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Abstract In the present work, an artificial neural network

(ANN) model was developed for predicting the effects of

some production factors such as adhesive ratio, press

pressure and time, and wood density and moisture content

on some physical properties of oriented strand board (OSB)

such as moisture absorption, thickness swelling and ther-

mal conductivity. The MATLAB Neural Network Toolbox

was used for the training and optimization of the artificial

neural network. The ANN model having the best prediction

performance was determined by means of statistical and

graphical comparisons. The results show that the prediction

model is a useful, reliable and quite effective tool for

predicting some physical properties of the OSB produced

under different manufacturing conditions. Thus, this study

has presented a novel and alternative approach to the lit-

erature to optimize process parameters in OSB manufac-

turing process.

Optimierung von Prozessparametern bei der OSB-

Herstellung mittels künstlicher neuronaler Netzwerke

Zusammenfassung In dieser Studie wurde ein künstli-

ches neuronales Netz (ANN) entwickelt, um den Einfluss

einiger Produktionsfaktoren, wie zum Beispiel Kleb-

stoffmenge, Pressdruck, Pressdauer, Holzdichte und Holz-

feuchte, auf die physikalischen Eigenschaften von OSB,

wie Wasseraufnahme, Dickenquellung und Wärmeleitfä-

higkeit zu ermitteln. Für die Trainingsphase und Optimie-

rung des künstlichen neuronalen Netzes wurde die

MATLAB Neural Network Toolbox verwendet. Anhand

statistischer und graphischer Vergleiche wurde das ANN

Modell mit der besten Vorhersageleistung bestimmt. Die

Ergebnisse zeigen, dass dieses Modell ein nützliches,

zuverlässiges und effektives Werkzeug zur Vorhersage

verschiedener physikalischer Eigenschaften von unter

verschiedenen Bedingungen hergestelltem OSB ist. Somit

wird in dieser Studie ein neuer und alternativer Ansatz für

die Optimierung von Prozessparametern bei der OSB-

Herstellung vorgestellt.

1 Introduction

Oriented strand board (OSB) is a multi-layered panel made

from strands of wood of a predetermined shape (typically,

15–25 mm wide, 75–150 mm long, and 0.3–0.7 mm thick)

bonded together with a binder (often water resistant) under

pressure and heat. At the same time, OSB is a perfor-

mance—rated structural panel engineered for uniformity,

strength, versatility, and workability (Thoemen et al.

2010).

The physical and mechanical properties of OSB make it

suitable for a wide range of structural and non-structural

applications, such as packaging and building construction.

About 100 OSB production lines with a capacity of over 40

million m3/year have been installed around the world.

North America is the largest producer of OSB; 85 % of the

world’s production is concentrated in USA and Canada.

Europe operates 15 factories with a total capacity of 4

million m3/year (Thoemen et al. 2010).

There are many factors affecting the OSB properties.

Factors related to strand geometry and adhesive ratio, press

pressure and time, board density and moisture content are

some of these factors and interact with each other. OSB is a
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porous and strongly hygroscopic material and the moisture

absorption (MA) and thickness swelling (TS) characteris-

tics of OSB negatively affect the use of OSB. Therefore,

determination of the effects of the manufacturing factors on

characteristics of OSB is very important (Wu 1999; Wu

and Piao 1999; Moya et al. 2009).

In order to optimize process parameters in OSB manu-

facturing, all parameters and variables of OSB production

should be considered and tested. However, artificial neural

network modeling can be used to determine optimum

process parameters in OSB manufacturing without spend-

ing much time, energy and costs. ANNs are suitable for

modeling various manufacturing functions.

ANNs are an advanced data modeling tool used for

modeling complex, undefined and nonlinear relationships

between inputs and outputs without any prior assumptions

or any existing mathematical relationships between them.

It is inspired by the structural, functional, and computa-

tional aspect of a biological neural network (Choudhury

et al. 2012). ANNs, as one of the most attractive branches

in artificial intelligence, are now being used for a wide

variety of engineering applications such as prediction,

optimization, classification, pattern recognition and data

processing (Canakci et al. 2012). Recently, ANN modeling

technique has been developed as powerful modeling tool in

comparison to the statistical or numerical methods (Ceylan

2008).

Collection of data, determination of input/output

parameters and analysis, and pre-processing of the data are

the initial phase in ANN modeling. Training of ANN and

testing of trained ANN are the central phase. In the training

process, error function of ANN is decreased by iteratively

adjusting the values of weights and biases. The adjusting

operation is repeated until the network performance func-

tion is minimized or an acceptable value is reached. Then

the performance and the generalization capability of con-

structed and trained ANN model is tested using an unseen

data sample. If the network performance is high, the

weights and the biases of the network are stored. Once the

network is trained/learned, it can be used to predict the

outcomes of different input sets (Yildirim et al. 2011).

A typical ANN consists of a sequence of layers with full

connections between successive layers. The layers consist

of a number of small individually interconnected process-

ing units (nodes), usually called neuron. No connection

exists between neurons of the same layer. An ANN model

generally contains one input layer, one or more hidden

layers, and one output layer. The input layer receives the

data, the output layer shows the results of the network, and

the hidden layer or layers process the data.

The neurons are interconnected using weight factors

(wij). A neuron (j) in a given layer receives information (xi)

from all the neurons in the preceding layer (Fig. 1). It sums

up information (netj) weighted by factors corresponding to

the connection and the bias of the layer (hj), and transmits

output values (yj) computed through applying a mathe-

matical function (f(.)) to netj, to all neurons of the next

layer. This process is summarized in Eqs. (1) and (2), and

illustrated in Fig. 1 (Ozsahin 2012).

netj ¼
Xn

i¼1

xiwij � hj ð1Þ

yj ¼ f netj

� �
ð2Þ

The number of neurons in the input layer depends on the

number of entry variables, while the number of neurons in

the output layer depends on the number of desired outputs

(Esteban et al. 2009a). The numbers of hidden layers and

neurons in the hidden layers are also problem—specific

and obtained by a process of trial and error. The influence

of the number of neurons in the hidden layer on the

performance of the network is quite complicated. If the

architecture of ANN model is too simple, the trained

network does not have sufficient ability to obtain the

relationship of inputs and outputs. Whereas, if the

architecture is too complex, the training of the network

Fig. 1 General functioning of

an artificial neuron and

schematic description of a

multi–layered ANN architecture

Abb. 1 Allgemeine

Funktionsweise eines

künstlichen Neurons und

schematische Beschreibung

einer mehrschichtigen ANN-

Architektur
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will be over fitted or the model will not converge to the

goal error. There is currently no explicit rule to determine

the number of neurons in the hidden layer or layers

(Ozsahin 2012; Ma et al. 2012).

ANNs play an important role in engineering applications

and have aroused much interest in recent years. Also ANNs

have been widely used in the field of wood science, such as

the recognition of the wood species (Tou et al. 2007; Esteban

et al. 2009b; Khalid et al. 2008), drying process of wood

(Ceylan 2008; Wu and Avramidis 2006; Zhang et al. 2006a),

the prediction of some mechanical properties in particle-

board, plywood and wood (Cook and Chiu 1997; Fernández

et al. 2008, 2012; Esteban et al. 2011; Mansfield et al. 2007),

the optimization of process parameter in wood products

manufacturing process (Cook et al. 1991, 2000; Cook and

Whittaker 1992, 1993), classifying of wood veneer defects

(Drake and Packianather 1998; Pham and Sagiroglu 2000;

Packianather et al. 2008; Castellani and Rowlands 2008;

Packianather and Drake 2000, 2004, 2005; Packianather

1997), the calculation of wood thermal conductivity

(Avramidis and Iliadis 2005a; Xu et al. 2007), analysis of

moisture in wood (Avramidis and Iliadis 2005b; Avramidis

and Wu 2007; Zhang et al. 2006b), predicting fracture

toughness of wood (Samarasinghe et al. 2007), statistical

process control in the manufacture of particleboard (Esteban

et al. 2009c), the prediction of wood dielectric loss factor

(Avramidis et al. 2006), the detection of structural damage

in medium density fiberboard panels (Long and Rice 2008),

the classification of wood defects (Nordmark 2002; Kurd-

thongmee 2008; Rojas and Ortiz 2010), analysis based on

non-destructive testing of wood—based composite materi-

als (Esteban et al. 2009a; Zhu et al. 2009).

The aim of this study was to determine and optimize

some physical properties of OSB such as the moisture

absorption (MA), thickness swelling (TS) and thermal

conductivity (TC) characteristics based on variation of

certain process parameters such as adhesive ratio, press

pressure, pressing time, density and moisture content val-

ues by designing and using an artificial neural network

model.

2 Experimental

2.1 Material

Data used in this study were provided from a previous study

by Yapici (2008). OSB manufacturing was reported by

Yapici (2008) in accordance with the following character-

istics: made of Scots pine (Pinus sylvestris L.) wood with

strands dimensions approximately 80 mm long, 20 mm

wide and 0.7 mm thick. The strands were dried to 3 %

moisture content before adhesion. Then, adhesive material

without wax, solid content of 47 % liquid phenol–formal-

dehyde resin, was applied as 3, 4.5 and 6 % based on the

weight of oven dry wood strands. Press time and pressure

were kept as 3, 5 and 7 min. at 35, 40, 45 kg/cm2, respec-

tively. The shelling ratio was 40 % for core layer and 60 %

for face layer, and density of the boards was aimed at

0.70 g/cm3. A total of 27 OSB panels, dimensioned

56 9 56 9 1.2 cm3, were made for the experiments. Hand

formed mats were pressed in a hydraulic press. These panels

were labeled from 1 to 27. All mats were pressed under

automatically controlled conditions at 182 ± 3 �C. After

pressing, the boards were conditioned to constant weight at

65 ± 5 % relative humidity and a temperature of

20 ± 2 �C until they reached stable weight according to TS

642/ISO 554 (1997). Afterwards, the density and moisture

content values of OSBs were determined according to the

related standards TS–EN 323 (1999) and TS–EN 322

(1999). The thermal conductivity test was performed based

on ASTM C 1113–99 (2004) hotwire method.

In the present work, adhesive ratio, press pressure,

pressing time, density and moisture content were defined as

the input variables, while the moisture absorption (MA),

thickness swelling (TS) and thermal conductivity (TC)

were used as the output variables.

2.2 ANN analysis

The MATLAB Neural Network Toolbox was used for the

training and optimization of ANNs. The data used in

building networks were obtained from experimental works

(Yapici 2008). Total data set was randomly divided into

two groups. 18 data sets were used for the training of

ANNs and the remaining nine data sets were selected for

testing of ANNs performances. The data sets are shown in

Tables 1 and 2. In order to determine the optimum network

architecture and parameters such as the number of layers,

number of neurons in each layer, transfer functions,

learning rule, number of learning cycles, initialization of

the weights and the biases etc., the trial and error method

was applied. Several different ANN structures and

parameters were tested until the error between the experi-

mental and the predicted outputs was minimized. The mean

square error (MSE) was used as the performance function

for ANN models. MSE was computed according to the

following equation.

MSE ¼ 1

N

XN

i¼1

ti � tdið Þ2 ð3Þ

where ti and tdi are the targeted and predicted values of

data i, respectively; and N represents the total number of

measurements.

Eur. J. Wood Prod. (2013) 71:769–777 771

123



Prior to training of the network the data sets must be

normalized to equalize the importance of variables.

Therefore, training and testing data sets were normal-

ized using their minimum and maximum values within

the range of -1 to 1 due to the use of the hyperbolic

tangent sigmoid function in the models. The outputs

were finally converted back to the original scale, with a

reverse normalizing process to evaluate the results. The

normalization operations were carried out using

Eq. (4).

Table 1 Testing data set and prediction model results

Tab. 1 Testdatensatz und Ergebnisse des Vorhersagemodells

Adhesive

ratio (%)

Pressing time

(minute)

Press pressure

(kg/cm2)

Density

(g/cm3)

Moisture

content (%)

Moisture

absorption (MA)

Thickness

swelling (TS)

Thermal

conductivity (TC)

m* p* e* m p e m p e

3.0 5 35 0.73 7.12 80.3 82.1 -2.3 31.6 31.3 1.1 0.142 0.142 0.0

3.0 7 35 0.72 6.73 75.4 74.8 0.8 28.3 28.5 -0.4 0.158 0.158 0.1

4.5 3 35 0.72 7.87 71.0 70.1 1.3 22.4 22.9 -2.4 0.144 0.144 -0.2

4.5 5 35 0.74 7.34 67.0 66.7 0.6 21.9 21.1 3.6 0.153 0.152 0.4

6.0 5 35 0.74 6.74 60.7 59.7 1.5 15.8 15.8 0.2 0.154 0.153 0.4

6.0 7 35 0.73 6.92 58.8 58.7 0.1 13.5 14.0 -3.7 0.158 0.159 -0.9

3.0 3 40 0.72 7.21 86.1 84.7 1.6 33.1 32.5 2.0 0.148 0.148 0.2

3.0 5 40 0.69 6.91 79.7 78.9 0.9 29.9 30.9 -3.3 0.153 0.153 -0.3

4.5 5 40 0.76 7.34 64.5 65.2 -1.1 22.4 22.1 1.2 0.152 0.152 0.1

4.5 7 40 0.71 6.89 61.5 62.8 -2.1 21.0 20.7 1.4 0.160 0.160 0.1

6.0 3 40 0.73 6.85 61.3 61.6 -0.4 19.2 18.7 2.8 0.153 0.154 -0.5

6.0 7 40 0.76 6.99 56.4 56.8 -0.7 13.4 13.1 2.4 0.170 0.169 0.3

3.0 3 45 0.73 6.88 82.3 83.0 -0.9 33.2 32.5 2.2 0.148 0.148 0.0

3.0 7 45 0.72 7.39 72.4 73.1 -1.0 29.5 29.1 1.3 0.152 0.152 0.0

4.5 3 45 0.75 7.05 69.9 68.0 2.7 23.4 24.1 -3.1 0.157 0.157 0.3

4.5 7 45 0.72 6.90 62.4 61.8 0.8 21.1 21.2 -0.6 0.155 0.155 -0.2

6.0 3 45 0.73 7.84 61.1 62.5 -2.2 18.2 18.3 -0.5 0.163 0.162 0.4

6.0 5 45 0.75 7.21 58.9 58.8 0.0 14.1 14.1 0.1 0.161 0.161 0.1

MAPE 1.18 1.78 0.26

RMSE 0.98 0.50 0.00

* m, p and e denote measured values, predicted values and errors in %, respectively

Table 2 Training data set and prediction model results

Tab. 2 Trainingsdatensatz und Ergebnisse des Vorhersagemodells

Adhesive

ratio (%)

Pressing time

(minute)

Press pressure

(kg/cm2)

Density

(g/cm3)

Moisture

content (%)

Moisture

absorption (MA)

Thickness

swelling (TS)

Thermal

conductivity (TC)

m* p* e* m p e m p e

3.0 3 35 0.73 7.74 90.3 86.7 4.0 33.8 33.1 2.2 0.129 0.129 -0.2

4.5 7 35 0.76 7.05 61.5 62.4 -1.4 20.7 20.4 1.4 0.146 0.145 0.8

6.0 3 35 0.72 7.57 60.7 62.7 -3.4 18.8 17.7 5.6 0.172 0.164 4.4

3.0 7 40 0.73 6.64 72.4 72.6 -0.3 28.8 29.0 -0.6 0.141 0.151 -7.2

4.5 3 40 0.73 7.65 70.9 70.3 0.8 23.1 23.4 -1.3 0.142 0.150 -5.4

6.0 5 40 0.76 7.14 61.3 58.7 4.3 13.9 13.8 0.5 0.156 0.158 -1.2

3.0 5 45 0.73 6.66 77.0 77.9 -1.2 29.0 31.3 -8.0 0.144 0.147 -2.4

4.5 5 45 0.74 6.95 62.8 63.7 -1.4 22.6 22.5 0.3 0.162 0.156 3.7

6.0 7 45 0.73 6.98 55.4 57.9 -4.6 13.1 13.4 -2.5 0.169 0.167 1.0

MAPE 2.37 2.50 2.94

RMSE 1.92 0.91 0.01

* m, p and e denote measured values, predicted values and errors in %, respectively
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Xnorm ¼ 2� X � Xmin

Xmax � Xmin

� 1 ð4Þ

where, Xnorm is the normalized value of a variable X (real

value of the variable), and Xmax and Xmin are the maximum

and minimum values of X, respectively.

The prediction performance of each model was evalu-

ated and compared for each case using statistical and

graphical comparisons. To assess the prediction perfor-

mance of the ANN models, the root mean square error

(RMSE), the mean absolute percentage error (MAPE) and

coefficients of determination (R2) were used. The RMSE,

MAPE and R2 values were calculated using Eqs. (5), (6)

and (7), respectively. The lower RMSE and MAPE values

represent the more accurate estimation results. The higher

r2 values represent the greater similarities between targeted

and predicted outputs.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ti � tdið Þ2
vuut ð5Þ

MAPE ¼ 1

N

XN

i¼1

ti � tdi

ti

����

����
� � !

� 100 ð6Þ

R2 ¼ 1�
PN

i¼1 ti � tdið Þ2
PN

i¼1 ti � tð Þ2
ð7Þ

where t is the average of predicted values.

The developed ANN model consists of five input nodes

in the input layer namely adhesive ratio, pressing time,

press pressure, density and moisture content. The three

nodes in the output layer represent the three output

parameters namely moisture absorption (MA), thickness

swelling (TS) and thermal conductivity (TC). The best

performance of the ANNs model in terms of the RMSE,

MAPE and r2 values were obtained for the configuration

characterized by 3–4 neurons in the hidden layers. Fig. 2

illustrates the schematic structure (architecture) for the

proposed ANN prediction model.

In this study, feed forward and back propagation mul-

tilayer ANN was used due to its robustness and

generalization capacity. This type of neural network is

undoubtedly the most popular neural network structure

used in engineering applications. In the proposed network

model, hyperbolic tangent sigmoid transfer function in the

hidden layers and linear transfer function in the output

layer as the activation function were preferred. The

Levenberg–Marquardt algorithm (trainlm) was used as the

training algorithm. The gradient descent with a momentum

back propagation algorithm (traingdm) was used as the

learning rule.

3 Results and discussion

The training of the ANN was stopped after 50 epochs

because the targeted MSE value (0.005) was reached.

Evolution of the error during the iterative process for the

best network architecture is shown in Fig. 3. The goal is

the targeted MSE value and best achieved MSE value in

Fig. 3. According to Fig. 3, goal and best MSE values

overlap.

Statistical and graphical comparisons were used to

evaluate the performance of the proposed ANN model. It

was confirmed that the ANN model was generated satis-

factory and consistent results when likened with the

experimental measurements.

The predicted (calculated) values, measured values,

percentage error ratio, and the RMSE and MAPE values for

the moisture absorption (MA), thickness swelling (TS) and

thermal conductivity (TC) properties are given in Tables 1

and 2. When the tables are examined, the values calculated

by utilizing the ANN prediction model seem to be very

close to the real data.

Figs. 4 and 5 show the relationship between the real

values and the predicted values. The comparative plots of

outcomes of the ANN prediction model and the experi-

mental results for the MA, TS and TC properties are shown

in Figs. 6 and 7.

The mean absolute percentage errors were 2.37, 2.50

and 2.94 % for the moisture absorption (MA), thickness

Fig. 2 ANN architecture used

for modeling of the physical

properties of OSB

Abb. 2 Für die Modellierung

der physikalischen

Eigenschaften von OSB

verwendete ANN-Architektur
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swelling (TS) and thermal conductivity (TC), respectively

in the testing phase. For tested data, the maximum absolute

percentage error for predicted values did not exceed 4.6 %

for MA, 8.0 % for TS and 7.2 % for TS. These values and

comparisons demonstrate that the network effectively

generates sensitive results and has a sufficient accuracy and

reliability rate for the modeling of the MA, TS and TC

characteristics of the OSB.

In this optimization study, adhesive ratio, density and

moisture content are fixed as 5.25 %, 0.725 g/cm3 and

7.25 %, respectively. The intermediate values not obtained

from the experimental study were predicted from the pro-

posed ANN model. The optimum MA, TS and TC values

determined by the ANN prediction model for different

pressing time (minute), press pressure (kg/cm2) are given

Fig. 4 Scatter plots for training stage of a MA, b TS and c TC

Abb. 4 Streudiagramme der Trainingsphase für a Wasseraufnahme (MA), b Dickenquellung (TS) und c Wärmeleitfähigkeit (TC)

Fig. 5 Scatter plots for testing stage of a MA, b TS and c TC

Abb. 5 Streudiagramme der Testphase für a Wasseraufnahme (MA), b Dickenquellung (TS) und c Wärmeleitfähigkeit (TC)

Fig. 3 Variation of the MSE at each iteration

Abb. 3 Verlauf des mittleren quadratischen Fehlers (MSE) in

Abhängigkeit der Lernschritte
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Fig. 7 Plots of comparison between the measured and predicted a MA, b TS and c TC for testing stage

Abb. 7 Vergleich zwischen in der Testphase gemessener und bestimmter a Wasseraufnahme (MA), b Dickenquellung (TS) und

c Wärmeleitfähigkeit (TC)

Table 3 Optimization of MA, TS and TC values according to pressing time and press pressure

Tab. 3 Optimierung der Wasseraufnahme, Dickenquellung und Wärmeleitfähigkeit in Abhängigkeit von Pressdauer und Pressdruck

Pressing time (minute) Press pressure (kg/cm2) Moisture absorption (MA) (%) Thickness swelling (TS) (%) Thermal conductivity (TC)

(W/m K)

3 35–39 64.84–64.98 19.19–19.61 0.1587–0.1579

3 40–45 64.96–64.33 19.71–20.07 0.1581–0.1614

3.5 35–39 64.43–64.45 19.03–19.43 0.1593–0.1586

3.5 40–45 64.40–63.66 19.53–19.94 0.1588–0.1615

4 35–39 64.03–63.94 18.90–19.30 0.1597–0.1591

4 40–45 63.85–63.03 19.40–19.88 0.1593–0.1611

4.5 35–39 63.63–63.43 18.81–19.22 0.1598–0.1592

4.5 40–45 63.32–62.47 19.31–19.86 0.1593–0.1604

5 35–39 63.23–62.93 18.76–19.17 0.1596–0.1590

5 40–45 62.80–61.98 19.27–19.86 0.1591–0.1594

5.5 35–39 62.82–62.44 18.74–19.15 0.1592–0.1585

5.5 40–45 62.30–61.55 19.24–19.83 0.1586–0.1584

6 35–39 62.41–61.97 18.74–19.12 0.1585–0.1579

6 40–45 61.83–61.20 19.21–19.75 0.1580–0.1576

6.5 35–39 62.01–61.54 18.73–19.04 0.1576–0.1573

6.5 40–45 61.41–60.91 19.12–19.61 0.1575–0.1571

7 35–39 61.60–61.14 18.69–18.89 0.1567–0.1568

7 40–45 61.03–60.68 18.94–19.40 0.1571–0.1568

Fig. 6 Plots of comparison between the measured and predicted a MA, b TS and c TC for training stage

Abb. 6 Vergleich zwischen in der Trainingsphase gemessener und bestimmter a Wasseraufnahme (MA), b Dickenquellung (TS) und

c Wärmeleitfähigkeit (TC)
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in Table 3. As shown in Table 3, OSB manufacturing

capacity will be increased with less pressing time and

higher press pressure limits for almost the same MA, TS

and TC properties of OSB.

4 Conclusion

Considering the complexity of the relationship between the

inputs and outputs, the results obtained are highly

encouraging and satisfactory by the ANN prediction

model.

Figs. 4 and 5 show the scattered diagram of the exper-

imental values and the predicted values of the ANN model

for the moisture absorption (MA), thickness swelling (TS)

and thermal conductivity (TC) characteristics. The results

show that the ANN model has a very high coefficient of

determination (R2) between the predicted and measured

physical properties of OSB. The R2 has been determined

for the MA, TS and TC characteristics of the OSB as 0.973,

0.983 and 0.853, respectively in the testing phase. These

values support the applicability of the proposed ANN

prediction model.

In the study, the well-trained ANN model has been

proved to be a sufficient and successful tool for modeling

the MA, TS and TC characteristics of OSB. The results of

the research indicated that the ANN modeling can be used

to optimize process parameters in OSB manufacturing

process without the need for experimental studies that

require much time and high testing costs.
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