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Abstract
In industrialized countries, traumatic brain injury (TBI)
still represents the leading cause of death and persist-
ing neurologic impairment among young individuals 
< 45 years of age. Patients who survive the initial injury
are susceptible to sustaining secondary cerebral insults
which are initiated by the release of neurotoxic and
inflammatory endogenous mediators by resident cells
of the central nervous system (CNS). The presence of
hypoxia and hypotension in the early resuscitative peri-
od further aggravates the inflammatory response due
to ischemia/reperfusion-mediated injuries. These are
induced by the intrathecal generation of free radicals
and activation of the complement cascade. Posttrau-
matic neuroinflammation is further exacerbated by the
subsequent intracranial recruitment of blood-derived
immunocompetent cells, leading to secondary cerebral
edema and increased intracranial pressure. The pro-
found endogenous neuroinflammatory response after
TBI, which is phylogenetically aimed at defending the
CNS from invading pathogens and repairing lesioned
tissue, is, in large part, responsible for the development
of secondary brain damage and adverse outcome.
However, aside from these deleterious effects, post-
traumatic inflammation mediates neuroreparative
mechanisms after TBI as well. This “dual effect” of neu-
roinflammation has been the focus of extensive experi-
mental and clinical research in the past years and has
led to an expanded basic knowledge on the cellular and
molecular mechanisms which regulate the intracranial
inflammatory response after trauma. The present arti-
cle provides an up-to-date overview on the pathophysi-
ological mechanisms of neuroinflammation after TBI.
New potential therapeutic strategies for reducing the
extent of secondary brain damage after neurotrauma
are discussed.
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Introduction
Despite significant advances in the development of
therapeutic concepts for patients suffering from trau-
matic brain injury (TBI) in recent years, the incidence of
delayed mortality and persistent neurologic morbidity
after severe TBI remains unacceptably high. In Ger-
many, the incidence amounts to 350 per 100,000, and
approximately 280,000 patients are hospitalized for TBI
each year [1]. Of these, about 75% can be classified as
mild and 25% as moderate to severe, and the mortality
of severely head-injured patients remains as high as
35–50% [1–4]. A similar incidence pattern has been
reported for other Central-European countries as well
[4–7].

The extent of residual brain damage is determined
by primary and secondary injuries (Figure 1). The pri-
mary injury results from mechanical forces applied to
skull and brain at the time of impact, leading to either
focal or diffuse brain injury patterns. Focal brain injury
is due to direct concussion/compression forces, while
diffuse axonal shearing injuries are usually caused by
indirect trauma mechanisms, such as sudden decelera-
tion or rotational acceleration [3, 8].

Secondary brain injury occurs after the initial trau-
ma and is a consequence of complicating processes initi-
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ated by the primary injury, whereby the main risk fac-
tors are constituted by early hypoxia and hypotension
during the resuscitative period [3, 8–13]. The most fre-
quent patterns of secondary brain damage include
ischemia/reperfusion injuries, cerebral edema, intracra-
nial hemorrhage, and intracranial hypertension [3, 8,
10–12, 14]. Evidence of secondary brain injury has been
found at autopsy in 70–90% of all fatally head-injured
patients.

The cascade of events which contribute to the devel-
opment of secondary brain damage after TBI is very
complex and not yet fully understood. This is mainly
due to the variety of endogenous mediators released in
the intracranial compartment after trauma and the com-
plexity of their interactions as well as time-dependent
regulation of agonistic and antagonistic functions. The
role of neurotoxic mediators released within the injured
brain after trauma in contributing to delayed neuronal
cell death has been well documented. Among these, the
massive extracellular release of neurotransmitters, such
as the excitatory amino acids (EAAs) glutamate and

aspartate, has been shown to induce a posttraumatic
imbalance of intra- and extracellular ion homeostasis
and to contribute to secondary neuronal death [14–16].
Since the mechanisms of secondary neuronal cell death,
such as excitotoxicity and apoptosis, are not part of the
scope of the present article, the reader is referred to
excellent review articles which have been recently pub-
lished by other authors [14, 17–19].

In addition to the excitotoxic and apoptotic cas-
cades initiated after TBI, a potent inflammatory
response is evoked within the injured brain after trauma
[20–24]. The neuroinflammatory cascade is triggered by
different stimuli after TBI, such as the traumatic impact
itself in the initial phase, as well as ischemia/reperfu-
sion-mediated mechanisms and tissue necrosis-induced
inflammation (Figure 1). The inflammatory response is
characterized by a cascade of events which induce the
activation of glial cells, the intrathecal release of pro-
inflammatory cytokines and chemokines, upregulation
of endothelial adhesion molecules, and the intracranial
activation of the complement system with formation of
potent inflammatory anaphylatoxins [24–29]. These
events mediate the recruitment and activation of blood-
derived leukocytes across the blood-brain barrier
(BBB) and a perpetuation of intracranial inflammation
by the “oxidative burst” of polymorphonuclear leuko-
cytes (PMNLs) and release of cytotoxic proteases, lead-
ing to a breakdown of the BBB and development of
cerebral edema [12, 21, 22, 30–35].

Although the central nervous system (CNS) has been
historically defined as an “immunologically privileged
organ” due to its tight separation from peripheral circula-
tion by the BBB, research efforts in recent years have
revealed that the CNS is a rich source of inflammatory
mediators. Resident cells of the brain, such as neurons,
astrocytes and microglia, have been shown to be capable
of synthesizing essentially all immune mediators of the
“peripheral” immune system, including cytokines,
chemokines, and complement activation proteins, and to
express the receptors for these immune mediators [26, 28,
36–39]. It is nowadays generally accepted that a physio-
logical immune surveillance is present in the CNS and
that a potent immune response can be induced within the
injured brain. The controversial concept of a “dual role”
of neuroinflammation emerged in recent years, based on
experimental studies demonstrating a neurotoxic as well
as neuroprotective function of inflammatory mediators,
depending on the kinetics of regulation and expression in
the time course after trauma [38, 40–44].
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Figure 1. Pathophysiological mechanisms of primary and secondary
brain injury after severe head trauma. See text for details and expla-
nations.
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Since the mechanisms involved in the evolution of
secondary brain damage after TBI are highly complex
and multifactorial, and since many single factors have
been attributed a “dual function” in the pathophysiology
of head trauma, targeted specific therapies for TBI have
not yet been developed and current treatment concepts
remain largely supportive and symptomatic [45–47]. The
disadvantages of most studies are that research protocols
have focused on single mechanisms only and that results
from experimental studies in rodents cannot be directly
extrapolated to the clinical setting, as has been demon-
strated by the failure of success in several clinical studies
on TBI patients [45–50]. Clinical trials on TBI patients
have been difficult to design and conduct because of the
heterogeneity of the individual injury pattern and addi-
tional concomitant factors which affect the outcome,
such as associated extracerebral injuries. Thus, the “gold-
en bullet” for specific therapies in TBI has not yet been
developed [45–47].

The present review will outline the current under-
standing on the mechanisms of posttraumatic neuroin-
flammation after TBI and discuss potential new targets
for therapeutic intervention, based on new insights from
recently published experimental and clinical studies in
the field.

Cytokine-Mediated Neuroinflammation
In the past decade, the important role of pro-inflamma-
tory cytokines released within the injured brain in con-
tributing to the pathophysiological sequelae and
adverse outcome after TBI has been well documented
in various experimental models and clinical studies [20,
29, 40, 51–54]. Among the cytokines which have
received increased attention regarding their role in neu-
rotrauma are tumor necrosis factor (TNF), interleukin-
(IL-)1�, IL-6, as well as IL-12 and IL-18, two interferon-
(IFN-)γ-modulating cytokines [20, 29, 40, 52–56].

The important role of TNF as a mediator of intrac-
erebral inflammation has been highlighted by evidence
from studies in the early 1990s. These studies demon-
strated that the local administration of recombinant TNF
can induce cerebral inflammation, a breakdown of the
BBB, and intracranial leukocyte recruitment in various
experimental settings [57–60]. These deleterious effects
were shown to be abrogated by experimental TNF inhi-
bition, e.g., by the use of specific neutralizing antibodies
[61]. Experimental studies on different TBI models have
shown that TNF is upregulated in the intracranial com-
partment within a few hours after trauma [62–67]. Clini-

cal investigations have supported these findings by the
detection of elevated TNF levels in human serum and
cerebrospinal fluid (CSF) after TBI [53, 68–70]. The
potent detrimental role of TNF with regard to cellular
neurotoxicity in the CNS and to adverse outcome after
TBI has been documented in various experimental stud-
ies [64, 71]. These studies have also provided evidence
that the pharmacological inhibition of TNF after head
injury mediates neuroprotective effects [29, 72–75].

Aside from its neurotoxic effects, TNF was also
shown to induce adhesion molecule expression on
astrocytes and to regulate leukocyte movement and
chemokine expression in the injured CNS [58, 76–78].
Interestingly, recent experimental TBI studies using
gene-knockout mice [79] defined a new role for TNF
after brain injury, since the deficiency of TNF was
shown to be beneficial only in the early period after
trauma, but detrimental in the later posttraumatic
course [41, 80]. This newly defined “dual role” of TNF
[40] will be discussed later on.

A potent mediator of intracranial inflammation and
BBB damage is also represented by the pro-inflamma-
tory cytokine IL-1 [54, 58, 81–83]. While IL-1α repre-
sents the mainly membrane-bound form, IL-1� is the
secreted molecule which is largely responsible for IL-1-
induced neurotoxicity [54, 82]. Both isoforms have been
shown to be upregulated after experimental brain injury
[66, 67, 84–87]. Cellular localization of IL-1α immuno-
reactivity was detected on injured striatal neurons after
experimental hippocampal injury [66]. The potent neu-
rotoxic effects of IL-1 have been shown to be synergisti-
cally enhanced in the presence of TNF, suggesting that
these crucial cytokines mediate posttraumatic inflam-
mation and secondary brain injury “in concert” [52, 88].
As reported for TNF, the experimental inhibition of IL-
1 by administration of IL-1 receptor antagonist (IL-
1RA) also resulted in a reduced extent of neuronal
damage after TBI [89]. These findings were recently
corroborated by studies on transgenic mice with CNS-
specific overexpression of soluble IL-1RA [90]. Those
transgenic mice showed a delayed intracerebral expres-
sion of IL-1� and an improved neurologic recovery after
experimental closed head injury, as compared to wild-
type littermates [90]. These data underline the impor-
tant role of IL-1 in the induction of neuroinflammation
after traumatic injury.

Another member of the IL-1 family is IL-18, a
potent IFN-γ-inducing factor, which was found to be
expressed and upregulated in the CNS under various



inflammatory conditions, such as infectious, ischemic,
and autoimmune-mediated neurologic diseases [52,
91–93]. Recent studies demonstrated posttraumatic
induction of IL-18 in the intracranial compartment,
both in experimental brain injury models as well as in
clinical studies on patients with severe TBI [94, 95]. Yat-
siv et al. [94] demonstrated significantly elevated IL-18
levels in murine brains 1 week after closed head injury.
In these studies, the posttraumatic upregulation of IL-
18 was effectively blocked by systemic administration of
a specific recombinant IL-18 inhibitor, IL-18 binding
protein (IL-18BP). In addition, the posttreatment with
IL-18BP 1 h after trauma resulted in improved neuro-
logic recovery during the 1st week after trauma [94].
Since, in the clinical setting, elevated IL-18 levels in
human CSF were also detected for > 1 week after trau-
ma [94], these data suggest that IL-18 may represent a
potential target for pharmacological modulation of the
neuroinflammatory response after TBI.

Similar to IL-18, IL-12 also represents a pro-inflam-
matory cytokine with IFN-γ-modulating properties
[96]. In the CNS, this heterodimeric cytokine can be syn-
thesized by astrocytes and microglia upon stimulation
with different inflammatory mediators [97]. Elevated
intracranial IL-12 levels were detected in various neu-
ropathologic states in humans, such as bacterial menin-
gitis [98], multiple sclerosis [99], and head injury [100].
In TBI patients, intrathecal IL-12 levels were signifi-
cantly elevated for up to 14 days after trauma, com-
pared to daily matched serum samples and control CSF
[100]. Regarding the potential role of T-cell-activating
cytokines like IL-12 within the injured brain, Holmin et
al. [101] recently provided first evidence of the presence
of infiltrating CD4+ T-cells in human brain contusions,
suggesting that cellular immune responses may also
play a role in the immunologic events following head
injury. However, the exact pathophysiological role of T-
cell-mediated immunity in brain injury remains to be
further investigated in experimental models.

In contrast to the mainly pro-inflammatory effects
mediated by the aforementioned cytokines in brain
injury, IL-6 is a cytokine with pleiotropic functions in the
CNS. While IL-6 was originally characterized as a neuro-
protective cytokine and a regulator of intracerebral
homeostasis [102], these premises were recently rejected
by experimental studies which demonstrated that IL-6
contributes to adverse outcome in autoimmune neu-
ropathology [103]. Elevated intracranial IL-6 levels have
been reported in experimental models of TBI [62, 65, 86]

as well as in serum and cerebrospinal fluid of head-
injured patients [104–107]. Clinical studies have demon-
strated that IL-6 released in the intracranial compart-
ment after TBI induces the hepatic acute-phase
response after leaking into the peripheral circulation
across a defective BBB [108]. In addition, the ex vivo co-
incubation of human CSF from TBI patients with prima-
ry astrocyte cultures induced the protein production of
the neurotrophin nerve growth factor (NGF). This neu-
roreparative effect of IL-6 could be partially inhibited by
co-incubation with neutralizing anti-IL-6 antibodies
[106]. These clinical data support the conventional opin-
ion of IL-6 being a mainly neuroreparative cytokine in
the pathophysiology of head injury [102]. This notion is
further supported by experimental studies on axotomy
and cryogenic brain injury models, which provided evi-
dence of strongly comprised inflammatory reactions in
the brains of IL-6 gene-deficient mice [109, 110]. Astro-
cyte-targeted overexpression of IL-6 in the intracranial
compartment was previously reported to induce neuro-
toxicity by induction of a neurodegenerative inflamma-
tory encephalopathy [111]. However, recently published
studies on these transgenic mice also reported beneficial
brain-repairing effects of IL-6 overexpression in the
CNS by induction of antioxidants, such as metalloth-
ioneins [112, 113]. Furthermore, the notion of neu-
roreparative effects of IL-6 was recently supported by
demonstration of IL-6-dependent induction of angio-
genesis and gliosis in a model of experimental neuro-
trauma [114]. Thus, a “dual role” with predominant neu-
roprotective properties may be attributed to IL-6 in the
pathophysiology of brain injury [43, 53, 102], as for other
pro-inflammatory mediators, to be discussed later on.

Intracranial Complement Activation
The complement system plays a key role in innate
immunity aimed at protecting against tissue injury or
infection [26, 115]. The generation of proteolytic com-
plement fragments leads to pleiotropic inflammatory
effects, such as opsonization of invading pathogens for
phagocytosis, induction of increased vascular perme-
ability, recruitment of phagocytic cells, augmentation of
the acute-phase response, B-cell activation, and cytoly-
sis of pathogens by membrane pore formation through
the terminal complement pathway [26, 115]. Studies in
recent years have shown that resident cells in the CNS,
such as neurons and astroglia, can produce all activation
proteins of the complement system and express essen-
tially all complement receptors [36, 115, 116]. It is now
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broadly accepted that the activation of the complement
system contributes to a variety of CNS pathologies, such
as neurodegenerative, autoimmune, infectious, and pri-
on disease [26, 116–121]. Evidence from clinical and
experimental studies has, furthermore, revealed patho-
physiological mechanisms of complement-mediated
secondary brain injury after TBI [25]. These include the
recruitment of inflammatory cells into the intrathecal
compartment [122, 123], the induction of BBB dysfunc-
tion by the anaphylatoxins C3a and C5a, the induction
of neuronal apoptosis through the C5a receptor (C5aR)
expressed on neurons, and complement-mediated
homologous cell lysis through the membrane attack
complex (MAC/C5b-9), following inactivation of the
physiological cellular protection mechanisms against
complement attack [117, 124–126]. Results from recent
experimental studies underline the important role of
MAC formation in the brain with regard to induction of
secondary neuropathologic events [127, 128]. In these
studies, the intracerebroventricular injection of MAC
induced a marked upregulation of adhesion molecule
expression and leukocyte infiltration in the subarach-
noid space with emigration into cerebral parenchyma
within 6 h [127]. In addition, MAC injection into the hip-
pocampus evoked seizures and neurocytotoxicity, thus
underlying the potent detrimental effects of comple-
ment activation in the brain [128]. Activated comple-
ment fragments were detected in injured human and
rodent brains by immunohistochemistry, demonstrating

posttraumatic complement activation and deposition of
the MAC in homologous tissue. This suggests that com-
plement may contribute to posttraumatic destruction of
brain tissue [129, 130]. Keeling et al. [123] detected neu-
trophil infiltration and concomitant accumulation of
complement C3 in cortical and hippocampal brain sec-
tions after experimental TBI in rats. In these studies, a
potent role of complement-mediated secondary brain
injury was suggested, as C3 accumulation was signifi-
cantly related to places of intracerebral cell death,
increased myeloperoxidase activity, and neutrophil
infiltration [123].

In clinical studies, elevated levels of alternative
pathway complement components C3 and factor B
[131] as well as activated soluble C5b-9 [125] were de-
tected in the CSF of severely head-injured patients.
Moreover, the extent of intrathecal complement activa-
tion was associated with a dysfunction of the BBB [125,
132]. Complement C3 represents the most abundant
complement component with high constitutive levels in
serum (mg/ml), and it plays a central role in the comple-
ment activation cascade, since all three activation path-
ways merge at the C3 activation step (Figure 2). Cleav-
age of C3 by C3 convertases of either activation
pathway leads to formation of C3b, an activation prod-
uct which acts as opsonin by covalent binding of
pathogen surfaces, and to formation of a small peptide
fragment, anaphylatoxin C3a, a potent inflammatory
mediator implicated in cell activation and chemotaxis.

Biological effects of C3a are mediat-
ed via binding of the C3a receptor
(C3aR), a member of a large super-
family of seven transmembrane do-
main-spanning receptors that are G-
protein-coupled [124]. Resident
cells of the brain, such as astrocytes,
microglia, and neurons, have been
shown to express the C3aR constitu-
tively, and upregulation of cellular
C3aR expression was detected with-
in the brain under various inflamma-
tory conditions [124, 133, 134].
Aside from the C3a-mediated in-
flammatory effects, recent in vitro
studies have highlighted a potential
neuroprotective role for C3a by
demonstrating that recombinant
C3a protects neurons in a dose-de-
pendent fashion against N-methyl-

Figure 2. Complement activation pathways and complement-mediated mechanisms of neu-
roinflammation and secondary brain damage. See text for details and explanations. MAC:
membrane attack complex.



D-aspartate-(NMDA-)induced excitotoxicity [135]. In
addition, a study by Heese et al. revealed that C3a can
induce the production of NGF by microglia, thus sup-
porting a “dual role” for complement anaphylatoxins in
mediating cerebral inflammation as well as neuropro-
tective and neuroregenerative mechanisms after brain
injury [135, 136].

The most potent inflammatory mediator derived
from activation of the complement cascade is the ana-
phylatoxin C5a, a small peptide fragment of 74 amino
acids generated by proteolytic cleavage of the amino
terminus of the α-chain in the fifth complement compo-
nent (C5) by C5 convertases. In peripheral tissues, the
inflammatory functions mediated by C5a include the
degranulation of mast cells and basophils, leading to
increased vascular permeability and edema, the activa-
tion of neutrophils and macrophages, neutrophil
chemotaxis and induction of the respiratory burst, as
well as the enhancement of the hepatic acute-phase
response [137, 138]. Aside from those effects in blood
and peripheral tissues, recent studies have provided evi-
dence of a wide range of C5a-mediated responses also in
the CNS. These include recruitment of neutrophils
across the BBB, glial cell chemotaxis, modulation of
neuronal functions in the hypothalamus, and activation
of signal transduction pathways in astrocytes and neu-
rons [124]. A recent study has provided evidence of
C5a-mediated neuronal apoptosis in vitro [139]. Con-
trary to these findings, C5a-mediated protection from
apoptotic neuronal death was reported in a model of
intraventricular kainic acid injection in mice [140], sug-
gesting that C5a may also mediate neuroprotective
effects, as shown in a model of glutamate-induced neu-
rotoxicity in vivo [140] and recently also in an in vitro
model of �-amyloid-induced neurotoxicity [141]. The
functional responses to C5a are mediated by binding to
the C5aR (CD88), a member of the rhodopsin family of
G-protein-coupled receptors with seven transmem-
brane segments [124]. Low constitutive expression of
the C5aR by resident cells of the brain has been demon-
strated in astrocytes, microglia, oligodendrocytes, and
neurons [124, 142–144]. Upregulation of C5aR expres-
sion on these cell types occurs under various pathologic
conditions, such as excitotoxic neurodegeneration,
autoimmune neuropathology, and meningoencephalitis
[117, 119, 124]. In experimental models of TBI, induc-
tion of C5aR gene and protein expression was detected
on cortical neurons, cerebellar Purkinje cells, and infil-
trating leukocytes in the intrathecal compartment [145,

146]. Interestingly, the neuronal C5aR expression was
attenuated in mice double-deficient in genes for TNF
and lymphotoxin-α by 7 days after closed head injury,
suggesting a regulation of the intracerebral C5aR
expression through TNF receptor-dependent pathways
[146].

The functional role of complement activation in
the injured brain was recently investigated in experi-
mental complement inhibition strategies in TBI mod-
els [147, 148]. Hicks et al. [147] used a recombinant
vaccinia virus complement control protein (VCP) in a
fluid percussion model of head injury. They could
demonstrate that intracranial VCP administration had
protective effects against impairment in spatial memo-
ry but not against neuropathologic damage. However,
the fact that the truncated form of VCP (VCPt), which
lacks complement inhibitory activity, also provided
protection against spatial memory impairment, indi-
cates that VCP-mediated protective effects are inde-
pendent of complement inhibition [147]. Rancan et al.
[148] have provided first evidence of a potent func-
tional role of intracranial complement activation in
TBI based on studies in transgenic mice with CNS-
restricted, astrocyte-targeted expression of the soluble
complement inhibitor sCrry. In a model of closed head
injury, the transgenic mice showed a significantly
reduced neurologic impairment and an improved BBB
function, both on a quantitative and qualitative level,
compared to wild-type C57BL/6 littermates [148].
These results further implicate the complement system
as a participant in secondary progression of brain dam-
age after TBI and provide a strong rationale for future
studies of posttraumatic pharmacological complement
inhibition.

Chemokines, Adhesion Molecules, and Leukocyte
Recruitment

The intracranial infiltration of blood-derived leuko-
cytes represents a crucial event which significantly
contributes to the development of secondary brain
damage after TBI [32, 55, 149]. Most importantly, the
recruitment of neutrophils (PMNLs) across the BBB is
detrimental for the intracerebral cellular homeostasis
due to the release of proteases and free oxygen radi-
cals by PMNLs which mediate neurotoxicity and con-
tribute to the development of cerebral edema and
BBB breakdown [32]. The accumulation and activa-
tion of leukocytes in the injured brain are mediated by
chemoattractant factors, such as chemokines and com-
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plement anaphylatoxins, and adhesion molecules [33,
150].

Chemokines are a large family of structurally relat-
ed small proteins of 8–10 kDa sharing the ability to
induce chemotaxis and tissue extravasation and to mod-
ulate various functions of leukocytes [38]. The
chemokine subfamilies are distinguished by the position
of the first two conserved cysteines, which are either
separated by one to three amino acids (CXC and CX3C
chemokines) or adjacent (CC chemokines). While CXC
chemokines act primarily on neutrophils, the CC
chemokines exert their functions in monocytes, lympho-
cytes, mast cells, and eosinophils. Resident cells in the
CNS, including neurons, astrocytes, and microglia, have
the ability to produce chemokines in response to inflam-
matory stimuli [28, 38, 151]. As for the complement ana-
phylatoxins, the biological activities of chemokines are
mediated through G-protein-coupled serpentine recep-
tors. In the CNS, chemokine receptors are constitutive-
ly expressed on various neural cells [28, 38, 151].

Clinical studies reported significantly elevated
intrathecal levels of the CXC chemokine IL-8 (CXCL8)
in severely head-injured patients [107, 152, 153]. A detri-
mental role of this chemokine in TBI patients was sug-
gested by the finding of a significant correlation between
intrathecal IL-8 levels and the extent of posttraumatic
BBB dysfunction [152] and posttraumatic mortality
[153]. These findings were corroborated by experimental
studies showing that the hippocampal injection of recom-
binant IL-8 or macrophage inflammatory protein-(MIP-
)2, the rodent homologue for human IL-8, into rodent
brains induced a dramatic accumulation of neutrophils
and an increased BBB permeability [154]. These detri-
mental effects could be reduced by prior depletion of cir-
culating leukocytes [154]. Contrary to these pro-inflam-
matory effects, IL-8 was also shown to mediate
neuroreparative mechanisms after brain injury [152].
This was shown by ex vivo stimulation of cultured prima-
ry astrocytes with human CSF from TBI patients contain-
ing high levels of IL-8. These CSF samples were shown to
induce NGF production in astrocytes, an effect which
could be reproduced in a dose-dependent manner by
stimulation with recombinant IL-8 alone and could be
inhibited by co-incubation of human CSF with neutraliz-
ing anti-IL-8 antibodies [152]. Otto et al. [155] further
investigated the regulation of intracranial MIP-2
(CXCL2) expression, the murine homologue for IL-8,
and its receptor CXCR2 in a mouse model of closed head
injury. Significantly elevated MIP-2 levels were found in

the injured murine brain hemisphere by 4 h after trauma,
compared to the contralateral hemisphere and to sham-
operated mice. In addition, within 24 h after head injury a
dramatic upregulation of the MIP-2 receptor CXCR2
was found on astrocytes. Intracranial MIP-2 expression
was also found to be regulated by a TNF receptor-depen-
dent pathway, since chemokine levels were significantly
attenuated in knockout mice deficient in genes for TNF
and lymphotoxin-α [155]. In the same model, increased
intracranial levels of the CC chemokine MIP-1α (CCL3)
and its receptor CCR5 were found; however, the TNF
receptor-dependent regulation of expression was not evi-
dent for the CC chemokine [155]. These findings are in
contrast to recently published data demonstrating that
the stereotactic intracerebral injection of recombinant
TNF in mice induces expression of several CC
chemokines, such as RANTES (CCL5) or MIP-1α
(CCL3), and their corresponding receptors CCR1,
CCR2, and CCR5 [156]. Upregulation of CXC and CC
chemokines and chemokine receptors was also found in
various other models of brain injury by other groups [38,
39, 55, 157, 158]. Otto et al. further investigated the mol-
ecular interdependence of TNF with IL-8 and the inter-
cellular adhesion molecule-(ICAM-)1 (CD54), an adhe-
sion molecule which was previously found elevated in
injured brains [159, 160] as well as in soluble form in the
CSF of brain-injured patients [161]. Based on in vitro
experiments on cultured murine microvascular endothe-
lial cells and primary astrocytes, sICAM-1 was found to
be a strong inducer of MIP-2 protein in a dose-dependent
manner [78]. In addition, a synergistic effect of MIP-2
production by these cell types was observed upon con-
comitant stimulation with sICAM-1 and recombinant
murine TNF, suggesting that both mediators represent
potent regulators of chemokine expression and regula-
tion of posttraumatic leukocyte trafficking into the
injured brain [78].

Although the intracerebral upregulation of ICAM-
1 seems pivotal in mediating the extravasation of leuko-
cytes across the BBB, studies in ICAM-1 gene-deficient
mice did not confirm this notion, based on experiments
demonstrating irrelevance of ICAM-1 absence in
knockout mice after TBI [162]. However, in the absence
of both ICAM-1 and P-selectin a significant reduction
of posttraumatic brain edema was found, implying that
concomitant adhesion molecule expression and upregu-
lation are required for modulation of the intracranial
leukocyte accumulation [34]. In this regard, the impor-
tant role of selectins in mediating intracranial neu-



trophil infiltration after TBI was further supported by
studies by Grady et al. [163] who demonstrated that the
P-selectin blockade with neutralizing monoclonal anti-
bodies resulted in significantly reduced myeloperoxi-
dase activity in injured rat brains. Carlos et al. [33] inves-
tigated the temporal pattern of intracerebral E-selectin
and ICAM-1 expression after experimental TBI. They
found a significant increase of both adhesion molecules
in the injured hemispheres by 4 h after trauma [33]. Sim-
ilar to the finding in ICAM-1 knockout mice [162], the
experimental blocking of ICAM-1 by administration of
neutralizing antibodies did not prevent neutrophil accu-
mulation in the injured brain, thus supporting the cru-
cial requirement for selectins for posttraumatic leuko-
cyte trafficking after brain injury [33].

Posttraumatic Ischemia/Reperfusion Injury and
Oxidative Stress

An important contribution to intracerebral inflamma-
tion and delayed secondary brain damage after TBI is
due to ischemia/reperfusion-mediated injuries and
oxidative stress (Figure 3) [14, 164, 165]. Pathophysio-
logically, contused brain areas are surrounded by a
penumbra zone which is characterized by hypoperfu-
sion and local ischemia following vascular damage, loss
of cerebrovascular autoregulation, and systemic
hypotension. After resuscitation, these hypoperfused
and ischemic brain areas are reperfused, which leads to
activation of the complement cascade and of reactive
oxygen intermediates by activation of the xanthine oxi-
dase [166, 167]. After activation of these pathways,
potent biologically active mediators are generated
which promote leukocyte extravasation and secondary
brain tissue damage. Free oxygen radicals, such as
hydroxyl ions, hydrogen peroxide, and superoxide
anion, induce lipid peroxidation, cell membrane disinte-
gration, and delayed neuronal cell death. In addition,
activation of the complement cascade by ischemia/
reperfusion-mediated mechanisms results in formation
of potent inflammatory anaphylatoxins and terminal
complement complex-induced cell death, leading to the
pathophysiological sequelae which have already been
outlined earlier. In recent years, models of experimental
cerebral ischemia have confirmed the potent role of
complement activation in ischemia/reperfusion injury
[138, 166, 168].

Data derived from experimental head injury models
emphasize the important role of oxidative stress for the
development of secondary brain injury [31, 35, 165, 169].

Lipid peroxidation by generation of oxygen radicals is
facilitated in the brain due to its genuine vulnerability to
oxidative stress based on specific morphological charac-
teristics, such as a high “membrane-to-cytoplasm” ratio
and high levels of polyunsaturated fatty acids in the CNS
[165]. The brain’s endogenous antioxidants include super-
oxide dismutase and other low molecular weight antioxi-
dants, such as �-tocopherol and others. Shohami et al.
have thoroughly investigated the brain antioxidant
capacity and the overall reducing antioxidant profile in a
model of closed head injury in the rat [21, 35]. Tyurin et al.
[31] examined the role of oxidative stress in experimental
neuro-trauma and showed significant posttraumatic
decrease and delayed restoration of intracerebral antiox-
idant levels, as a sign of posttraumatic consumption. In
these studies, α-tocopherol was detected as a highly effi-
cient  antioxidant agent in the injured brain [31]. These
data were recently supported by clinical studies which
detected a marked and sustained decrease of total antiox-
idant reserve in human CSF following head injury [30]. In
addition to reactive oxygen intermediates, the generation
of nitric oxide (NO) by NO synthase upregulation also
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Figure 3. Role of ischemia/reperfusion injury on secondary neu-
ropathologic events after head trauma. The traumatic insult to the
brain leads to local ischemic conditions in the contused brain tissue
and to local complement activation. In addition, systemic hypoten-
sion and hypoxemia due to associated extracranial injuries can con-
tribute to temporary global cerebral ischemia after breakdown of the
cerebrovascular autoregulation. Ischemia-induced nutritive failure
and adenosine triphosphate (ATP) degradation lead to generation of
hypoxanthine. During the reperfusion phase, xanthine oxidase gener-
ates reactive oxygen species with neurotoxic properties, such as su-
peroxide anion and hydroxyl anion. Furthermore, the reperfusion con-
tributes to an inflow of complement-activating mediators, thus
generating the potent inflammatory anaphylatoxins C3a and C5a and
the terminal pathway membrane attack complex (MAC/C5b-9). The
local generation of oxygen radicals and activated complement frag-
ments contributes to the ischemia/reperfusion-mediated secondary
brain injuries by inducing lipid peroxidation, microvascular damage,
cellular necrosis, and apoptosis.
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occurs in the injured brain and contributes to posttrau-
matic neuropathology [170, 171]. Most importantly, addi-
tional metabolites emerging from the interaction
between superoxide anion and NO, such as the highly
reactive oxidant peroxynitrite, have been shown to medi-
ate neurotoxicity and secondary neuronal cell death
[172]. The importance of oxygen- and NO-derived free
radicals in brain injury has been elucidated by experi-
mental studies using pharmacological approaches with
free radical scavengers, demonstrating improved func-
tional and morphological outcome after blocking of free
radicals [173, 174]. Altogether, posttraumatic
ischemia/reperfusion injury seems to represent an impor-
tant mechanism of neuroinflammation contributing to
secondary brain damage by complement activation and
formation of oxygen- and NO-derived free radicals.

Dual Role of the Inflammatory Response
Based on manifold experimental and clinical studies
published in recent years, there is conflicting evidence
on the role of the neuroinflammatory response in the
injured brain. Many of the formerly designated “pro-
inflammatory” mediators have shown to possess poten-
tial effects in mediating deleterious as well as repair
processes in the CNS. Thus, the concept of a “dual
effect” of  inflammatory mediators regarding their role
in the pathophysiology of brain injury has arisen in
recent years [40, 42–44, 53]. “Classic” inflammatory
cytokines like TNF have been historically determined
as harmful mediators based on in vitro data of neuro-
toxicity and in vivo data showing neuroprotection by
pharmacological inhibition of TNF in various models of
neuroinflammation and neurodegeneration [40]. This
notion was rejected in recent years by data on brain
injury models in genetically engineered mice. These
studies provided evidence that mice with a genetic defi-
ciency of TNF and members of the TNF family, such as
lymphotoxin (formerly designated as TNF-�), as well as
the deficiency in TNF receptors have a worse outcome
and a higher mortality than their wild-type littermates
in the later period after injury [40, 41, 80, 175]. These
findings were corroborated by Sullivan et al. [176], who
subjected mice to experimental brain injury. They
reported an enhanced BBB damage and increased cere-
bral lesion volume in knockout mice lacking p55 and
p75 TNF receptors compared to wild-type animals. Oth-
er studies on neuropathologic models nicely demon-
strated that the pretreatment with TNF was capable of
preconditioning rodents to tolerate ischemia, that TNF

promotes the accumulation of proliferating oligoden-
drocyte progenitors required for remyelination in
demyelinating disease [177], and that TNF knockout
mice have a greater cerebral infarction area in experi-
mental stroke [40].

Many pro-inflammatory mediators have been 
found to induce neurotrophin production after brain
injury, as demonstrated for cytokines (e.g., IL-1�, IL-6),
chemokines (e.g., IL-8), and inflammatory complement
activation fragments (e.g., C3a) [106, 136, 152, 178–180].
In addition to neurotrophin induction, the neuropoietic
cytokines like IL-6 have been shown to possess addi-
tional mechanisms of neuroprotection in TBI models,
by mediating the generation of antioxidants, such as
metallothioneins [113, 181]. Furthermore, the intracra-
nial activation of the complement cascade has been
shown to mediate neuroprotective effects aside from
the previously known neuroinflammatory and deleteri-
ous functions [135, 140, 166]. Even for C5a, the most
potent pro-inflammatory complement fragment, neuro-
protective mechanisms have been described by achiev-
ing neuroprotection in glutamate-mediated excitotoxic-
ity [140]. In addition, C5a was shown to inhibit
caspase-3 activity and neuronal apoptosis in glutamate-
mediated neurodegeneration [182]. Altogether, in
order to reconcile the apparently conflicting reports of
beneficial and deleterious effects of various pro-inflam-
matory mediators, the exact timing and extent of medi-
ator production and activation must be taken into
account, as well as the presence of additional factors
which may take over redundant functions, e.g., in neu-
ropathology models with use of genetically engineered
mice. Thus, appropriate context of concomitant factors
and the kinetics and localization of inflammatory medi-
ator expression and activation will determine the harm-
ful or protective properties in the context of neuroin-
flammation.

Anti-Inflammatory Mechanisms and Therapeutic
Strategies

Despite thorough insights into pathophysiological
mechanisms of neuroinflammation after TBI, multiple
prospective randomized clinical neuroprotection trials
performed in the past decades have failed to provide a
benefit of anti-inflammatory pharmacological strategies
with regard to the outcome after head trauma [9, 45, 47,
183, 184]. The disappointing awareness of this failure in
the clinical setting indicates that the complex processes
of neuroinflammation cannot be efficiently interrupted



by targeting just one single mediator of inflammation
[47]. In addition, the characteristic “dual effect” of most
pro-inflammatory agents implies that the irreversible
blocking of any inflammatory mediator will inevitably
lead to concomitant adverse effects associated with the
pharmacological intervention. This notion was dramati-
cally confirmed by the report of an unexpected
increased mortality of septic patients treated with a
recombinant soluble TNF-neutralizing fusion protein
compared to placebo-treated patients in a randomized
prospective double-blind multicenter trial on 141
patients with septic shock [185].

Endogenous anti-inflammatory mediators released
intracranially after brain injury, such as transforming
growth factor-(TGF-)� or IL-10, provide a rationale for
potential therapeutic interventions aimed at reducing
the extent of neuroinflammation-associated adverse
events after TBI, such as secondary cerebral edema [70,
105, 186]. The known anti-inflammatory properties of
IL-10 include the inhibition of IL-1 and TNF expression
and of cytokine-mediated glial activation as well as the
inhibition of leukocyte adhesion [187, 188]. In experi-
mental neurotrauma, the administration of recombi-
nant IL-10 was shown to inhibit intracranial TNF syn-
thesis and glial cell activation and to induce an
improved neurologic recovery [186, 188]. Further stud-
ies are required for assessment of the kinetics of BBB
penetration following intravenous administration of IL-
10 after brain injury and for determination of intracra-
nial concentrations and the therapeutic window of 
opportunity. The central role of pro-inflammatory
cytokines, such as TNF, IL-1, or IL-18, in the pathophys-
iology of TBI has been discussed previously in this arti-
cle. Inhibition of these mediators at determined time
points after head injury may represent a means for phar-
macological reduction of neuroinflammatory events
after trauma. This hypothesis has been supported by
recent experimental studies which provided evidence of
neuroprotection by inhibition of TNF, IL-1, and IL-18 in
rodent models of closed head injury [54, 72, 90, 94].

Corticosteroids are potent immunosuppressive
agents which inhibit pro-inflammatory cytokine synthe-
sis; however, their application in the setting of neurotrau-
ma has been controversially discussed [184]. Extensive
meta-analyses of prospective randomized clinical trials
conducted on the role of corticosteroids in brain injury
failed to provide an overall benefit for TBI patients [184].
Due to the relatively small number of patients included in
the single studies and due to the heterogeneity of head

trauma with the bias of interference by associated sys-
temic injuries, neither moderate benefits nor moderate
harmful effects of corticosteroids could be demonstrated
with statistical significance [184]. By contrast, the use of
methylprednisolone has been established as a therapy for
patients with acute spinal cord injury, based on the posi-
tive results from the prospective randomized NASCIS II
and III trials [196].  This success in the clinical setting of
spinal cord injury has renewed the interest in a possible
role of methylprednisolone for neuroprotection in 
TBI patients. The currently ongoing prospective ran-
domized, placebo-controlled “CRASH” trial (see:
http://www.crash.lshtm.ac.uk) has been designed as the
largest ever conducted clinical trial on head injury [189].
The study is aimed at elucidating the effects of a 48 h 
infusion of high-dose methylprednisolone on the out-
come after TBI with the aim of recruiting a number of
20,000 patients by the year 2005. This large cohort has
been required in order to avoid a statistical type-2 error
regarding the statistical significance of a potential benefit
in a small percentage range, which could overall have a
positive effect on several thousand patients each year
based on the high incidence of TBI [189].

In addition to corticosteroids, endocannabinoids,
such as 2-arachidonoyl glycerol (2-AG), have received
increased attention in recent years with regard to their
strong potential of neuroprotection after head injury [73,
190–193]. Endocannabinoids have been shown to inhibit
the release of pro-inflammatory cytokines, reactive oxy-
gen intermediates, and glutamate after brain injury [192,
193]. As a pharmacological agent, dexanabinol (HU-211)
has emerged as a nonpsychotropic, synthetic cannabinoid
which exerts beneficial effects in terms of TNF inhibition
and radical scavenging associated with reduction of brain
edema in experimental brain injury models [9, 73, 190,
192, 194]. The role of dexanabinol has been investigated
in phase II clinical trials and is currently under investiga-
tion in phase III trials on patients with severe closed head
injury [9, 195]. In the phase II studies, the post-injury
intravenous therapy within 6 h has proven effective, safe,
and tolerable. In addition, preliminary data imply that
the systemic administration of dexanabinol leads to
improvement of posttraumatic cerebral perfusion pres-
sure and neurologic outcome [195]. The observed reduc-
tion of intracranial hypertension combined with the anti-
excitotoxic, antioxidant and anti-inflammatory
properties of dexanabinol render this agent a “key candi-
date” for future therapeutic strategies aimed at ameliora-
tion of brain damage after TBI [9].
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Future studies will have to determine whether dex-
anabinol represents the long-sought “golden bullet” for
reduction of secondary brain damage and induction of
improved outcome after head injury. It seems reason-
able to suggest that a combination of dexanabinol with
other potent anti-inflammatory therapeutic agents, e.g.,
complement inhibitors [116, 122, 147, 148], using a
determined kinetic regimen of administration after
trauma, should represent an efficient new avenue for
success in pharmacological therapies in neurotrauma.
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