over blocks of c columns and 8 or 12 rows, where c 
ranged from three to twenty columns. The local grain devia-
tion value for each combination of some c, 8 or 12 rows and 
ϑ or ω was calculated as the maximum over the absolute 
value of the moving average. Per board, 18 × 2 × 2 = 72 val-
ues for local grain deviation were thus obtained.

For local changes in grain deviation, the moving aver-
ages were again taken, but now absolute differences between 
neighbouring blocks of c columns and 8 or 12 rows were 
calculated pairwise. Taking the maximum over the pairwise 
absolute differences resulted in 72 values of local change in 
grain deviation per board.

2.7  Splitting of the data in training and test series

Aiming at as good an independent verification as possible of 
the models developed in this paper, the dataset was split into 
a training series and a test series. The models were devel-
oped based on the training series, while the test series was 
used for verification.

To achieve a test series, which is maximally independent 
from the training series, it was decided to either assign all 
boards from one tree to the training series or assign all to 
the test series. Additionally, the training series should be 
representative of the entire available data. The test series 
performance of the models could thus be taken as a first esti-
mate of how good such models could be if they were trained 
on a fully representative dataset instead of on the data of the 
present preliminary study.

Therefore, the sum of the absolute differences between 
training series and test series of the following quanti-
ties were calculated: mean strength, standard deviation of 
strength, mean density, standard deviation of density, pro-
portion of boards with knots in the test span. From all pos-
sible assignments of trees to training series or test series, the 
one assignment was chosen, which minimized this sum of 
absolute differences.

2.8  Construction of regression models

Linear multivariate regression models were derived using 
SPSS 20 (Anon. 2011; stepwise regression with default 
parameters: enter variables at a significance level of 5%, 
remove variables at a significance level of 10%). Models 
were derived separately for each species, using only the 
training series. Sometimes it happened that the output of a 
regression equation for a board was negative. Such values 
were forced to zero.

For the density models, four variables were available: 
attu , Φu , attv and Φv (see 2.5). Unless only a model with 
one variable was produced by SPSS, the model with two 
variables was selected, expecting that one would be infor-
mation along the grain ( attu or Φu ), and the other would be 
information perpendicular to the grain. Models with a larger 
number of variables were avoided on the assumptions that 
one information from each direction should be sufficient and 
that models with more variables risked overfitting the train-
ing dataset.

For the strength models, 152 variables were available. 
Stepwise regression produces a sequence of increasingly 
complex models; in this case, up to six variables could be 
entered at a significance level of 5%. To avoid overfitting, 
a model with more than three variables was never selected, 
and models were also excluded where some grain devia-
tion variable had a positive coefficient, i.e. increasing grain 
deviation would increase the strength estimate. This usually 
occurred for the second grain deviation variable of a group 
where the first had a negative coefficient. Due to the cor-
relations between the grain deviation variables in a group, 
such a combination of a negative and a positive coefficient 
effectively meant that fitting was done to random noise.

To facilitate discussion, the 152 variables were assigned 
to one of several groups, each with its own variable group 
symbol (Table 2). Three classes of models (eρk, m, me) were 
examined. A model in a certain model class was allowed to 
include variables from certain variable groups, but not from 
others (Table 2). In the following paragraphs, the model 
classes are explained in detail.

Table 2  Variable groups, variable group symbols, number of vari-
ables belonging to the variable group, and the use of the variable 
groups in the various model classes

Variable group Variable 
group sym-
bol

Variables 
in group

Use in model 
classes

eρk m me

Horizontal grain deviations
 Global Θ 2 + +
 Local ϑ 36 + +
 Local changes t 36 + +

Vertical grain deviations
 Global Ω 2 + +
 Local ω 36 + +
 Local changes o 36 + +

Other quantities
 Edyn e 1 + +
 Lab density ρ 1 +
 tKAR k 1 +
 Microwave density d 1 + +

Total number of variables 152 3 149 150



241European Journal of Wood and Wood Products (2019) 77:235–247 

1 3

As a baseline for the microwave-based strength models, 
regression models were calculated depending on  Edyn, ρ and 
tKAR, similarly to modern strength grading machines for 
softwood, like the GoldenEye 706 from Microtec (Bacher 
2008). These models form the model class “eρk”.

Model class “m” comprised strength models purely based 
on microwave variables. 148 grain deviation variables were 
available ( 4 + 72 + 72 ; see previous section and Table 2). 
One further microwave-based regression variable was 
included: the board density value from the above-mentioned 
density models, leading to a total of 149 variables.

Finally, the potential of a combined machine was explored 
by combining the microwave variables with  Edyn (model 
class “me”).

Each regression model provided an estimate of a board’s 
tension strength; this estimate will be called an Indicating 
Property (IP) value for the board (see EN 14081-2 2012). 
When such IP values were plotted against the correspond-
ing tension strength values f

t
 in a scatterplot, it was often 

noticed that this point cloud had a curved shape. This is an 
indicator that the true relationship between the independ-
ent variables and ft is nonlinear. To account for this aspect, 
linear regression was tested on logft instead of ft . If such an 
exponential model better fits the relationship, it will allow 
for better strength predictions on new data.

The models were then applied to the test series. As a 
rough measure of model performance, the coefficients of 
determination ( r2 ) of the models on the training series 
( r2

training
 ) and the test series ( r2

test
 ) were compared. There are 

three possibilities how r2
training

 and r2
test

 can relate to each 
other: First, they can be approximately equal. This is taken 
as an indication that the corresponding model contains 
only variables, which really relate to strength. Second, 
r
2
training

 can be much larger than r2
test

 . In this case, the model 
derivation process has probably overfit the model to ran-
dom noise present in the training series. Third, r2

training
 can 

be much lower than r2
test

 . This was hard to interpret; it was 

primarily attributed to the small sample size of the present 
dataset. Such high r2

test
 values were read as “optimistic” and 

the lower r2
training

 value was considered as the more realistic 
estimate of the corresponding model performance. Gener-
ally, r2 values are susceptible to outliers in the data, which 
is especially noticeable in small datasets.

After comparing r2
training

 and r2
test

 for each model, varia-
bles were manually added or removed from some of the 
models and the coefficients on the training series were 
recalculated. For models with overfitting ( r2

training
 much 

larger than r2
test

 ), it was attempted to remove variables. For 
models with low r2

training
 and cases where no model for the 

combined machine (model class “me”) could be derived, 
the inclusion of additional variables to an existing model 
was tested.

Due to the small sample size, the uncertainty in the r2 
estimates is especially relevant. Therefore, bootstrapped 
confidence intervals around the coefficients of determi-
nation of the final density and strength models were cal-
culated. The bootstrapping procedure was implemented 
using the package “boot” (Canty and Ripley 2017) in the 
statistics software R (R Core Team 2018).

3  Results

3.1  Overall strength data

Table 3 summarizes the board characteristics on the split 
data per species between training series and test series. 
The differences in sample size between training and test 
series are due to the specific mode of splitting in training 
and test series, which always included all pieces cut from 
one tree either in training or in test (cf. Sect. 2.7). Figure 2 
shows the distribution of the basic test data, comparing the 
values of the training series and the test series.

Table 3  Board characteristics: 
mean values and coefficients of 
variation (CoV) by species and 
data series

Species Series N Moisture content in % Tensile 
strength in N/
mm²

Edynin kN/mm² Density in kg/m³

(CoV in %) (CoV in %) (CoV in %) (CoV in %)

Ash Training 23 8.1 (7) 73.3 (54) 13.7 (23) 671 (7)
Test 14 8.2 (5) 68.1 (45) 15.3 (8) 697 (7)

Beech Training 21 7.6 (6) 58.7 (46) 16.3 (10) 724 (4)
Test 20 7.6 (5) 51.3 (55) 15.1 (12) 733 (3)

Chestnut Training 26 8.3 (4) 27.8 (55) 12.2 (15) 524 (8)
Test 17 8.0 (3) 28.7 (52) 12.2 (14) 527 (7)

Oak Training 18 8.7 (6) 41.8 (44) 14.2 (9) 671 (5)
Test 27 8.5 (7) 40.6 (44) 14.0 (8) 670 (4)
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3.2  Density

Multivariate regression on the training series resulted in 
the following density models for the four species:

Figure 3 shows scatterplots of density measured per 
microwave technology versus reference wood density ρ. 
The r2

training
 values are always larger than the r2

test
 values. In 

the case of beech, the r2
test

 value drops to zero; for the other 
species, the r2

test
 value remains above 60%. Confidence 

intervals for the r2 values are shown in Fig. 5b.

3.3  Tension strength

Table 4 summarises the matrix of all models for tension 
strength. The first row for each species (in bold) describes 
the model which was derived by the automated variable 
selection process in SPSS; any further rows list manually 
modified models.

The automatic variable selection process produced 
models in model class “me” only for ash and chestnut 
(both linear and exponential); for beech and oak, the “me” 
models provided no significant improvement over the “m” 
models.

For each species and model class of both linear and expo-
nential models, the model with the best performance was 
identified and marked with an asterisk (Table 4). The manual 

�ash = 868.7 − 1.930�u

�beech = 1209 − 2.369�v + 20.18attu

�chestnut = 744.8 − 2.011�u − 25.70attv

�oak = 1117 − 2.079�v + 17.36attu

modifications and arguments for best performance are further 
elaborated in the discussion below.

Figure 4 shows the correlation between the linear strength 
models (IP on horizontal axis) and tension strength obtained 
by destructive testing ( f

t
 ) for the models with the best perfor-

mance per species and model class. Confidence intervals for 
the r2 values are shown in Fig. 5a.

Fig. 2  Distribution of a tensile 
strength, b  Edyn and c density; 
separated for species and series. 
N = 88; 78 (training; test)

(a) (b) (c)

de
ns

ity
in

 k
g/

m
³

densitymodel in kg/m³

r²=91/63 r²=59/0

r²=77/75 r²=81/72

Fig. 3  Density calculated from microwave measurements versus 
board density ρ, by species and training/test, including regression 
lines and coefficients of determination (in %) both for training and 
test series
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4  Discussion

As desired, the split in training and test series achieved simi-
lar distributions of density and strength between the two 
series (Fig. 2a, c). Regarding  Edyn (Fig. 2b), there are differ-
ences between training and test for ash and beech: + 1.6 kN/
mm² respectively − 1.2 kN/mm² in the mean value (Table 3). 
Such differences are possible because it was only striven for 
equal distribution of strength and density (cf. section 2.7). 
The presence of such differences indicates that the training 
and test series are indeed independent of one another. For 
ash, the coefficient of variation (CoV) of  Edyn for the training 
series is far higher than any other CoV of  Edyn, but the CoV 
for the test series is the lowest (Table 3). To a lesser degree, 
this pattern of high training CoV and low test CoV can also 
be observed for ash tensile strength. These differences in 
CoV might influence the r2

training
 and r2

test
 values of the ash 

strength models.
Density measurement per microwave technology 

(Fig. 3) works well for all species. The r2 values remain 
mostly high for the test series. The exception of beech 

where r2
test

= 0% can be explained by the narrow range of 
wood density values; but even for beech all microwave 
measurements are within ± 7% of the board density ρ, and 
the average difference between the two measurement meth-
ods per specimen is less than 1 kg/m³.

The 95% confidence intervals for the r2 values are rather 
wide, which shows that confirmation by a larger sample is 
required. The most extreme case is ash with r2

test
 between 

3% and 77%. In the ash test sample there is only one speci-
men with 𝜌 < 650 kg/m³ while in the ash training sample 
there are five such specimens—this accounts for the large 
uncertainty about the r2

test
 value.

For spruce, Lundgren et al. (2007) observed r2
test

= 77% 
between microwave phase data and density; similar values 
were reported by Denzler et al. (2014). Possibly, similar r2 
values could be achieved for hardwood density measure-
ments. To obtain generally applicable models for micro-
wave density measurement for these four hardwood spe-
cies, it will be important to include the relevant range of 
board thickness and moisture content as well as the full 
range of board density values observed in practice. The 

Table 4  IP models for tension 
strength by species, model class 
and type of relationship (linear/
exponential)

The columns per model class contain the used variable groups and coefficients of determination both for 
training and test. Model classes and variable groups are explained in Table 2. The bold first row for each 
species lists the models obtained by automatic variable selection in SPSS; further rows list manually modi-
fied models. Asterisks (*) mark the models selected for plotting in Fig. 4

eρk m me

Linear
 Ash eρk 76 2 ϑ 59 17* eoΘ 87 43

ek 62 38* ϑo 59 11 eo 83 47*
 Beech eρ 81 70* ϑω 81 45*

ϑ 65 33 eϑω 84 56*
eϑ 74 53

 Chestnut ek 60 89* t 35 28* eω 58 61*
tω 44 16

 Oak k 27 36 ϑ 39 39
ek 33 54* ϑω 47 45* eϑ 46 39

eϑω 51 46*
Exponential
 Ash eρk 78 3 tϑ 66 15* eto 87 31

ek 73 42* t 47 16 eo 87 45*
ϑ 65 11 et 80 16

 Beech eρ 80 75* ϑω 77 51*
ϑ 72 37 eϑω 83 64*

eϑ 80 61
 Chestnut ek 70 93* ωt 51 9 eω 66 67*

ω 30 2
t 36 31*

 Oak k 31 40 ϑ 42 38
ek 34 58* ϑω 52 45* eϑ 47 46*

eϑω 39 54



244 European Journal of Wood and Wood Products (2019) 77:235–247

1 3

present study indicates that there would be merit in such 
an extended study.

While the density models work similarly well for each 
species except for beech (where the spread of the lab density 
values is not sufficient), there are wide differences in the per-
formance of the strength models between the four species.

The linear and exponential models of class “eρk” work 
well for beech and chestnut (Table 4; Fig. 4). They lead to 

r
2
test

 values of 60% and more, comparable to coefficients of 
determination for softwood strength models (Hanhijärvi 
and Ranta-Maunus 2008; Denzler and Weidenhiller 2015). 
The oak “eρk” models have rather low coefficients of 
determination of about 30%, but they are similar for train-
ing and test series. These models are based only on tKAR, 
while for the other species the “eρk” models always 

IP in N/mm²

f t
in

 N
/m

m
²

linear models exponential models

r²=62/38 r²=59/17 r²=83/47 r²=73/42 r²=66/15 r²=87/45

r²=81/70 r²=81/45 r²=84/56 r²=80/75 r²=77/51 r²=83/64

r²=60/89 r²=35/28 r²=58/61 r²=70/93 r²=36/31 r²=66/67

r²=33/54 r²=47/45 r²=51/46 r²=34/58 r²=52/45 r²=47/46

eρk m me eρk m me

Fig. 4  Calculated IP values versus tension strength for selected linear and exponential models from Table 4, by species, model class and training/
test, including regression lines and coefficients of determination both for training and test. The model classes are explained in Table 2

Fig. 5  Coefficients of determi-
nation (r²) with 95% confidence 
intervals (CI) for a the tension 
strength models shown in Fig. 4 
and b for the density models 
shown in Fig. 3

r² in %

training
test
95% CI 

(a) eρk m me (b) density
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include  Edyn. Manual inclusion of  Edyn in the linear oak 
model results in a somewhat higher value r2

training
= 33% 

and r2
test

= 54% , so such a manual addition seems justified. 
The same applies to the exponential oak model (Table 4). 
On the contrary, the “eρk” models for ash show distinct 
overfitting ( r2

training/test
= 76%∕2% for the linear and 

r
2
training/test

= 78%∕3% for the exponential model). Removing 
ρ from these models considerably reduces the differences 
between r2

training
 and r2

test
 both for the linear and the expo-

nential model.
The microwave models (model class “m”) have lower r2

test
 

than the “eρk” models—only the oak models come close. 
Forcing a diving angle (variable group ω) into the oak mod-
els gives a consistent improvement both in training and test 
so that the oak “m” models perform as well or better than 
the “eρk” models if one considers both r2

training
 and r2

test
.

The automatically derived ash models and exponential 
chestnut model of model class “m” show clear signs of over-
fitting. Removing the ω variable from the exponential chest-
nut model leads to a single variable model with low but 
consistent r2

training/test
= 36%∕31% , which is similar to the 

corresponding linear model. On the other hand, removing a 
variable from the exponential ash model gives no improve-
ment. The automatically derived linear ash model has only 
one variable and still looks like overfitting; adding a variable 
does not improve the model performance.

The models of model class “m” for beech also have a 
markedly lower r2

test
 than r2

training
 that appears like overfitting, 

but removing a variable does not change this. Still, the r2
test

 
values are the highest of all “m” models, in particular for the 
exponential model ( r2

test
= 51% is comparable to r2 values of 

softwood strength models).
Combining microwave variables and  Edyn (model class 

“me”) leads to the best model for ash found in this study 
( r2

test
= 47% ). For chestnut, the exponential “me” model even 

leads to r2 values around 66% both for training and test, 
which comes close to the r2 of the “eρk” model 
( r2

training
= 70% ; the optimistic r2

test
= 93% is disregarded).

Manual inclusion of  Edyn into the beech models leads to 
competitive r2

test
 values, especially for the exponential model 

( r2
test

= 64% ). As the difference between r2
test

 and r2
training

 is 
high for these manually adjusted “me” models, one might 
consider removing the ω variable—this reduces the differ-
ence for the linear model, but not for the exponential model.

For oak, the manual inclusion of  Edyn into the models 
does not improve the r2 values over those of the “m” mod-
els—r

2
test

 remains around 45% for the linear and the expo-
nential model.

The widths of the confidence intervals for the r2 values 
and especially the r2

test
 values (Fig. 5a) emphasize the small-

ness of the available dataset. In a small dataset, a single data 

point can have a large influence on the resulting model and r2 
value. Additional tests with a larger number of specimens are 
recommended.

Comparison with results from other studies focuses on pure 
 Edyn models (not shown in Figs. 4, 5; Table 4). Between  Edyn 
and ash tension strength, van de Kuilen and Torno (2014) 
achieved r2 = 19%—on the present data, it was found 
r
2
training/test

= 43%∕0% between  Edyn and tension strength, and 
r
2 = 24% if it wasn`t split in training and test. So, the same 

overall strength of correlation was found. For beech, Ehrhart 
et al. (2016) reported r2 = 22% between  Edyn and tension 
strength compared to r2

training/test
= 62%∕57% on the present 

data—the reason for this is unclear.
For chestnut and oak, only models relating  Edyn with bend-

ing strength, with r2 = 24% for chestnut (Nocetti et al. 2016) 
and r2 = 32% for oak (Kretschmann and Green 1999) were 
found. The present data yielded a much stronger relationship 
between  Edyn and tension strength for chestnut 
( r2

training/test
= 50%∕80%) . For oak, this overall value is on the 

same level ( r2 = 33% ) as Kretschmann and Green (1999), with 
an uneven distribution between training and test 
( r2
training/test

= 18%∕48%) . Despite this uneven distribution, the 
difference between r2

training
 and r2

test
 is small for the oak “m” and 

“me” models (Fig. 5a).
Can exponential models (linear regression with the depend-

ent variable logf
t
 ) better fit the strength data than the linear 

models? A look at the linear models in Fig. 4 confirms that 
many of the relationships have a curved tendency, in particu-
lar for chestnut and oak, but also for beech. The relationship 
between IP and f

t
 for ash appears more linear, although it is 

difficult to tell because of the widely scattering data points. On 
the other hand, there is no recognizable curved tendency in the 
exponential beech models and the exponential “eρk” and “me” 
models for chestnut. For the oak models and the chestnut “m” 
model, the curved tendency remains despite the exponential 
model structure.

Looking at the r2 values (Table 4; Fig. 5a), one sees some 
improvements in the r2

test
 values (all beech models, chestnut 

“eρk” and “me” models) from linear to exponential models. 
These improvements are gradual; comparing the two corre-
sponding parts of Table 4 respectively Fig. 5a, one finds that 
between linear and exponential models there are many simi-
larities: of model variable structure, r2 values and of r2 confi-
dence interval widths. The widths of the confidence intervals 
(Fig. 5a) also mean that the size of the present dataset is not 
sufficient to identify performance differences between linear 
and exponential models.
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5  Conclusion

This preliminary study emphasized the potential of micro-
wave scanning with respect to hardwood strength grading, in 
particular in combination with a dynamic stiffness measure-
ment  (Edyn). Such a combination led to good results for all 
four species; especially the exponential models for beech and 
chestnut were competitive with coefficients of determination 
well over 60%. As the observed correlations between  Edyn 
and tension strength for these two species were higher in 
the present research than in previous studies, some further 
validation is recommended.

Density measurement by microwaves promises to work 
equally well for hardwoods as for softwoods and could be 
an alternative to density measurement by X-ray scanning. 
So, microwave scanning proves to be a versatile tool for 
assessing strength and density with one technology also for 
hardwoods. Like for softwoods, assessing moisture content 
should be possible as well; for this, a dataset with a wider 
range of moisture content values is required. A commercial 
implementation, especially for hardwoods, seems viable.

Generally, it seems that the (tension) strength of ash and 
oak is more difficult to model than the strength of beech and 
chestnut, or that the former depends more strongly on other 
characteristics, which were not part of this analysis. Due 
to the preliminary nature of this study here with a limited 
number of specimens, all results should be interpreted with 
care; a further study with a larger sample is recommended.
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