
ORIGINAL

Prediction of tension properties of cork from its physical
properties using neural networks
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Abstract A tool to predict the tensile properties of cork

was applied in order to be used for material and application

selection. The mechanical behaviour of cork under tensile

stress was determined in the tangential and axial direction.

Cork planks of two commercial quality classes were used

and samples were taken at three radial positions in the

planks.For the construction of the predictive model, nine

properties were measured: mechanical properties (Young’s

modulus, fracture stress and fracture strain) and the phy-

sical properties (porosity, number of pores, density, ap-

proximation of the pores to elliptical and circular shape and

distance to the nearest pore). The aim of this research work

was to predict the mechanical properties from the physical

properties using neural networks.Initially, the problem was

approached as a regression problem, but the poor correla-

tion coefficients obtained made the authors define a clas-

sification problem. The criterion used for the classification

problem was the test error rate, training the neural network

with a variety of neurons in the hidden layer until the

minimum error was achieved. The influence of each indi-

vidual variable was also studied in order to evaluate their

importance for the prediction of the mechanical proper-

ties.The results show that the Young’s modulus and frac-

ture stress can be predicted with an error rate in test of 10.6

and 10.2 %, respectively, being the measure of the ap-

proximation of the pores to elliptical shape avoidable.

Regarding the fracture strain, its prediction from physical

properties implies an excessive error.

1 Introduction

Cork is a cellular material with an interesting set of prop-

erties that is used in a wide range of application areas such

as building construction, automobile and space industry,

flooring or footwear, and as a sealant (Pereira 2007).

Cork is produced by the cork oak tree (Quercus suber

L.) where it is the outer layer in the bark. This material

presents a low density with large compressibility and di-

mensional recovery, insulation properties, very low per-

meability to liquids and gases, and chemical stability and

durability (Rosa and Fortes 1991; Anjos et al. 2008,

2014).

The honeycomb structure of cork with closed cells, of

considerable homogeneity, has been well described (Per-

eira et al. 1987; Pereira 2007). However, it also includes

some macroscopic features that impart heterogeneity to the

tissue, namely the lenticular channels that cross the cork

layers (Pereira 2007) showing an extensive variability in

distribution and size in the cork planks and products

(Pereira et al. 1996; Oliveira et al. 2012). The porosity of

cork induces a high natural variability in cork and in its

mechanical properties (Anjos et al. 2008, 2010, 2011a, b,

2014). In general, all previous studies concluded that the
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mechanical behaviour of cork is related to its structural

features and the number and extension of defects.

In all cork applications, its mechanical behaviour is a very

important factor for its choice and performance. Cork be-

haviour is largely determined by the cellular characteristics

and the chemical composition of the cell walls (Pereira et al.

1987; Pereira 1988, 2013; Oliveira et al. 2014). In the in-

dustry, cork is usually classified into different quality classes

depending on its porosity and extension of defects.

One important mechanical property of cork is tension.

The situation of cork being submitted to tensile stress is

encountered in many uses, namely when a stopper is pulled

out of a wine bottle. Rosa and Fortes (1991) described the

cell walls’ straightness and alignment in the direction of

tension when cork is submitted to tensile stress.

The modelling of the physical and mechanical properties

of cork is difficult due to its heterogeneous nature. Several

studies (Anjos et al. 2008, 2010, 2011a, b, 2014) found some

unknown existing nonlinear relationships related to its

higher natural variability. To solve the nonlinear relationship

of modelling parameters in other related cellular materials,

some optimization algorithms of neural networks have been

developed (Esteban et al. 2010; Mansfield et al. 2007).

The aim of this research work was to obtain a predictive

model to calculate cork mechanical properties from some

measured physical properties. In order to achieve this, ar-

tificial neural networks (ANNs) (Haykin 1999) were

trained for their use as automated learning tools. They have

been applied successfully to a wide variety of environ-

mental problems: for flood forecasting (Leahy et al. 2008);

predicting Cu(II) adsorption by sawdust from wastewaters

(Prakash et al. 2008); support vector machines (SVM) and

multilayer perceptron networks (MLP) have been used for

modelling the characteristics of trees for paper manufacture

(Garcı́a Nieto et al. 2012) and for predicting the wood

strength of Populus spp (Mansfield et al. 2011) and Dou-

glas-fir wood density (Iliadis et al. 2013); for analysing the

optimum parameters of turmeric powder agglomeration

process (Dhanalakshmi and Bhattacharya 2014); predicting

the turbidity of a river from other parameters measured on

site (Iglesias et al. 2014); predicting the mechanical be-

haviour of steel wires and cord materials (Yilmaz and Er-

tunc 2007).

2 Materials and methods

2.1 Data

The dataset included measurements of a total of 144 cork

specimens which were prepared from raw cork planks

collected at an industrial mill, half of them corresponded to

samples taken from the tree in the axial direction and the

other half to samples taken from the tree in the tangential

direction (Fig. 1). Previous studies have already stated the

influence of this direction on the mechanical behaviour of

cork (Anjos et al. 2010, 2011a).

The test specimens were cut from each cork plank as

plates with the dimensions of 30 mm 9 5 mm 9 60 mm

with the largest dimension in the tangential and axial di-

rections, respectively.

For each sample, the following parameters were

determined:

• Young’s modulus, E (MPa);

• Fracture stress, rf (MPa);

• Fracture strain, ef (%);

• Porosity, P (%);

• Number of pores, NP (number/cm2);

• Density, D (g/cm3);

• Approximation of the pores to elliptical shape, FE;

• Approximation of the pores to circular shape, FC;

• Distance to the nearest pore, ZO (mm).

The porosity and pore number of the specimen plates

(reported in % of the area of pores divided by the total

area) were determined prior to the tensile tests by image

analysis on the two tangential surfaces parallel to the di-

rection of the tensile stress as described by Anjos et al.

(2010, 2011a). The specimens were equilibrated in the

laboratorial environment to 7 % mean moisture content,

weighed, and the density was calculated.

Additionally, the following information was also taken

into account regarding the specimens:

• Cork commercial quality class: good and medium,

determined visually by an expert;

• Radial position: three specimens were obtained from each

cork plank, corresponding to the inner part, the middle part

and the outer part of the plank. The reason why this was

done is because cork properties vary substantially with

their radial position in the plank (Pereira 2007);

• Direction of stress: axial or tangential, depending on

the direction of the load application.

A new variable was introduced with the aim of em-

phasizing the effect of density and porosity in the me-

chanical properties of the material. Previous studies (Anjos

et al. 2008, 2014) showed that density is inversely corre-

lated to porosity, particularly for the better cork quality that

has high Young’s modulus, fracture stress and fracture

strain. This new variable was a synergistic variable cal-

culated as density/porosity (D/P), and expected to give

additional valuable information to the network in order to

predict the mechanical behaviour of cork.

The synergy between two or more variables is the in-

teraction that produces a different effect from their indi-

vidual effects, even greater than that. The joint action of

348 Eur. J. Wood Prod. (2015) 73:347–356

123



more than one cause has a greater effect than the sum of the

individual effects. In a previous research work, the benefits

were discussed of including such synergistic variables in

the neural networks, resulting in a better prediction of the

turbidity of a river basin (Iglesias et al. 2014).

2.2 Artificial neural networks

Back in 1943, psychiatrist Warren MacCulloch and

mathematician Walter Pitts proposed the first neural net-

work model based on biological neural networks

(MacCulloch and Pitts 1943). This neural network model

consisted of an input layer, an output layer and a certain

number of hidden layers, each of them containing a number

of nodes (Fig. 2). Weights connect the nodes of one layer

with the nodes of the following layer. The neurons on the

input layer contain the input data, while the neurons on the

output layer provide the network output.

A neural network defines the function

f : X , <d ? Y , <c (Shabani and Mazahery 2011) that

can be expressed as follows:

f xð Þ ¼ / w xð Þð Þ ð1Þ

/ : X � <d ! T � <p

w : T � <p ! Y � <c

where d is the dimension of input space, p is the number of

neurons of the hidden layer, c is the dimension of the

output layer, T is the hidden space, / is the activation

function of the hidden layer and w is the activation function

of the input layer.

Multilayer perceptron (MLP) is a particular case of ar-

tificial neural network, characterized by its neurons being

perceptrons (Bishop 2008) and by a back-propagation

process. In the case of MLP, the function is expressed as

follows (Bishop 2008; Heaton 2012):

f xð Þ ¼
Xp

j¼1

/j cjw wT
j x þ w0

� �
þ c0

� �
ð2Þ

where wj and w0 are the weights of the input layer and cj
and c0 are the weights of the hidden layer. Different al-

gorithms are used to adjust the weights of the ANN in a

process called learning or training. The neural networks

used in this research work implement the Gaussian acti-

vation function and the back-propagation algorithm.

The above-mentioned back-propagation process propa-

gates backwards the resulting errors of the neural network

training process, thus allowing for the reduction of the

errors until the network learns the training data analysed.

2.3 Data processing

The prediction of the mechanical properties of cork was

approached in two manners: firstly, a regression problem

was considered, thus attempting to obtain the exact nu-

merical value of the predicted variable; secondly, it was

studied considering a classification problem, defining a

number of intervals for each analysed property and as-

signing each specimen to a certain class.

The criteria for the determination of the best network

were the following:

• Correlation coefficient in the case of neural networks

for solving the regression problem. It is defined as the

Fig. 1 Explanation of the

sampling method (Anjos et al.

2011b)

Fig. 2 Architecture of artificial neural networks. The variables wj, wp

are the weights of the input layer, while cj and cp are the weights of

the hidden layer
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covariance of the variables divided by the product of

their standard deviations;

• Train error rate and test error rate in the case of neural

networks for solving the classification problem. These

parameters indicate the proportion of elements incor-

rectly classified in the train subset and in the test subset,

respectively. The lower the error rate the lesser

elements are incorrectly classified.

The procedure was the following:

1. The data were prepared in a datasheet with the

physical and mechanical parameters in columns, each

row corresponding to a different specimen;

2. Then, the neural network was trained and validated

through a k-fold validation process. This step was

repeated for several numbers of neurons in the hidden

layer. Since three mechanical properties were to be

predicted, a neural network was trained for each of

them setting the Young’s modulus, the fracture stress

or the fracture strain as the output. The input data

were: porosity (%), number of pores (number/cm2),

density (g/cm3), approximation of the pores to ellip-

tical shape, approximation of the pores to circular

shape, distance to the nearest pore (mm), quality (good

and medium quality), position (inner, mid or outer

part), direction (axial and tangential) and the syner-

getic variable (this last variable was not always

considered in the tests);

3. The correlation coefficients and the error rates were

calculated;

4. The optimum number of neurons in the hidden layer

and the accuracy of the prediction were determined.

For the regression analysis, four different configurations

regarding the input variables were considered: A, without

quality and D/P; B, with quality and without D/P; C,

without quality and with D/P; and D, with quality and D/P.

3 Results and discussion

3.1 Solving the regression problem with neural

networks

Predicting the three mechanical properties was approached

as a regression problem where the neural networks were

trained with the four different configurations (A, B, C and

D) and validated with a 20-fold cross validation process

(the dataset was divided into 20 subsets, using 19 of them

to train the model and the remaining to test it; this process

was repeated 20 times).

Since the quality was determined visually by an expert,

not analytically, it was analysed whether its inclusion was

important or not for the performance of the neural network.

Furthermore, the new synergistic variable D/P was also

studied in the same manner. Therefore, four different

configurations of the neural networks regarding the input

variables were considered.

The correlation coefficient was determined and used to

evaluate the performance of the network for the four

configurations and a different number of neurons in the

hidden layer. The results are shown in Table 1. Regarding

the prediction of fracture stress, it could be seen that the

correlation coefficient was stable when the number of

neurons in the hidden layer was greater than 125, not

exceeding the value of 0.7 despite the increasing number

of neurons. Fracture strain provided poor results, with

lower correlation coefficients than that of the other two

mechanical properties. Not all the variables and con-

figurations were tested up to the same number of neurons

in the hidden layer since no improvement was observed in

many cases. Hence, when the correlation coefficients

decreased and a maximum value had been reached, no

further tests were carried out.

The following could be stated:

1. The weights of the input variables were analysed in

order to determine their importance for the network.

Each input variable has a weight for each neuron in

the hidden layer, so classical descriptive analysis

was performed. Their mean and variance were

analysed in order to establish the ranges of the

weights. In those neural networks that included the

synergistic variable in their input data (configura-

tions C and D), the weight of this variable was

negligible, of about 10-50 or even lower. It seems

that this variable does not give any appreciable

information to the net;

2. Despite this fact, the best network for the prediction of

Young’s modulus corresponded to configuration D

(with quality and the synergistic variable as input

variables), with the highest correlation coefficient;

3. The prediction of fracture stress showed better results

than the prediction of Young’s modulus;

4. However, in any case, the correlation coefficients

exceeded 0.7 despite the high number of neurons in the

hidden layer.

In view of the previous studies focused on cork prop-

erties (Anjos et al. 2010, 2011a), the Young’s modulus and

the fracture stress were expected to be predicted more

easily than the fracture strain since they show a greater

variation in their values. However, these variables were

poorly predicted with the different neural trained networks.

This fact induced a change on the approach from a re-

gression problem to a classification problem.
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3.2 Solving the classification problem with neural

networks

After proving the difficulty in predicting the exact value of

the mechanical properties, a new approach was considered

consisting of solving a classification problem.

For this purpose, a certain number of intervals were

defined for Young’s modulus, fracture stress and fracture

strain, bearing in mind that a minimum number of cases

was needed for the subsequent validation of the network. In

this case, a tenfold cross validation process was performed

(the dataset was divided into ten subsets, using nine of

them to train the model and the other one to test it; this

process was repeated ten times).

The considered intervals (Table 2) take into account the

following considerations:

1. The results of previous studies (Anjos et al. 2010,

2011a), which determined the range of values of the

different properties for both commercial qualities in

the two tensile directions, and three radial positions;

2. Since a tenfold cross validation was to be performed, a

minimum of ten elements in each interval was needed.

Several neural networks were trained with 10, 20, 30, 40

and 50 neurons in the hidden layer, calculating the train error

rate and the test error rate. Table 3 shows the results obtained

for predicting Young’s modulus, fracture stress and fracture

strain. By analysing these results, it can be seen how the

performance of the neural network is better as the number of

neurons in the hidden layer increases, but once a minimum

error rate is achieved, the increase of the number of neurons

does not imply a better performance of the network.

This circumstance is explained by the overfitting con-

cept in Schittenkopf et al. (1997) and Hagiwara and

Fukumizu (2008). Overfitting can be summarised as the

fact of having very small training errors due to fitting the

noise of the studied data instead of the true function, even

with greater test or generalization error than the optimal. In

this research work, overfitting was prevented by analysing

the results, considering the evolution of the error rates: the

optimal number of neurons is the one that provides a low

train error rate without incrementing the error rate in test.

While the error rates for predicting Young’s modulus

and fracture stress are reasonable (about 15 %), in the case

of fracture strain, the error rates are inacceptable (about

50 %). Bearing this in mind, further tests were carried out

in order to improve the results. These tests focused on the

definition of a different set of intervals for the prediction of

fracture strain, and also on the study of the influence of the

variables in the network.

Table 1 Results of the neural networks for the regression problem with the four input variables configurations explained (A, B, C, D)

Neurons in the hidden layer

25 50 75 100 125 150 175

Young’s modulus

Conf. A 0.5740 0.5842 0.5769 0.5656 0.5635 – –

Conf. B 0.5741 0.5672 0.5674 0.5238 – – –

Conf. C 0.5579 0.5040 0.5394 0.5361 – – –

Conf. D 0.5842 0.5057 0.5564 0.5830 0.6132 – –

Fracture stress

Conf. A 0.6001 0.6512 0.6240 0.6018 0.6598 0.6016 –

Conf. B 0.6563 0.6999 0.6169 0.5716 0.6455 0.6579 0.6707

Conf. C 0.6145 0.5661 0.6621 0.6166 – – –

Conf. D 0.6581 0.6039 0.6499 0.6070 – – –

Fracture strain

Conf. A 0.5077 0.4793 0.4379 0.4152 – – –

Conf. B 0.5135 0.4422 0.5440 0.4185 0.4134 – –

Conf. C 0.4104 0.4730 0.3881 0.3778 – – –

Conf. D 0.3897 0.4668 0.4169 0.4058 – – –

Table 2 Considered intervals of the three parameters to be predicted

Class Young’s modulus

interval (MPa)

Fracture stress

interval (MPa)

Fracture strain

interval (%)

1 \18 \0.45 \4

2 18–22 0.45–0.6 4–5

3 22–25 0.6–0.75 5–6

4 25–28 0.75–0.85 6–7.5

5 28–33 0.85–0.95 [7.5

6 [33 0.95–1.1

7 [1.1
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Regarding the definition of new intervals for fracture

strain variable, Table 4 includes the two additional sets of

intervals. Despite these new sets, the error rates in test were

higher than that of the previous tests.

In view of the poor prediction performance, the syner-

gistic variable (defined as density/number of pores) was

included as an additional input variable with the objective

of helping the network to be more accurate. The results

obtained with this variable and considering the initial in-

tervals (Table 3) are shown in Table 5. The error rates are

very similar to the ones obtained for the neural network

without the synergistic variable, and there was no appre-

ciable improvement.

The inclusion of this variable was tested in the prediction

of Young’s modulus and fracture strain, but it showed null

value for the purpose of this study (specially for fracture

strain, the property which has shown as the most difficult one

to predict). The error rates of the networks including the

synergistic variable (Table 5) are higher than those of the

neural networks without the synergistic variable. Thus, this

variable was discarded and not tested for the prediction of

fracture stress. Once the synergistic variable had proved to be

useless for a good prediction of the studied parameters, a

different strategy was adopted: the influence of the available

input parameters on the behaviour of the network.

At this point, the best performance of the neural net-

works had an error rate of about 15 % in predicting

Young’s modulus and fracture stress, and about 45 % in

predicting fracture strain. In an attempt of lowering these

rates, the variation of several input variables was analysed

in order to find the parameters that influence most the

classification process. Those physical properties where

values are hardly different for each of the intervals of the

predicted variables may hinder the classification, so new

neural networks were trained without some of the initial

input variables, analysing their performance.

The study of the ranges of the discrete input variables

gives information about their influence on the performance

of the neural network: the more dissimilar the values of the

parameters of each class are, the easier the classification

process would probably be. If values of a certain input

variable differ little from one interval of the predicted

property to another, this input variable is likely to be of

limited importance for the prediction process, while those

input variables where the variation is higher are expected to

be significant.

Among the initial input variables, the discrete ones were

analysed calculating their mean value, standard deviation

and % variation calculated as (Standard deviation/

mean) 9 100 (Table 6).

Table 3 Performance of the

different neural networks

trained

Neurons in the hidden layer

10 20 30 40 45 50

E

Train error rate 0.2944 0.0520 0.0023 0 0 0

Test error rate 0.3833 0.2639 0.1583 0.1500 0.1583 0.2111

r

Train error rate 0.3310 0.0910 0.0075 0 0 0

Test error rate 0.3558 0.1988 0.1879 0.1564 0.2238 0.1947

e

Train error rate 0.3541 0.2579 0.3776 0.2982 – 0.3869

Test error rate 0.5000 0.4667 0.4583 0.4833 – 0.4917

Table 4 New sets of intervals for fracture strain variable tested in

order to obtain a better prediction

Class Interval 2 (MPa) Interval 3 (MPa)

1 \3 \4

2 3–3.8 4–4.5

3 3.8–4.8 4.5–5

4 4.8–5.3 5–5.5

5 5.3–5.9 5.5–6.5

6 5.9–6.8 6.5–7.5

7 6.8–7.5 [7.5

8 [7.5

Table 5 Performance of the neural network when the synergistic

variable density/number of pores is included in the prediction of

fracture strain and Young’s modulus

Neurons in the hidden layer

20 25 30 35 40

Young’s modulus

Train error rate 0.0426 0.0076 0 0.1540 0

Test error rate 0.2111 0.2028 0.1861 0.2444 0.2000

Fracture strain

Train error rate 0.2734 0.3073

Test error rate 0.4444 0.4611
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While porosity and the number of pores vary consider-

ably (29 and 18 % each), the approximation of the pores to

elliptical shape seems to differ little among its 144 mea-

surements. A deeper analysis considered the maximum

value, the minimum value and the % variation of each of

the classes defined for Young’s modulus (Table 7), fracture

stress (Table 8) and fracture strain (Table 9). On this oc-

casion, the % variation is calculated as [(maximum

Table 6 Analysis of the

discrete input variables
P (%) NP (n8/cm2) D (g/cm3) FE FC ZO (mm)

Entire dataset

Mean value 5.63 8.03 0.16 1.80 2.44 0.22

Standard deviation 1.61 1.45 0.01 0.13 0.27 0.02

%Variation 29 % 18 % 8 % 7 % 11 % 10 %

Table 7 Analysis of the

variation of the discrete input

variables considering the six

classes defined for Young’s

modulus

Class P (%) NP (n8/cm2) D (g/cm3) FE FC ZO (mm)

E1 (\18)

Mean value 6.96 8.34 0.149 1.84 2.39 0.216

% Variation 40 % 7 %

E2 (18–22)

Mean value 6.00 8.50 0.156 1.83 2.46 0.212

E3 (22–25)

Mean value 5.51 7.85 0.159 1.80 2.36 0.224

E4 (25–28)

Mean value 5.68 8.59 0.159 1.78 2.40 0.213

% Variation 16 %

E5 (28–33)

Mean value 5.63 7.72 0.171 1.71 2.45 0.215

E6 ([33)

Mean value 4.18 7.24 0.174 1.81 2.64 0.228

% Variation 14 % 11 % 7 %

Table 8 Analysis of the

variation of the discrete input

variables considering the seven

classes defined for fracture

stress

Class P (%) NP (n8/cm2) D (g/cm3) FE FC ZO (mm)

r1 (\0.45)

Mean value 6.91 8.40 0.152 1.81 2.37 0.209

% Variation 41 % 16 %

r2 (0.45–0.6)

Mean value 6.29 8.28 0.156 1.84 2.36 0.215

% Variation 5 %

r3 (0.6–0.75)

Mean value 5.80 8.17 0.156 1.79 2.39 0.220

r4 (0.75–0.85)

Mean value 5.56 8.17 0.165 1.80 2.45 0.220

r5 (0.85–0.95)

Mean value 5.27 8.27 0.164 1.76 2.34 0.217

r6 (0.95–1.1)

Mean value 5.37 7.55 0.165 1.74 2.56 0.216

r7 ([1.1)

Mean value 4.06 7.06 0.175 1.82 2.66 0.229

% Variation 14 % 12 % 9 %
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mean - minimum mean)/maximum mean] 9 100, only

for the class where the mean value is the highest.

Bearing this in mind, the results shown in Tables 6, 7 and

8 for the three mechanical properties to be predicted indicate

that the input variables FE (approximation of the pores to

elliptical shape) and ZO (distance to the nearest pore) have

very similar values for every interval considered. In the three

cases, the variation of the mean values of FE regarding the

Table 9 Analysis of the

variation of the discrete input

variables considering the five

classes defined for fracture

strain

Class P (%) NP (n8/cm2) D (g/cm3) FE FC ZO (mm)

e1 (\4)

Mean value 6.57 8.57 0.158 1.84 2.43 0.213

% Variation 30 % 16 % 3 %

e2 (4–5)

Mean value 5.88 7.97 0.155 1.79 2.31 0.220

e3 (5–6)

Mean value 5.79 8.44 0.163 1.79 2.41 0.216

e4 (6–7.5)

Mean value 5.14 7.76 0.163 1.77 2.50 0.217

e5 ([7.5)

Mean value 4.61 7.18 0.173 1.82 2.63 0.231

% Variation 11 % 12 % 8 %

Table 10 Results of the

prediction of E, r and e without

different parameters among the

input variables of the neural

network

Best results are in bold

Parameter removed from the model Neurons in the hidden layer

25 30 35 40

FE

E

Train error rate – 0.0045 0 0

Test error rate – 0.1556 0.1056 0.1194

r

Train error rate 0.0353 0.015 0.0053 –

Test error rate 0.1402 0.1448 0.1784 –

e

Train error rate 0.3646 – 0.3745 –

Test error rate 0.5194 – 0.5278 –

ZO

E

Train error rate 0.0371 0.0379 0 0

Test error rate 0.2583 0.2250 0.1444 0.1583

r

Train error rate 0.0496 0.0195 0.0173 0.0316

Test error rate 0.2081 0.1677 0.1628 0.2016

e

Train error rate 0.6090 0.6082 0.5189 0.5673

Test error rate 0.6583 0.6583 0.6083 0.6333

FE and ZO

E

Train error rate 0.0681 0.0926 0.0045 0.0636

Test error rate 0.1694 0.1917 0.1722 0.1944

r

Train error rate – 0.0752 0.0075 0.0511

Test error rate – 0.2196 0.1020 0.1972

e

Train error rate – 0.5561 0.5545 –

Test error rate – 0.6667 0.6750 –
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different classes are the lowest (7 % for Young’s modulus,

5 % for fracture stress and 3 % for fracture strain), followed

by ZO (7, 9 and 8 %, respectively). Thus, new neural net-

works were trained without these input variables, obtaining

the results shown in Table 10 (without FE variable, without

ZO and with neither FE nor ZO).

The best prediction of Young’s modulus corresponded

to the neural network without FE as input variable, with 35

neurons in the hidden layer and with a test error rate of

10.6 %. The best prediction of fracture stress was achieved

with the neural network not including FE nor ZO pa-

rameters as input variables, with 35 neurons in the hidden

layer and a test error rate of 10.2 %.

Fracture strain was not satisfactorly predicted in any case.

This could be due to the fact that fracture strain is more

dependent on the specific morphology of the pore type (e.g.

cells with thick walls as bordering cells of the lenticular

channels) and their position, which may constitute points

with higher stress concentration. Furthermore, the point of

fracture is very difficult to determine in a material like cork.

4 Conclusion

The study focused on predicting the mechanical behaviour

of cork from its physical properties using neural networks

to predict tensile Young’s modulus, fracture stress and

fracture strain.

As a regression problem, poor results were obtained

despite the high number of neurons in the hidden layer. The

best correlation coefficient was 0.7 and corresponded to the

prediction of fracture stress with 50 neurons in the hidden

layer.

The problem was approached as a classification prob-

lem, thus defining a number of categories (intervals) for

each of the three mechanical properties and training several

neural networks. It can be concluded that the prediction of

Young’s modulus and fracture stress is possible with neural

networks when it is approached as a classification problem,

with error rates of about 10 %.

The variable approximation of the pores to elliptical

shape (FE) is not needed for the prediction of the Young’s

modulus neither for the prediction of fracture stress, for

which the distance to the nearest pore is also unnecessary.

Prediction of fracture strain was not satisfactory with the

methodologies used in this study. However, neural net-

works have proved to be a valuable tool for the study of

cork properties.
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Galán C (2012) Support vector machines and neural networks

used to evaluate paper manufactured using Eucalyptus globules.

Appl Math Model 36(12):6137–6145

Hagiwara K, Fukumizu K (2008) Relation between weight size and

degree of over-fitting in neural network regression. Neural Netw

21:48–58

Haykin S (1999) Neural networks, a comprehensive foundation.

Prentice Hall, New York

Heaton J (2012) Introduction to the math of neural networks. Heaton

Research, New York

Iglesias C, Martı́nez Torres J, Garcı́a Nieto PJ, Alonso Fernández JR,
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