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characteristics, increase weather resistance of final products 
(Yildiz et al. 2006; Kocaefe et al. 2008). Heat treated wood 
has a decorative and attractive dark color, better decay 
resistance and thermal insulation properties (Esteves and 
Pereira 2009; Li et al. 2011). Heat treatment of wood is an 
environmentally friendly alternative method for wood pres-
ervation, while wood preservation is generally performed 
by chemical treatment using poisonous chemicals that 
likely affect the human health and environment negatively 
(Esteves and Pereira 2009; Li et  al. 2011). Due to these 
advantages, heat-treated wood can be used for several pur-
poses, for example for garden, kitchen and sauna furniture, 
floors, ceilings, inner and outer bricks, doors and windows, 
furniture, solid wood based materials, wooden boats etc. 
(Yildiz et al. 2006; Gunduz et al. 2011).

When wood is subjected to heat treatment, several chem-
ical, physical, and mechanical permanent changes occur 
in the wood structure depending on temperature (Esteves 
and Pereira 2009). The temperature plays a bigger role 
than the duration of heating for many properties of heat 
treated wood (González-Peña et al. 2009). The temperature 
and duration for heat treatment generally vary from 120 to 
250 °C and from 15 min to 24 h, respectively (Bakar et al. 
2013).

There are many heat treatment parameters (such as expo-
sure period, temperature, heating medium, wood moisture 
content, and atmospheric pressure) influencing the proper-
ties of wood, and these parameters interact with each other 
(Korkut and Hiziroglu 2009). Therefore, determination of 
the optimal conditions to achieve the best wood properties 
is difficult. However, optimization of the treatment param-
eters is necessary. The modeling can be used to determine 
optimum treatment parameters in the process of thermal 
modification of wood. Thus, the number of comprehensive 
experimental studies required for investigation of the effect 

Abstract  In the present work, two artificial neural net-
work (ANN) models were developed for modeling the 
effects of conditions of heat treatment process such as 
exposure period and temperature at equilibrium moisture 
content (EMC) and specific gravity (SG) at different rela-
tive humidity levels of heat treated Uludag fir (Abies born-
mülleriana Mattf.) and hornbeam (Carpinus betulus L.) 
wood. A custom MATLAB application created with MAT-
LAB codes and functions related to neural networks was 
used for the development of feed forward and back propa-
gation multilayer ANN models. The prediction models hav-
ing the best prediction performance were determined by 
means of statistical and graphical comparisons. The results 
show that the prediction models are practical, reliable and 
quite effective tools for predicting the EMC and SG char-
acteristics of heat treated wood. Thus, this study presents a 
novel and alternative approach to the literature to optimize 
conditions of heat treatment process.

1  Introduction

Heat treatment process is one of the wood modification 
methods used to modify the properties of wood (Younsi 
et  al. 2010). Heat treatment has been widely applied to 
improve the dimensional stability and the biological dura-
bility of wood and wood products (Korkut and Hiziroglu 
2009). The purpose of heat treatment is to decrease equi-
librium moisture content, reduce shrinking–swelling 
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of all parameters and variables of heat treatment on proper-
ties of wood can be decreased.

Some studies involving computational modeling of 
high temperature heat treatment of wood have recently 
been conducted (Kocaefe et  al. 2006, 2007; Younsi et  al. 
2006a, b, c, 2007; Kadem et  al. 2011). Artificial neural 
networks (ANNs) are one of the most powerful modeling 
techniques among alternative computer-aided data mining 
approaches and can be faster, cheaper, and more adaptable 
than the statistical or numerical methods (Ceylan 2008). 
ANNs have played an important role in solving problems 
in the different fields of engineering, and can also be used 
to model complex non-linear and multivariable relation-
ships between heat treatment parameters. Modeling with 
ANN has been widely used in the field of wood science by 
several researchers (Ozsahin 2013). However, the use of 
ANNs to evaluate the effect of heat treatment on dimen-
sional stability and weight loss of wood and wood products 
is a new concept.

ANNs can learn directly from the examples without any 
prior knowledge and formula of the nature of the handled 
problem and use for modeling in cases of complicated, 
undefined and nonlinear relationships between input and 
output parameters (Choudhury et al. 2012; Ozsahin 2013). 
ANNs, as one of the most attractive branches in artificial 
intelligence, are now being used for a wide variety of engi-
neering applications such as prediction, optimization, clas-
sification, pattern recognition and data processing due to 
its ability to learn, generalize, perform parallel processes 
and tolerate failures, as well as due to its superior qualities 
(Yildirim et al. 2011).

Collection of data, determination of input/output param-
eters and analysis, and pre-processing of the data are the 
initial phase in ANN modeling. Training of ANN and test-
ing of trained ANN are the central phase. During training, 
the values of weights and biases of the network are itera-
tively adjusted to minimize the network performance func-
tion (error function). The training process is repeated until 
the error rate is minimized or reaches an acceptable level 
(Beale et  al. 2010). Finally, the trained ANN (having the 
optimized values of weights and biases) is tested using the 
unseen data sets to evaluate its performance. If the network 
performance is high, the weights and the biases of the net-
work are stored. Once the network is trained/learned, it 
can be used to predict the outcomes of different input sets 
(Yildirim et al. 2011).

A typical multilayer feedforward backpropagation neu-
ral network, which is most commonly used in engineering 
applications, is a system composed of a number of small 
individual interconnected processing units (nodes), usually 

called neurons, which are organized in successive layers. No 
connection (communication links) exists between neurons of 
the same layer in a feedforward backpropagation neural net-
work. Each of the connections has an associated numerical 
value known as a ‘‘weight” that determines the nature and 
strength of the influence between the interconnected neu-
rons. An ANN model generally contains one input layer, one 
or more hidden layers, and one output layer. The input layer 
is the first layer and is responsible for receiving incoming 
data to the ANN and to deliver these to the hidden layer(s). 
The hidden layer(s) processes the information coming from 
the input layer and sends these to the output layer. The out-
put layer processes the information coming from the hidden 
layer(s) and generates the output, and sends these to the outer 
world (Özşahin 2012).

The neurons are interconnected using weight factors (wij). 
The task of an artificial neuron (j) is simple and consists of 
receiving input signals (xi) weighted by connection weights 
(wij) from the neurons in the preceding layer (Fig.  1). The 
sum of these weighted signals and the bias of the layer (θj) 
provides the neuron’s total or net input (netj). Output value 
(yj) is computed through applying an activation function (f(.)) 
to netj and yj becomes the input value of each neuron of the 
next layer. This process is summarized in Eqs.  (1) and (2). 
The basic structure of an artificial neuron model and a multi-
layered ANN architecture is illustrated in Fig.  1 (Ozsahin 
2013).

The optimum number of hidden layer(s) and number of 
neurons in each layer, namely network architectures, are 
problem specific and obtained by trial and error method. If 
too few neurons in the hidden layer(s) are used, the network 
will be unable to model a complicated data set, resulting in 
a poor fit. On the contrary, if the number of neurons is too 
many, the network will not converge to the goal error, result-
ing in over fitting (over-generalization) (Ozsahin 2013). It is 
difficult to determine the most appropriate ANN, even for an 
experienced user (Ma et al. 2012).

The goal of this study was to develop an artificial neu-
ral network (ANN) model for predicting and modeling the 
effects of conditions of heat treatment process such as expo-
sure period and temperature on specific gravity and equi-
librium moisture content of heat treated Uludag fir (Abies 
bornmülleriana Mattf.) and hornbeam (Carpinus betulus L.) 
wood.

(1)netj =

n∑

i=1

xiwij − �j

(2)yj = f (netj)
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2 � Experimental

2.1 � Material

Data used in this study were provided from previous studies 
by Aydemir (2007) and Gündüz et al. (2008). According to 
the authors, Uludag fir (Abies bornmülleriana Mattf.) and 
hornbeam (Carpinus betulus L.) wood species were used 
according to Turkish standards TS 2470 (ISO 3129:2012) 
(TSE 1976a) and TS 4176 (ISO 4471:1982) (TSE 1984). 
The samples used in this study were obtained from sap-
wood area of the single log of each wood species to avoid 
any anatomical differences. All samples [20 × 20 × 30 mm³ 
(L × R × T)] were conditioned at a temperature of 20 ± 1 °C 
and a relative humidity of 65 ± 1% until they reached equi-
librium moisture content prior to heat treatment. Heat 
treatment was applied to the samples under atmospheric 
pressure for nine combinations of three different tempera-
tures (170, 190, and 210 °C) and three different exposure 
times (4, 8, and 12 h). Ten samples for each combination 
of temperatures and exposure times and ten samples for 
control group (200 samples for each Uludag fir and horn-
beam species) were used to determine specific gravity and 
equilibrium moisture content values. Specific gravity and 
equilibrium moisture content values of heat treated sam-
ples at 20 °C and relative humidity conditions of 35, 50, 65, 
80, and 90%, were determined according to TS 2471 (ISO 
13061-1:2014) (TSE 1976b), TS 2472 (ISO 13061-2:2014) 
(TSE 1976c) and TS 53 (ISO 3129:2012) (TSE 1981).

2.2 � ANN analysis

The software developed creating scripts with MATLAB 
codes and functions related to neural networks was used for 

the formation, training and optimization of ANNs. The data 
(90 samples) was randomly divided into two groups: the 
training set and testing set, consisting of 66.6 and 33.3% of 
the data, respectively. The different data groups were con-
stituted from the data. The training and testing sets used in 
the prediction model are shown in Tables 1 and 2. To deter-
mine the optimum network architecture and parameters, the 
trial and error method was applied. Several different ANN 
structures, parameters and data set were tested thousands 
of times with the developed software until the difference 
(error) between the experimental and the ANN predicted 
outputs reached an acceptable level. The models were 
tested using the testing data selected from the experimen-
tal results that were not used during the learning processes. 
Thus, the most sensitive (appropriate) ANN result was tar-
geted. The mean square error (MSE) was used as the per-
formance function for ANN models. MSE was computed 
according to the following equation.

where ti and tdi denote the targeted and predicted values of 
data i, respectively; and N represents the total number of 
measurements.

The data should be normalized to achieve the best gen-
eralization potential and performance of ANN models. 
Therefore, training and testing data sets were normalized 
using their minimum and maximum values within the range 
of [−1, 1] due to the use of the hyperbolic tangent sigmoid 
function as the activation function in the models. The limit 
of f(x) when x tends to infinity is +1 and the limit of f(x) 
when x tends to negative infinity is −1, and the function is 
defined as follows.

(3)MSE =
1

N

N∑

i=1

(
ti − tdi

)2

Fig. 1   General functioning of an artificial neuron and schematic description of a multi-layered ANN architecture
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Table 1   Training data set and prediction model results

Wood species Tempera-
ture (ºC)

Exposure 
period (h)

Relative 
humidity (%)

Equilibrium moisture content (EMC) 
(%)

Specific gravity (SG) (g/cm3)

Measured Predicted Error Measured Predicted Error

Uludag fir 170 4 35 6.62 6.64 −0.35 0.481 0.481 −0.04
Uludag fir 170 4 50 8.25 8.16 1.10 0.486 0.487 −0.17
Uludag fir 170 4 80 14.22 14.16 0.42 0.497 0.496 0.22
Uludag fir 170 8 50 7.04 7.27 −3.33 0.481 0.479 0.39
Uludag fir 170 8 65 9.58 9.43 1.58 0.483 0.484 −0.20
Uludag fir 170 8 80 12.30 12.56 −2.14 0.486 0.486 −0.10
Uludag fir 170 8 90 16.40 16.35 0.31 0.492 0.492 −0.10
Uludag fir 170 12 35 6.10 6.00 1.70 0.469 0.469 −0.08
Uludag fir 170 12 65 8.24 8.54 −3.59 0.479 0.478 0.26
Uludag fir 170 12 90 13.62 13.59 0.20 0.482 0.486 −0.81
Uludag fir 190 4 35 5.79 5.89 −1.72 0.477 0.475 0.42
Uludag fir 190 4 65 9.84 9.81 0.31 0.488 0.485 0.56
Uludag fir 190 4 90 15.29 15.05 1.56 0.492 0.492 0.09
Uludag fir 190 8 35 5.49 5.43 1.12 0.467 0.470 −0.59
Uludag fir 190 8 50 6.26 6.59 −5.20 0.474 0.474 −0.01
Uludag fir 190 8 80 10.96 11.44 −4.37 0.485 0.482 0.58
Uludag fir 190 12 50 6.26 6.31 −0.76 0.473 0.469 0.89
Uludag fir 190 12 65 8.16 8.29 −1.61 0.469 0.473 −0.82
Uludag fir 190 12 80 10.92 10.61 2.81 0.473 0.475 −0.43
Uludag fir 190 12 90 13.28 13.03 1.86 0.480 0.478 0.47
Uludag fir 210 4 50 6.36 6.37 −0.14 0.464 0.467 −0.62
Uludag fir 210 4 65 8.03 8.30 −3.36 0.466 0.470 −0.91
Uludag fir 210 4 80 10.50 10.24 2.49 0.468 0.474 −1.20
Uludag fir 210 4 90 12.93 13.04 −0.84 0.474 0.474 −0.10
Uludag fir 210 8 35 5.07 5.12 −0.91 0.460 0.454 1.40
Uludag fir 210 8 65 7.62 7.82 −2.69 0.456 0.457 −0.22
Uludag fir 210 8 90 12.78 12.66 0.94 0.468 0.457 2.26
Uludag fir 210 12 35 4.82 4.97 −3.02 0.441 0.441 0.09
Uludag fir 210 12 50 5.85 5.92 −1.22 0.436 0.441 −1.06
Uludag fir 210 12 80 9.12 9.15 −0.30 0.437 0.440 −0.65
Hornbeam 170 4 50 7.70 7.65 0.68 0.792 0.792 0.05
Hornbeam 170 4 65 10.00 10.27 −2.69 0.788 0.789 −0.11
Hornbeam 170 4 80 13.14 13.12 0.16 0.793 0.791 0.21
Hornbeam 170 4 90 16.70 16.85 −0.89 0.790 0.792 −0.26
Hornbeam 170 8 35 5.90 5.95 −0.76 0.780 0.779 0.11
Hornbeam 170 8 65 9.60 9.15 4.71 0.766 0.777 −1.43
Hornbeam 170 8 80 12.60 12.28 2.56 0.790 0.778 1.49
Hornbeam 170 12 35 5.80 5.83 −0.48 0.767 0.766 0.14
Hornbeam 170 12 50 7.00 6.85 2.19 0.774 0.769 0.70
Hornbeam 170 12 90 13.60 13.66 −0.44 0.769 0.773 −0.51
Hornbeam 190 4 35 5.60 5.57 0.62 0.782 0.782 0.01
Hornbeam 190 4 65 9.60 9.29 3.25 0.784 0.781 0.33
Hornbeam 190 4 90 15.90 15.83 0.46 0.780 0.780 −0.06
Hornbeam 190 8 35 5.40 5.24 2.89 0.764 0.766 −0.25
Hornbeam 190 8 50 6.60 6.42 2.80 0.766 0.767 −0.12
Hornbeam 190 8 80 10.80 10.93 −1.25 0.773 0.772 0.15
Hornbeam 190 8 90 13.90 14.13 −1.67 0.774 0.773 0.16
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where f(x) is the output value of the neuron, x is the 
input value of the neuron.

The prediction performance of each model was meas-
ured and compared for each case using statistical and 
graphical comparisons. The prediction performances 
(validity and accuracy) of the ANN models were evaluated 
using the mean absolute percentage error (MAPE), the root 
mean square error (RMSE) and coefficients of determina-
tion (R2). The MAPE, RMSE and R2 values were calcu-
lated using Eqs.  (5), (6) and (7), respectively. The lower 
MAPE and RMSE values represent the more accurate esti-
mation results. The higher R2 values represent the greater 
similarities (or better agreement) between targeted and pre-
dicted outputs.

where t̄ is the average of predicted values.

(4)f (x) =
2

1 + e(−2x)
− 1

(5)MAPE =
1

N

(
N∑

i=1

[
|
|||

ti − tdi

ti

|
|||

])

× 100

(6)RMSE =

√√√
√ 1

N

N∑

i=1

(
ti − tdi

)2

(7)R2 = 1 −

∑N

i=1
(ti − tdi)

2

∑N

i=1
(ti − t̄)2

To improve prediction performance of network models, 
it was decided to use a separate artificial neural network for 
each output parameter. In the developed ANNs, the input 
parameters consist of four input nodes in the input layers 
representing wood species, heat treatment temperature (ºC), 
duration of heat treatment (exposure period) (h) and relative 
humidity (%). The output node of each ANN network repre-
sents the output parameters called equilibrium moisture con-
tent (EMC) (%) and specific gravity (SG) (g/cm3) separately. 
Both the networks which have the best MAPE, RMSE and R2 
values for SG and EMC characteristics are composed of two 
hidden layers. These hidden layers of SG and EMC networks 
consist of four–four and three–eight neurons, respectively. 
These ANN structures (Fig. 2) were chosen as the prediction 
models for modeling the effects of conditions of heat treat-
ment process on equilibrium moisture content and specific 
gravity at different relative humidity levels of heat treated 
Uludag fir and hornbeam wood.

These ANNs developed are mathematically logical and 
defined. The number of neurons in the hidden layer(s) cannot 
be increased without limit. To be able to define a network, 
mathematically, the number of data available for training 
must be higher than the number of connections of the net-
work (Sha and Edwards 2007). In the proposed EMC and SG 
prediction models, the numbers of the connections were 56 
and 45, respectively which was lower than the number of data 
available for training (60 data).

The total number of connections for the ANN prediction 
models was calculated according to the following equation:

(8)TC = (Ni + 1) x Nh1 + (Nh1 + 1) x Nh2 + (Nh2 + 1) x No

Table 1   (continued)

Wood species Tempera-
ture (ºC)

Exposure 
period (h)

Relative 
humidity (%)

Equilibrium moisture content (EMC) 
(%)

Specific gravity (SG) (g/cm3)

Measured Predicted Error Measured Predicted Error

Hornbeam 190 12 50 6.30 6.29 0.17 0.764 0.759 0.64
Hornbeam 190 12 65 7.90 7.95 −0.63 0.756 0.763 −0.98
Hornbeam 190 12 80 9.70 9.78 −0.82 0.764 0.768 −0.51
Hornbeam 210 4 35 5.30 5.25 0.86 0.739 0.740 −0.18
Hornbeam 210 4 50 6.30 6.15 2.36 0.739 0.738 0.16
Hornbeam 210 4 80 9.30 9.37 −0.78 0.747 0.747 0.01
Hornbeam 210 8 50 6.10 5.98 1.96 0.694 0.697 −0.38
Hornbeam 210 8 65 7.60 7.48 1.61 0.691 0.695 −0.52
Hornbeam 210 8 90 11.70 11.62 0.69 0.731 0.724 0.89
Hornbeam 210 12 35 4.90 4.99 −1.78 0.684 0.676 1.10
Hornbeam 210 12 65 7.10 6.99 1.49 0.666 0.672 −0.84
Hornbeam 210 12 80 8.90 8.95 −0.60 0.696 0.693 0.48
Hornbeam 210 12 90 11.60 11.59 0.07 0.700 0.705 −0.75
MAPE 1.57 0.49
RMSE 0.18 0.004
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where TC is total number of connections, and Ni, Nh 
and No are the number of inputs, neurons in the hidden 
layer(s) and outputs, respectively.

In this study, feed forward and back propagation multi-
layer ANNs were used. In the proposed network models, 
hyperbolic tangent sigmoid transfer function in the hid-
den layers and linear transfer function in the output layer 
as the activation function were preferred. The Levenberg 
Marquardt algorithm (trainlm) was used as the training 
algorithm. The gradient descent with a momentum back 
propagation algorithm (traingdm) was used as the learn-
ing rule.

Table 2   Testing data set and prediction model results

Wood species Temperature
(ºC)

Exposure
period (h)

Relative 
humidity
(%)

Equilibrium moisture content (EMC) 
(%)

Specific gravity (SG) (g/cm3)

Measured Predicted Error Measured Predicted Error

Uludag fir 170 4 65 10.85 11.05 −1.86 0.490 0.493 −0.55
Uludag fir 170 4 90 17.70 16.88 4.61 0.502 0.502 −0.05
Uludag fir 170 8 35 6.18 6.19 −0.11 0.475 0.474 0.15
Uludag fir 170 12 50 7.27 6.95 4.42 0.480 0.474 1.32
Uludag fir 170 12 80 12.18 11.34 6.92 0.475 0.480 −1.10
Uludag fir 190 4 50 7.50 7.25 3.37 0.485 0.480 1.04
Uludag fir 190 4 80 12.95 12.36 4.54 0.486 0.490 −0.79
Uludag fir 190 8 65 9.42 8.93 5.15 0.474 0.479 −1.00
Uludag fir 190 8 90 15.67 15.44 1.44 0.487 0.484 0.57
Uludag fir 190 12 35 5.20 5.22 −0.31 0.462 0.465 −0.65
Uludag fir 210 4 35 5.08 5.42 −6.61 0.461 0.464 −0.60
Uludag fir 210 8 50 6.07 6.03 0.59 0.453 0.455 −0.50
Uludag fir 210 8 80 9.66 9.34 3.33 0.463 0.458 0.98
Uludag fir 210 12 65 7.21 7.39 −2.53 0.441 0.441 0.11
Uludag fir 210 12 90 11.14 11.28 −1.27 0.436 0.437 −0.21
Hornbeam 170 4 35 6.40 6.30 1.60 0.792 0.792 0.05
Hornbeam 170 8 50 7.30 7.05 3.48 0.784 0.780 0.51
Hornbeam 170 8 90 16.20 15.99 1.31 0.789 0.779 1.31
Hornbeam 170 12 65 9.20 8.41 8.56 0.776 0.770 0.71
Hornbeam 170 12 80 9.80 10.39 −6.04 0.770 0.773 −0.34
Hornbeam 190 4 50 6.60 6.83 −3.47 0.785 0.783 0.30
Hornbeam 190 4 80 12.10 11.66 3.60 0.789 0.780 1.19
Hornbeam 190 8 65 8.10 8.58 −5.98 0.765 0.770 −0.62
Hornbeam 190 12 35 5.30 5.12 3.37 0.752 0.759 −0.91
Hornbeam 190 12 90 13.00 12.69 2.40 0.767 0.769 −0.22
Hornbeam 210 4 65 7.70 7.92 −2.82 0.739 0.737 0.22
Hornbeam 210 4 90 12.80 13.02 −1.71 0.765 0.756 1.20
Hornbeam 210 8 35 4.90 5.06 −3.27 0.705 0.703 0.35
Hornbeam 210 8 80 9.20 9.16 0.39 0.719 0.712 1.03
Hornbeam 210 12 50 5.90 5.98 −1.33 0.674 0.672 0.37
MAPE 3.21 0.63
RMSE 0.38 0.005

Fig. 2   ANN architectures of the prediction models
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3 � Results and discussion

Training of the ANNs was terminated after 60 and 32 
cycles for the equilibrium moisture content (EMC) and spe-
cific gravity (SG) prediction models, respectively, because 
targeted MSE value (0.0005) was reached. Evolution of the 
error during the iterative processes for the models is shown 
in Fig. 3.

Graphical and statistical comparisons were used to eval-
uate the performance of the proposed ANN models. It was 
confirmed that the ANN models generated satisfactory and 
consistent results when compared with the experimental 
measurements. The measured values, predicted values, per-
centage error ratio, and the MAPE and RMSE values of the 
equilibrium moisture content (EMC) and specific gravity 
(SG) parameters for training and testing data sets are given 
in Tables 1 and 2. When the tables are examined, the val-
ues predicted (calculated) by utilizing the ANN prediction 
models seem to be very close to the real data.

Figures 4 and 5 show the correlation figures between the 
measured values and the values predicted by the developed 
ANN models for the equilibrium moisture content (EMC) 
and specific gravity (SG) characteristics. Figures  6 and 7 
compare the experimental results and outcomes of the 

ANN prediction models for the EMC and SG characteris-
tics. As shown in the figures, it is clear that the results are 
very close to each other.

The mean absolute percentage errors were 3.21 and 
0.63% for the equilibrium moisture content (EMC) and 
specific gravity (SG), respectively in the testing phase. It is 
clear from Tables 1 and 2 that the maximum absolute per-
centage errors did not exceed 8.56% for EMC and 2.26% 
for SG in the training and testing phase. These levels of 
error and the results of graphic comparisons demonstrate 
that the prediction models effectively generate satisfactory 
results and have a sufficient accuracy and reliability rate for 
the modeling of the EMC and SG characteristics of the heat 
treated wood.

The trained ANN models can provide (calculate) the 
intermediate values for the optimization studies. In this 
optimization study, wood species and relative humidity 
were fixed as Uludag fir and 65%, respectively, and tem-
perature (ºC) and exposure period (h) were changed. The 
intermediate equilibrium moisture content (EMC) and 
specific gravity (SG) values not obtained from the experi-
mental study were determined by the ANN prediction 
models for different temperatures and exposure periods, 
and are shown in Fig.  8. The optimization of EMC and 

Fig. 3   Variations of the MSE 
at each iteration for a EMC and 
b SG

Fig. 4   Regression models of 
the training set for a EMC and 
b SG
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SG values based on temperatures and exposure periods 
of the heat treated wood can be carried out through an 
analysis of responses of the models.

As can be seen from Fig. 8, it was found that after heat 
treatment process, specific gravity and equilibrium mois-
ture contents (EMC) of wood decreased. Similar results 
were reported by several researchers (Metsä-Kortelainen 

et al. 2006; Akyildiz and Ates 2008; Esteves and Pereira 
2009; Dos Santos et al. 2014).

Several explanations were reported for reduction in EMC 
by researchers. Researchers pointed out less water absorp-
tion after heat treatment as a result of decreased hydroxyl 
groups, (Jämsä and Viitaniemi 2001) and/or decreased 
accessibility of hydroxyl groups to water molecules due to 

Fig. 5   Regression models of 
the testing set for a EMC and 
b SG

Fig. 6   Comparison of the 
measured and predicted values 
of the training set for a EMC 
and b SG

Fig. 7   Comparison of the 
measured and predicted values 
of the testing set for a EMC and 
b SG
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the increased cellulose crystallinity (Wikberg and Maunu 
2004; Bhuiyan and Hirai 2005; Boonstra and Tjeerdsma 
2006). The polycondensation reactions in lignin also con-
tributed to the decrease of equilibrium moisture content 
(Tjeerdsma and Militz 2005; Boonstra and Tjeerdsma 
2006).

Researchers have reported that after heat treatment 
process, cellulose crystallinity significantly increases due 
to rearrangement or reorientation of cellulose molecules 
within quasicrystalline regions (Bhuiyan et al. 2000).

Reduction of specific gravity is mainly related to mass 
losses during the heat treatment process (Metsä-Korte-
lainen et  al. 2006; Akyildiz and Ates 2008; Esteves and 
Pereira 2009; Dos Santos et al. 2014).

Cellulose is less affected than hemicellulose by the heat 
treatments due to its crystalline nature but hemicellulose is 
the first structural compound to be thermally affected dur-
ing the heat treatment. Hemicellulose degradation process 
starts by deacetylation, resulting in released acetic acid and 
acts as a depolymerization catalyst that further increases 
polysaccharide decomposition (Tjeerdsma et  al. 1998; 
Sivonen et  al. 2002; Nuopponen et  al. 2005; Esteves and 
Pereira 2009).

4 � Conclusion

In this study, the accuracy of the prediction of the devel-
oped ANN models achieved at least 91.4 and 97.7% success 
rate for the equilibrium moisture content (EMC) and spe-
cific gravity (SG), respectively, even in the testing group. 
Considering the complex and nonlinear relationships 
between the input and output parameters, highly encourag-
ing and satisfactory results are obtained by the models.

Figures 4 and 5 show the scattered diagram of the meas-
ured (targeted) values and the predicted (calculated) values 
of the proposed ANN prediction models for the EMC and 
SG parameters. The results show that the models have a 
very high coefficient of determination (R2) between the cal-
culated and targeted EMC and SG values. The values of R2 
in the testing set for the EMC and SG characteristics of the 
heat treated wood are 0.990 and 0.999, respectively. These 
values support the applicability (validity) of the proposed 
EMC and SG prediction models.

The prediction performances of the developed models 
will be higher when logs which have similar properties to 
those used in this study are used for prediction of EMC 
and SG characteristics. ANN models can be improved 
by increasing the number of stands, logs and samples to 
be applicable for all logs obtained from both Uludag fir 
(Abies bornmülleriana Mattf.) and hornbeam (Carpinus 
betulus L.) wood.

In this study, the well-trained ANN model has been 
proved to be a sufficient and successful tool for modeling 
the effects of conditions of heat treatment process on EMC 
and SG characteristics of heat treated Uludag fir (Abies 
bornmülleriana Mattf.) and hornbeam (Carpinus betulus 
L.) wood. The results of the research indicated that the 
developed ANN models can be used to determine EMC and 
SG values of these wood species to be heat treated at any 
temperature (between 170 and 210 °C) and exposure period 
(between 4 and 12  h) for any relative humidity (between 
35 and 90%) without the need of experimental study that 
requires much time and high testing cost.
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Fig. 8   Effect of temperature and exposure period on a EMC and b SG of heat treated Uludag fir wood
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