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in wood under controlled drying conditions and different 
mechanical restraint schemes and also using a model for 
simulation. In a similar research by Lazarescu et al. (2009, 
2010) and Lazarescu and Avramidis (2010), an empirical 
model was built and used to quantify the drying stresses 
based on the developed strain set. Perré and Passard (2004) 
proposed a comprehensive model to predict drying stresses 
evolution based on mechano-sorptive creep at different 
temperature levels. Moutee et  al. (2005, 2007) developed 
a rheological model of wood cantilever for emulating dry-
ing stresses and creep behavior at various load levels and 
ambient conditions. A number of investigations about dry-
ing stresses have also been reported in recent years (Ferrari 
et al. 2010; Watanabe et al. 2013a; Salinas et al. 2015).

To better understand the evolution of drying stresses, 
studying thin disks from wood logs is advantageous 
because of the possibility to control the moisture gradient 
better than in wood boards. Kang and Lee (2002) devel-
oped a mathematical model for the prediction of drying 
stresses and resultant deformation within a tree disk that 
was treated as a cylindrically orthotropic and radially inho-
mogeneous material. Larsen and Ormarsson (2013) inves-
tigated moisture-induced stresses in log cross-sections by a 
finite element method where moisture content profiles were 
assumed to be symmetric around the pith.

Within the elastic region, elastic strain of wood during 
drying is in good agreement with the drying stress. Thus, 
the drying stress of a single moment can be evaluated by 
the instant elastic strains. However, there are no certain 
relationships between ambient conditions and elastic strain. 
Inspired by the functional behavior of the biological nerv-
ous system, artificial neural network (ANN) modeling is 
particularly useful for dealing with the nonlinearities and 
complexities of ill-defined processes using past historical 
data, even if all mechanisms and principles are not clarified; 

Abstract  Elastic strain is one of the most important 
parameters associated with drying stresses. The research 
presented in this paper attempts to develop an artificial 
neural network based model for predicting elastic strain in 
white birch (Betula platyphylla Suk) disks during drying as 
a function of temperature, moisture content, relative humid-
ity and distance from the pith. The data set was obtained by 
using image analysis method under two drying schedules 
and divided into three subsets for training (60%), validation 
(20%) and test (20%). According to the results, the values 
of determination coefficient (R2) obtained were greater than 
0.97, 0.96 and 0.95 for the training, validation and test sets, 
respectively.

1  Introduction

Defects in lumber often occur during kiln drying and they 
tend to reduce value, application potential and utiliza-
tion (Simpson 2001). Their cause is often linked to drying 
stresses that are produced by moisture content decrease and 
wood shrinkage anisotropy (Fu et al. 2015). As an impor-
tant variable that affects product quality, extensive studies 
on drying stresses have been carried out. Svensson (1995, 
1996) and Svensson and Mårtensson (1999, 2002) investi-
gated the strain and shrinkage forces perpendicular to grain 
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further, the network can be built directly from experimental 
data by the self-organizing capabilities without any prior 
assumptions (Aghbashlo et al. 2015). In general, the basic 
information processing elements of the neural network 
operation are called neurons. Some of the neurons interface 
with the outside world to receive information called input 
layer, and other neurons communicate the prediction to the 
outside world called output layer. All the rest of the neu-
rons connect the input layer to the output layer called hid-
den layers. The network function is determined largely by 
the interconnections between neurons, which are not sim-
ple connections but some non-linear functions (Zhang and 
Friedrich 2003).

As a fascinating mathematical tool, ANNs have been 
reported in many published works and also used in the field 
of wood science for predicting some physical and mechani-
cal properties, such as wood density (Iliadis et  al. 2013), 
wood thermal conductivity (Avramidis and Iliadis 2005a), 
wood dielectric loss factor (Avramidis et al. 2006), hygro-
scopic equilibrium moisture content (Avramidis and Iliadis 
2005b), compression strength of heat treated wood (Tir-
yaki and Aydın 2014), and bending strength and stiffness 
of wood (Mansfield et  al. 2007). Additionally, the ANN 
approach has been employed in wood industry. Wu and 
Avramidis (2006) predicted timber kiln drying rates as a 
function of initial moisture content, basic density, and dry-
ing time. Ceylan (2008) simulated the variation of mois-
ture content of poplar timber versus drying time. Watanabe 
et al. (2013b) evaluated the final moisture content of indi-
vidual sugi samples after air-drying based on initial mois-
ture content, basic density, annual ring orientation, annual 
ring width, heartwood ratio and lightness. Tiryaki et  al. 
(2016) employed ANN for predicting surface roughness 
and power consumption in abrasive machining of wood. 
The relationships between climatic conditions and inter-
nal bond strength of particleboard were investigated using 
ANN by Korai and Watanabe (2016). However, no research 
has been published using ANN to predict drying stresses.

The objective of this study was to predict the elastic 
strain of wood disks during their kiln drying by means of 
ANN modeling where the inputs include drying tempera-
ture, moisture content, relative humidity and distance from 
the pith.

2 � Materials and methods

Wood for this study was obtained from forests in the region 
of the Lesser Khingan Mountains, located in Heilongji-
ang Province, China. One hundred wood disks of 30 mm 
thickness were cut from one plantation white birch (Betula 
platyphylla Suk) tree, 22 years of age and with an average 
diameter of 250  mm. For one experiment, twenty wood 

disks without visible defects were randomly selected from 
them and dried in a GDS-100 (Shanghai Scientific Instru-
ments Yiheng Co., Ltd.) conditioning chamber at two dif-
ferent drying schedules. For each schedule, ten wood disks 
were used, of which one was used to determine the green 
moisture content, three for determining the three different 
target moisture contents (26, 18 and 10%), and the remain-
ing six wood disks (three of them as replacement) were 
ready for strain studies. Two replications were carried out.

The details of the two drying schedules are shown 
in Fig.  1. For schedule 1, the temperature was kept at 
40 ± 1 °C and the relative humidity decreased slowly from 
94 ± 2 to 57 ± 2%. For schedule 2, the dry-bulb temperature 
started at 40 ± 1 °C, increased 2 °C every 24 h above 30% 
moisture content and increased 2 °C every 12 h below 30% 
moisture content, up to the final temperature of 60 ± 1 °C; 
the humidity decreased from 100 ± 2 to 65 ± 2%.

The elastic strain was measured by an image-supported, 
noncontact method based on dot pitches. The camera lens 
(1628 × 1236 resolution) was fixed on a perpendicularly 
placed tripod and kept 200 mm from the test plane. Prior 
to drying, red stains (the distance between two measuring 
points is 20 mm in tangential direction) were sprayed on the 
polished surface of the disks, using oil-based pike (Fig. 2). 
While drying to 26, 18, and 10% moisture content, two of 
the wood disks were taken out and each one cut into 18 
test specimens (30 × 10 × 30 mm³, T × R × L) along the grid 
lines, and also the images of the disks (including a scale-
plate) were taken before and after cutting. The target mois-
ture contents were determined by the oven-dry method.

Thereafter, the images were imported into special-
ized software (Image J) for measuring and analyzing the 
actual length of the two red stains, as shown in Fig. 2. By 
comparing the changes of dot pitches, the strain values 
can be obtained.

Fig. 1   Schematic of drying schedules: S1 schedule 1; S2 schedule 2
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The tangential elastic strain was calculated using the fol-
lowing equation:

where L0 is the distance in mm between two measuring 
points on the strain specimens under green conditions, L1 
is the distance in mm between two measuring points on the 
strain specimens before cutting at each target moisture con-
tent and L2 is the distance in mm between two measuring 
points on the strain specimens after cutting test specimens 
(30 × 10 × 30 mm³, T × R × L) from wood disks.

3 � Artificial neural network analysis

A three-layer feed-forward artificial neural network model 
trained with the back-propagation of errors algorithm was 
employed in this study, which has been widely used in 
the past (Myhara and Sablani 2001; Avramidis and Iliadis 
2005a, b; Avramidis et al. 2006; Esteban et al. 2009; Tir-
yaki and Hamzaçebi 2014; Tiryaki and Aydın 2014). The 
database generated by these experiments was randomly 
divided into three groups without repetition, including the 
training group (98 test specimens, 60% of the total), the 
validation group (32 test specimens, 20% of the total) and 
the testing group (32 test specimens, 20% of the total). The 
division of the groups and the percentage of the data were 
the same as reported by other authors in the past (Myhara 
and Sablani 2001; Esteban et al. 2009).

(1)�t = (L
1
− L

2
)∕L

0

The 4-6-1 neural network configuration was selected in 
the designed ANN model, as shown in Fig. 3. The inputs 
used were temperature, moisture content, relative humid-
ity and distance from the pith, and the output was elas-
tic strain. The optimal number of neurons in the hidden 
layer was adjusted during training and validation process. 
It is believed that the two-layer sigmoid/linear network 
can present any relationship between input and output if 
there are enough neurons in the hidden layer (Hagan et al. 
1996; Zhang and Friedrich 2003). Thus, the tangent sig-
moid function (Eq. 2) in the hidden layer and the linear 
function in the output layer were chosen as the transfer 
functions. Levenberg–Marquardt back propagation algo-
rithm was chosen as the training algorithm.

where tan sig (x) is the output value of the neuron; and x is 
the input value of the neuron.

The performance of the network was evaluated by 
the mean squared error (MSE), defined by Eq.  (3). The 
smaller the MSE between measured and predicted values, 
the stronger is the predictive performance. In addition, 
the correlation coefficient (R) and the coefficient of deter-
mination (R2) were also introduced to evaluate network 
performance.

where n is the total number of data, ti is the measured 
value, pi is the predicted value.

(2)tan sig(x) =
2

1 + e−2x
− 1

(3)MSE =
1

n

n
∑

i=1

(ti − pi)
2

Fig. 2   Cutting diagram of disks 
and test specimens
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4 � Results and discussion

In order to evaluate the performance of the neural network, 
MSE values for the training, validation and test sets versus 

epochs are depicted in Fig.  4. The dashed line parallel to 
abscissa axis is the goal error of 1e–6. The best validation 
performance is 1.21e−06 at epoch 17. Beyond 17 iterations, 
the MSE value for validation set will increase. Furthermore, 

Fig. 3   Configuration of a 
feedforward artificial neural 
network: T temperature, MC 
moisture content, RH relative 
humidity, DP distance from 
the pith

Fig. 4   Plot of mean squared 
error for the training, valida-
tion and test set changes with 
number of iterations
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the MSE values in the test set have similar characteristics 
to those in the validation set. There is no significant over-
fitting phenomenon, which is a serious problem in neural 
network training process with an increase in validation set 
error in conjunction with a decrease in training set error 

(Sarle 1995; Hagan et al. 1996; Esteban et al. 2009). Thus, 
the neural network is considered to be quite reasonable.

The linear regression equation of the neural network 
between the experimental and predicted values for the 
training, validation, test and all data sets, in conjunction 
with their correlation coefficients (R) and determination 
coefficient (R2) are presented in Table 1. These regression 
equations represent strong correlations between the experi-
mental and predicted values. The values of R for the train-
ing, validation, test, all data sets are 0.988, 0.983 0.978 and 
0.985, respectively. Additionally, the value of R2 obtained 
from the test set is 0.95, indicating that the network model 
is capable to explain more than 95% of the experimen-
tal values. In the other three sets, the values of R2 are all 
greater than 0.95.

Table 1   Results of linear regression between experimental and pre-
dicted values

Set Linear regression equation R R2

Training set Predicted = (0.98) Experimen-
tal − 7.7e−05

0.988 0.97

Validation set Predicted = (0.95) Experimen-
tal − 0.00031

0.983 0.96

Test set Predicted = (1) Experimental + 0.0001 0.978 0.95
All data Predicted = (0.98) Experimen-

tal − 9.1e−05
0.985 0.97

Fig. 5   Cross-correlation graph between experimental and ANN predicted values for elastic strain: a training set; b validation set; c test set; d all 
data. The respective regression equations and the values of R2 are given in Table 1
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Compared with other reports where ANN was used to 
model other wood mechanical and physical properties, the 
following can be observed: Mansfield et al. (2007) reported 
R2 values for MOE ranging between 0.693 and 0.750, and 
the corresponding MOR models ranging from 0.438 to 
0.561 in western hemlock. Esteban et  al. (2009) obtained 
an R2 value of 0.75 in determining the modulus of elasticity 
of solid wood. Tiryaki and Aydın (2014) reported R2 values 
that were greater than 0.99 for all of the data sets in predict-
ing compression strength of heat treated woods.

The regression fit between the experimental and pre-
dicted values for elastic strain in the four sets is plotted in 
Fig. 5. As seen in this figure, the solid lines and the dashed 
lines exhibit a good linear fit between experimental and 
predicted values. In the training, test and all-data sets, the 
solid line is almost on top of the dashed line, denoting that 
the predicted values are in good agreement with the experi-
mental values. Thus, the ANN model developed in this 
work can be accepted as a reliable approach to predict the 
elastic strain during drying.

The comparison of experimental and predicted val-
ues for elastic strain in the test set is illustrated in Fig. 6. 
As plotted, the experimental values of elastic strain are 
shown in the bar chat and the predicted values of elastic 
strain are depicted by the dashed line. For both of the two 
schedules, the tangential tensile elastic strain was shown 
at the moisture content of 26%, but the tensile elastic 
strain was replaced by the compressive elastic strain at 
the moisture content of 18 and 10%. Furthermore, the 
tensile elastic strain at 10% moisture content was smaller 
than the corresponding value at 18% moisture content 
due to the fact that the elastic modulus increased with 

decreasing moisture content below the fiber saturation 
point (Gerhards 2007). For schedule 1, there was no clear 
trend for elastic strain, especially at the moisture content 
of 10%. Whereas, for schedule 2, the elastic strain was 
increased with the increasing distance from the pith at 
the moisture content of 18 and 10% because of the une-
ven distribution of moisture content and the difference 
of wood properties in radial direction. The comparison 
between the predictions and experiment results shows 
that almost all of the values predicted by the neural net-
work model are very close to the experimental ones for 
the two drying schedules, but only a smaller deviation is 
observed at a distance of 70  mm from the pith at 10% 
moisture content in schedule 2. This result is consistent 
with the greater R2 in the test set thus demonstrating the 
reliability of the proposed ANN model in this study.

5 � Conclusion

This study presented the results of modeling elastic strain 
by a three-layer feedforward neural network configuration. 
The parameters of drying temperature, moisture content, 
relative humidity and distance from the pith were the inde-
pendent variables. The values of R2 in all of the sets were 
higher than 0.95. The value of MSE approached the goal 
error of 1e−6, thus the proposed neural network model was 
shown to result in better performance in terms of R2 and 
MSE. When the experimental measurements were com-
pared to the predicted values, good fit was observed that 
supported the reliability of the proposed ANN model.

Fig. 6   Comparison of experimental and predicted values of elastic strain under two drying schedules in the test set: a schedule 1 b schedule 2
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