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Abstract
Purpose Stereotactic body radiotherapy (SBRT) is a key treatment modality for lung cancer patients. This study aims
to develop a machine learning-based prediction model of complete response for lung oligometastatic cancer patients
undergoing SBRT.
Materials andmethods CT images of 80 pulmonary oligometastases from 56 patients treated with SBRT were analyzed.
The gross tumor volumes (GTV) were contoured on CT images. Patients that achieved complete response (CR) at 4 months
were defined as responders. For each GTV, 107 radiomic features were extracted using the Pyradiomics software. The
concordance correlation coefficients (CCC) between the region of interest (ROI)-based radiomics features obtained by the
two segmentations were calculated. Pairwise feature interdependencies were evaluated using the Spearman rank correlation
coefficient. The association of clinical variables and radiomics features with CR was evaluated with univariate logistic
regression. Two supervised machine learning models, the logistic regression (LR) and the classification and regression
tree analysis (CART), were trained to predict CR. The models were cross-validated using a five-fold cross-validation.
The performance of models was assessed by receiver operating characteristic curve (ROC) and class-specific accuracy,
precision, recall, and F1-measure evaluation metrics.
Results Complete response was associated with four radiomics features, namely the surface to volume ratio (SVR;
p= 0.003), the skewness (Skew; p= 0.027), the correlation (Corr; p= 0.024), and the grey normalized level uniformity
(GNLU; p= 0.015). No significant relationship between clinical parameters and CR was found. In the validation set, the
developed LR and CART machine learning models had an accuracy, precision, and recall of 0.644 and 0.750, 0.644 and
0.651, and 0.635 and 0.754, respectively. The area under the curve for CR prediction was 0.707 and 0.753 for the LR and
CART models, respectively.
Conclusion This analysis demonstrates that radiomics features obtained from pretreatment CT could predict complete
response of lung oligometastases following SBRT.
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Introduction

Advancements in imaging and radiation planning and deliv-
ery techniques have allowed widespread implementation of
stereotactic body radiation therapy (SBRT) as a gold stan-
dard of treatment for incurable early-stage non-small cell
lung cancer (NSCLC) and lung metastases [1, 2]. In the
latter case, use of SBRT allows for high ablative doses with
the potential for longer local control and overall survival. In
particular, a few investigations have reported local control
of isolated or few lung metastases to be 70–100% at 1 year
[3–5].

However, it has recently been reported that the patholog-
ical complete response (CR) rate following thoracic SBRT
was lower than previously predicted, not only in early-
stage non-small cell lung cancer [6] but also in the lung
oligometastatic scenario [7–9].

Therefore, there is an urgent need for a patient stratifi-
cation approach that should be able to identify the patients
who are at a higher risk of incomplete/partial response (or
at a higher risk of recurrence) after SBRT for lung metas-
tases. Such an approach could help to design treatment
plans tailored to the specific disease profile of the patient,
thus improving the therapeutic window by allowing, prior
to treatment, the choice of dose intensification or additional
systemic therapy.

There is currently still a paucity of accurate predictive
models for clinical outcomes of lung SBRT [10–12]. In
the scenario of pulmonary metastasis, Tanadini-Lang et al.
[10] have developed a nomogram that predicts 2-year over-
all survival after SBRT. Karnofsky performance index, type
of primary tumor, control of the primary tumor, maximum
diameter, and number of metastases were found to be signif-
icant prognostic factors. The calculated concordance index
for the nomogram was 0.73. In the case of primary lung
tumors, Baker et al. [11] developed and validated a nomo-
gram to predict overall survival following SBRT for early-
stage lung cancer. The resulting nomogram was based on
six prognostic factors: age, sex, Karnofsky performance sta-
tus, operability, Charlson comorbidity index, and tumor di-
ameter, providing a concordance index of 0.64. Lastly, Ye
et al. [12] created a pretreatment prognostic nomogram for
patients with stage I NSCLC receiving SBRT. The authors
showed that 2-year locoregional control and progression-
free survival were significantly related to tumor size and
the maximum standardized uptake value. The concordance
indexes for the nomograms were greater than 0.8 and 0.7
in the model and validation groups, respectively.

In recent years, radiomics, a novel approach able to ex-
tract a large number of quantitative features from medical
images, has shown great potential for assessing the tumor
phenotype [13]. These mathematical features can be used
as imaging biomarkers for diagnosis, staging, prognosis,

and prediction of tumor response. Although radiomics for
pulmonary metastasis is still mostly exploratory [14], a few
studies have been successful in obtaining radiomics signa-
tures for prediction of nodal relapse and recurrence rate
[15–18] or overall survival [19–22]. However, the clin-
ical impact of the various developed algorithms is still
lower than expected, mainly due to the poor reproducibility
of the results and the lack of external validation on data
from other institutions [23]. Studies focused on the efficacy
of SBRT treatments in terms of treatment response after
SBRT are much rarer. Cheung et al. [24] identified two ra-
diomics predictors of treatment response (the skewness and
the root mean squared) in patients affected by pulmonary
oligometastases treated with SBRT and developed a ma-
chine learning model for prediction purposes. Their support
vector machine model supplied an accuracy of 74.8%.

Because of the large worldwide implementation of SBRT
for lung oligometastases, new powerful predictive models
based on radiomics analysis would be welcome to differ-
entiate between tumors responsive and non-responsive to
treatment.

The aim of the current study was to perform an ex-
ploratory CT-based radiomics analysis of lung metastases
able to identify the radiomics features that can predict ra-
diological and functional response after SBRT. Thereafter,
two machine learning models were generated to predict the
treatment response after SBRT based on selected radiomics
and clinical features.

Materials andmethods

Patients

From January 2010 to December 2020, 56 patients with
80 lung oligometastases were treated with SBRT in our in-
stitution. Patients were enrolled within a previous prospec-
tive phase I–II study in primary or oligometastatic cancer
patients (DESTROY-1) [25], approved by the Catholic Uni-
versity Institutional Review Board (Destroy-1: P#594/CE).
All patients signed written informed consent.

Patients with performance status ECOG >3 or medical
problems unrelated to malignancy which would limit full
compliance with the study and those with previous SBRT
were excluded.

CT image acquisition, segmentation, and planning

Computed tomography (CT) simulation was performed
with a 128-slice scanner (Brilliance 128, Philips Health-
care, Best, the Netherlands). CT images were acquired with
2-mm thick slices. All patients were simulated in supine
position. All lesions were manually segmented by a senior
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radiologist (A.P.) and a senior radiation oncologist (F.D.)
on the treatment planning system.

The clinical target volume (CTV) was defined as the
gross tumor volume (GTV) identified on the planning CT
and/or CT-PET and/or MRI. The internal target volume
(ITV) was defined on the basis of respiratory excursions
analysis (free breathing or abdominal compression or deep-
inspiration breath-hold). Based on the quantification of pa-
tients’ setup reproducibility, the setup margin was set at
3mm, as previously described [25]. Image-guided radio-
therapy was used for patient setup at each fraction.

All patients were treated with a prescription dose of
40–50Gy in five consecutive fractions, equivalent to
a BED10 ranging from 80 to 100Gy. SBRT plans were
generated using the fixed-field intensity-modulated (IMRT)
or the volumetric modulated arc therapy (VMAT) tech-
nique with 6-MV X-ray energy beams. A uniform method
for selection of the prescription isodose surface (IDS) was
adopted. For each plan, the IDS was selected as the greatest
IDS fulfilling the two following criteria: 95% of the PTV
volume reached 100% of the prescription dose and 99% of
the PTV reached a minimum of 90% of the prescription
dose. The maximum dose within the GTV should not ex-
ceed 140% of the prescribed dose. Plans were calculated
using the collapsed cone convolution algorithm and a dose
grid size of 1.5mm.

Treatment response evaluation

The primary clinical outcome of this study was the radio-
logical treatment response, which was evaluated by mor-
phological contrast-enhanced CT 4 months after SBRT.
This timing was considered suitable for both early and
late responder malignancies, according to the RECIST (Re-
sponse Evaluation Criteria in Solid Tumors) system v1.0
[26]. Complete response (CR) was defined as the disap-
pearance of the lesions at CT scan; a reduction greater than
30% was considered partial response (PR); any growing
lesion not clearly ascribable to fibrosis was reported as pro-
gression of disease (PD).

Radiomics analysis

The CT DICOM images containing the segmentation of
the GTV were used to extract all the features for ra-
diomics analysis. Image processing was performed using
the software package Pyradiomics 2.0.1 [27]. This software
allows the extraction of standardized features as defined
by the IBSI (Image Biomarker Standardization Initiative)
[28]. Preprocessing included resampling of the CT images
to isotropic voxels of 1mm3 using a B-spline interpola-
tion function. A total of 107 features were automatically
extracted for each lesion, including 19 first-order statis-

tics features (intensity histogram, IH), 26 shape-based
histogram features, and texture features (gray-level co-oc-
currence matrix, GLCM, 24 features; gray-level run-length
matrix, GLRLM, 16 features; gray-level size-zone matrix,
GLSZM, 16 features; neighboring gray-tone difference
matrix, NGTDM, 5 features; and gray-level dependence
matrix, GLDM, 14 features).

Features selection,modeling, and statistical analysis

The following three steps were performed to avoid collinear-
ity, reduce dimensionality, and identify only the necessary
radiomics features. First, we calculated the concordance
correlation coefficients (CCC) between the ROI-based ra-
diomics features obtained by the two segmentations for
30 randomly chosen lesions performed by a radiologist and
a radiation oncologist. The stable features were defined as
the features having a CCC >0.90 and were included in the
subsequent analysis.

Secondly, we assessed the pairwise correlations between
the radiomics features using the Spearman rank coeffi-
cient (ρ). All features having |ρ|≥ 0.8 were considered as
redundant and were eliminated from subsequent analysis,
maintaining only the features with the strongest association
with the clinical outcome in terms of univariate analysis.

Finally, the relative importance of the remaining fea-
tures was determined by a stepwise backward elimination
approach. In this process, a feature is considered for sub-
traction from the set of explanatory variables based on the
Akaike information criterion (AIC).

The Mann–Whitney U test was used to assess the as-
sociation between the treatment response and the selected
radiomics features. Statistical significance was set for p-
values of 0.05 or lower.

The final significant features were finally used to build
two models for the classification of responsive or non-
responsive lesions, including logistic regression (LR) and
classification and regression tree analysis (CART).

LR is a classical machine learning algorithm that is usu-
ally used for binary classification tasks. This model pro-
vides the class membership probability for one of the two
categories in the dataset (0 or 1) using a logistic equation.
Fast training is a well-known advantage of LR, and input
variables can be either discrete or continuous.

The classification and regression tree (CART) is a de-
cision tree-based method widely used in datamining. It is
able to reveal data relationships and automatically searches
for patterns to uncover hidden structure even in highly com-
plex data. The typical representation of the CART model
is a binary tree in which each root node represents a sin-
gle input feature and a split point on that feature. The leaf
nodes of the tree contain an output variable that is used to
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make a prediction. The best splits were identified by the
Gini impurity (GI) index.

The Gini index varies between values 0 and 1, where
0 expresses the purity of classification (i.e., all the elements
belong to a specified class) and 1 indicates the random
distribution of elements across various classes. The value
of 0.5 of the Gini index shows an equal distribution of
elements over some classes.

The models were cross-validated using a five-fold cross-
validation. This is a resampling procedure primarily used
to estimate the skill of a machine learning model on unseen
data. This approach involves randomly dividing the set of
observations into k groups (five folds in our case) of approx-
imately equal size. The first fold is treated as a validation
set, and the method is fit on the remaining k– 1 folds. The
process was repeated ten times with the aim of reducing
the variance of the cross-validation results and the chance
of getting too optimistic results from only one run.

The performance of the models was assessed using re-
ceiver operating characteristic curves (ROCs), together with
accuracy, precision, recall, and F1-measure evaluation met-
rics.

Statistical analysis including machine learning training
and testing was performed using the XLSTAT statistical
packages (Addinsoft, New York, NY, USA).

Results

Patients

Fifty-six patients (38 males, 18 females) were recruited
from 2010 to 2020. Median age was 72 years (range
38–90 years). The total number of analyzed lung metas-
tases was 80, of which 36 achieved complete response
(group CR). Another 31 metastases achieved partial re-
sponse, 10 were considered as stable disease, and 3 were
considered as progressive disease; these 44 metastases were
considered non-complete responders (group NCR). Most
metastases were from pulmonary (44 metastases) and col-
orectal (20 metastases) tumors. In terms of histology, the
large majority were adenocarcinoma (35 lesions), followed
by squamous cell carcinomas (7 lesions). Table 1 reports
the patients’ characteristics.

Table 2 Diagnostic accuracy statistics for the four features highly correlated with complete response

Area under the curve (AUC)
[CI95%]

Sensitivity Specificity Positive predictive value
(PPV)

Negative predictive value
(NPV)

Accuracy

SVR 0.692 [0.578–0.806] 0.639 0.591 0.650 0.750 0.700

Skew 0.645 [0.525–0.764] 0.676 0.684 0.561 0.667 0.613

Corr 0.648 [0.527–0.769] 0.750 0.545 0.574 0.727 0.638

GLNU 0.659 [0.543–0.775] 0.667 0.614 0.585 0.692 0.638

SVR Surface Volume Ratio, Skew Skewness, Corr correlation and GNLU Grey normalized level uniformity

Table 1 Patient characteristics

No. of patients 56

Median age, years (range) 72.0 (37.5–90.0)

Gender, M/F 38/18

Smoker, Y/N 23/33

No. of lesions 80

Location, central/peripheral 17/63
Number of lesions, patients 1: 46 patients

2: 12 patients

3: 3 patients

4: 1 patient
Number of lesions, primary tumor 44: lung

11: rectum

9: colon

8: gynecological

2: breast

2: skin

4: other

Median GTV, cc (range) 5.3 (0.2–61.9)

Median PTV, cc (range) 27.5 (4.9–215.7)

Median prescribed dose, Gy (range) 50 (30–50)

Median prescribed isodose, percentage
(range)

81 (73–89)

Median BED, Gy (range) 100 (48–100)

GTV Gross Tumor Volume, PTV Planning Target Volume,
BED Biological Equivalent Dose

Radiomics features and selection

A total of 107 radiomics features were extracted from each
lesion.

The overall mean CCC was 0.97± 0.14. The mean
CCC for shape features between the two clinicians was
0.98± 0.08, indicating favorable interobserver reproducibil-
ity for the segmentation of the lung metastases. The mean
CCCs for the intensity and texture features were ≥0.89 in
all the 30 analyzed metastases.

The pairwise Spearman correlation analysis between fea-
tures revealed a high level of interdependence in the overall
dataset, with over 85% correlating with at least one other
feature at |ρ| > 0.8. As a result of these two steps, we ob-
tained a primary feature set of 15 from 107.
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Fig. 1 Box-and-whisker plots
for the four radiomics features
associated with the response
outcome at univariate analysis:
a surface volume ratio, b skew-
ness, c correlation, d grey level
nonuniformity. CR complete re-
sponse and noCR non-complete
response

Fig. 2 Examples of two lesions on axial CT and 3D plots and their
respective radiomic feature values: a, b lung lesion in a 78-year-old
male patient who evolved with complete response, surface volume ra-
tio: 0.687, skewness: 0.108, correlation: –0.246, grey level nonunifor-
mity: 3.316; c, d lung lesion in a 75-year-old male patient who evolved
with stable disease, surface volume ratio: 0.343, skewness: –1.911, cor-
relation: 0.220, grey level nonuniformity: 353.81

Following this, based on the stepwise backward elimi-
nation approach, four final features, namely the surface to
volume ratio (SVR), the skewness (Skew), the correlation
(Corr), and the grey normalized level uniformity (GNLU),
were selected for constructing the predictive models. The
univariate analysis (Mann–Whitney U test) for the associ-
ation of these four radiomics features with the two lesion
groups reported statistical significance with p< 0.05. The
detailed diagnostic accuracy statistics for these four fea-
tures are reported in Table 2 in terms of area under the curve

(AUC), sensitivity, specificity, positive and negative predic-
tive value, and accuracy. The relative box-and-whisker plots
are shown in Fig. 1 according to the response class.

Two lesions reporting different responses are shown in
Fig. 2.

In particular, other than obvious macroscopic differences
in terms of dimension and shape, the visual assessment of
lesion texture does not allow any kind of reliable evaluation.
The smaller lesion in Fig. 2a was associated with a complete
response while the larger lesion in Fig. 2b was associated
with stable disease after SBRT.

Of note, no clinical variable was found to be associated
with complete response. The only non-radiomics variable
associated with the two response groups was the volume of
the lesion, with a smaller volume significantly associated
with a complete response. However, as expected, this vari-
able was found to be collinear with the SVR feature and
was eliminated from subsequent analysis.

Table 3 Performance of the logistic regression (LR) and classification
and regression tree (CART) classifiers for the training and internal val-
idation datasets

LR CART

Training set

Accuracy 0.691 (0.667–0.715) 0.792 (0.756–0.827)

Precision 0.640 (0.615–0.665) 0.784 (0.698–0.871)

Recall 0.680 (0.658–0.702) 0.803 (0.727–0.879)

F1 score 0.659 (0.639–0.680) 0.785 (0.761–0.809)

Validation set

Accuracy 0.644 (0.610–0.679) 0.750 (0.717–0.783)

Precision 0.644 (0.600–0.687) 0.651 (0.597–0.705)

Recall 0.635 (0.606–0.665) 0.754 (0.692–0.815)

F1 score 0.638 (0.610–0.665) 0.694 (0.668–0.719)
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Fig. 3 Receiver operating char-
acteristic curve for the logistic
regression (LR; a) and clas-
sification and regression tree
(CART; b) models

Fig. 4 Classification and regression tree analysis (CART) for the most significant radiomics features

Machine learning models

The classification performance for the LR and CART mod-
els are reported in Table 3 for the training and internal
validation datasets. The CART classifier reported the best
performance, with accuracy, precision, recall, and F1 score
equal to 79.2%, 78.4%, 80.3%, and 78.5%, respectively.
The receiver operating characteristic (ROC) curves of the
two models for the cross-validated results are shown in
Fig. 3.

The areas under the curves (AUC) were 0.707 (95% CI:
0.633–0.817) and 0.753 (95% CI: 0.675–0.836) for the LR
and CART models, respectively.

The CART classification tree for the most informative
variables is displayed in Fig. 4.

This figure well demonstrates the interpretability of the
CART model, i.e., its ability to help human experts to un-
derstand the cause of the decisions adopted by the artificial
intelligence algorithm.

Discussion

Lung cancer is a very heterogeneous disease, at both cel-
lular and histological levels [29]. Substantial variation can
be observed not just between individuals but also across
lesions in the same patient and between various parts of the
same lesion. Consequently, study of the clinical character-
istics alone might may fail to capture the heterogeneity of
the lung lesions. Nowadays, it has been proven that tumors
with high heterogeneity are to be considered more aggres-
sive [30] and that tumors with irregular spiculated edges

K



682 Strahlentherapie und Onkologie (2023) 199:676–685

are typical of more infiltrating tumors [31]. Overall, these
findings imply that lesions with denser internal areas and
less heterogeneity may respond more favorably.

Moreover, differentiating primary lung cancer from lung
metastasis is of the utmost clinical importance because of
the significant differences in prognostic and therapeutic im-
plications [32].

From this point of view, radiomics has major potential
to provide reliable predictions in cancer outcomes thanks
to its ability to describe histology and genetic footprint and
to capture intratumoral tumor heterogeneity [33]. However,
radiomics is a relatively recent field of research and its
potential clinical use for lung metastases is still a niche
subfield, as demonstrated by the scarcity of related studies.

The main objective of the present study was to explore
the feasibility of radiomics for predicting a complete re-
sponse of lung metastases in patients undergoing SBRT.
Aiming to improve the predictive model, we also attempted
to integrate clinical features such as age, smoking status, tu-
mor histology, and stage, but no clinical variable was found
to be correlated with the lesion response. While none of
the clinical features were prognostic of complete response,
we found four radiomics features (surface-to-volume ratio,
skewness, correlation, and grey level nonuniformity) to be
significantly correlated with complete response, highlight-
ing the potential of radiomics analysis for outcome predic-
tion after SBRT of lung metastases. The surface-to-volume
ratio was the shape feature with higher correlation with
complete response. In particular, we found that a lesion
showing higher values of SVR suggests a higher proba-
bility of complete response after SBRT. This was not an
unexpected result because it has been well reported that
patients with large-volume and less-spherical tumors have
a worse prognosis in terms of overall survival and locore-
gional control [34, 35].

Interestingly, also skewness and correlation were identi-
fied in previous radiomic studies as a major radiomics sig-
nature for lung tumors. To our knowledge, only one study
performed by Cheung et al. [24], evaluated the role of ra-
diomics for prediction purposes following SBRT in pul-
monary oligometastases. The authors reported that skew-
ness and root mean square were predictors of radiological
treatment response with an accuracy of 74.8%. On the other
hand, several investigations focused on the application of
radiomics to primary lung tumors, to identify predictive ra-
diomics features. Bousabarah et al. [22] reported on the ap-
plication of CT radiomics analysis in a cohort of 110 inoper-
able early-stage NSCLC patients treated with SBRT aiming
to predict local control, overall, and disease-free survival.
In particular, the authors reported that lung tumors with
high skewness (i.e., lesions with lower Hounsfield values
dominant) have a lower risk for local failure and increased
survival probability, and lung tumors with a high correla-

tion (a measure of tissue homogeneity) were more likely to
cause local failure. These results overlap perfectly with our
findings. Coroller et al. [36] identified skewness as one of
the features significantly associated with pathological gross
residual disease following chemoirradiation in early-stage
lung cancer. Similarly, Chong et al. [37] demonstrated that
skewness was predictive of pathological non-responder pa-
tients following chemoirradiation in lung adenocarcinoma.
Lastly, Caruso et al. [38] tested the ability of CT texture
analysis on chest CT to identify malignant lung nodules.
The authors reported that in addition to kurtosis, the most
significant difference in the comparison between texture
parameters of malignant and benign nodules was the skew-
ness, with values statistically higher in malignant lesions.

As there is growing evidence from different radiomics
studies that the skewness value may be a signature for poor
prognosis, some researchers are actually exploring the bi-
ological basis underlying radiomic features that may have
a specific radiological appearance [39–41]. In particular,
skewness has been found to be associated with KRAS mu-
tations in NSCLC [39] that characterize lung cancers with
poor prognosis and treatment resistance [40]. A current hy-
pothesis is that the poorer prognosis observed in “skewed”
tumors may be at least partially driven by KRAS mutation,
for example by the induction of a cancer stem cell-like phe-
notype leading to radioresistance [41].

Using these four top-ranked features, we trained and
evaluated two machine learning models using LR and
CART analysis methods. The best diagnostic performance
was attained by the CART classifier, reporting an accuracy,
precision, and recall of 0.792, 0.784, and 0.803 in the train-
ing set and 0.750, 0.651, and 0.754 in the evaluation set,
respectively. The obtained CART model has the notable ad-
vantage of being easily interpretable, unlike other methods
of machine learning or deep learning. With four radiomics
covariates, we modeled the CART using nine nodes and
three depth levels in order to produce a straightforward
and compact decision tree. The CART analysis chose the
lesions with an SVR greater than 0.383 to be associated
with complete response. The skewness and correlation
subsequently played a significant role in increasing the
classification rate among the lesions, with high skewness
and low correlation values favoring complete response.
Because of this high classification accuracy, we think this
CART model could represent a valuable tool for radio-
oncologists when prescribing effective treatment options in
an SBRT strategy for lung lesions.

Despite encouraging results, a few limitations of this
study should be highlighted and discussed. Firstly, this is
a retrospective study and the size of the patient cohort
(80 lesions) is not overly large. This is a typical drawback of
many quantitative radiomics investigations. For this reason,
we choose a simple binary classification for the response
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outcome (complete response vs. all other responses) to al-
low a reasonable sample size for each group. In the future,
our aim is to gather more lesions in order to better stratify
the response beyond the proposed binary classification (i.e.,
complete response, partial response, stable disease, and pro-
gressive disease). Secondly, our research was limited to
a single institution, meaning that image acquisition, tar-
get definition, and the evaluation of clinical outcomes may
differ between different institutions. With respect to target
definition, accurate lesion segmentation is essential to en-
sure the reliability of the extracted features. For this reason,
in order to quantify the reproducibility of the features, we
calculated the CCC for the radiomic features extracted from
the two sets of segmentations obtained by two independent
physicians. The very high CCC values (mean 0.972) are
a signature of reliable target definition. Also, the intra- and
interobserver uncertainties in the assessment of RECIST
response may have led to misclassification of the overall
response [42]. However, it has been well reported that the
reproducibility of response is much higher for lung lesions
with respect to other sites [43]. Lastly, the limited cohort
of lesions did not allow evaluation of the performance of
the models in an independent dataset of patients. To par-
tially overcome this limitation, we performed a reliable in-
ternal validation with a five-fold cross-validation process.
This is a well-known resampling technique used to evaluate
machine learning models based on a limited data sample,
i.e., to estimate how the model is expected to perform in
predicting data not used during the training of the model.
On the other hand, it must be also underlined that cross-
validation cannot strictly evaluate the selection bias in ret-
rospective studies, thus potentially translating into an over-
estimation of prediction performance. Nonetheless, a recent
study focused on the development of radiomic models for
classification of malignant lung tumors reported that inter-
nally validated models with AUC >0.89 had AUC of 0.82
in external validation [44]. In conclusion, even if an exter-
nal validation of our results with an independent dataset is
needed to confirm the robustness and generalizability of our
model, our study presents a reliable proof-of-concept that
the radiomics analysis may improve the accuracy necessary
for prediction of SBRT treatment response.
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