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Emerging evidence suggests the existence of a new mode of epidermal growth factor receptor (EGFR) signaling in which activated 
EGFR undergoes nuclear translocation following treatment with ionizing radiation. The authors provide evidence that the nuclear 
EGFR transport is a stress-specific cellular reaction, which is linked to src-dependent EGFR internalization into caveolae. These 
flask-shaped pits can fuse with endoplasmic reticulum and the EGFR is sorted into a perinuclear localization. This compartment 
may serve as a reservoir for nuclear EGFR transport which is regulated by PKCε (protein kinase Cepsilon). Nuclear EGFR is able 
to induce transcription of genes essential for cell proliferation and cell-cycle regulation. Moreover, nuclear EGFR has physical 
contact with compounds of the DNA repair machinery and is involved in removal of DNA damage. Anti-EGFR strategies target 
radiation-associated EGFR nuclear translocation in different manners. EGFR-inhibitory antibodies, i.e., cetuximab (Erbitux®), can 
block nuclear translocation by EGFR immobilization within the cytosol in responder cell lines, whereas tyrosine kinase inhibitors 
rather target nuclear kinase activity of EGFR linked with cytosolic or nuclear functions. However, both strategies can inhibit DNA 
repair following irradiation.
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Der nukleäre EGFR als neues therapeutisches Ziel. Einsichten in die nukleäre Translokation und Funktion 

Der EGFR wird als membranständiger Wachstumsfaktor-Rezeptor beschrieben. Neue Erkenntnisse zeigten jedoch, dass der EGFR 
z. B. nach Bestrahlung auch im Zellkern gefunden werden kann. Der Kerntransport des EGFR wird vor allem nach Stressexposition 
der Zelle beobachtet und ist mit einer Src-Kinase-abhängigen Internalisierung des EGFR in das endosomale Kompartment der 
Caveolae assoziiert. Nach Verschmelzung der Caveolae mit der Membran des endoplasmatischen Retikulums reichert sich der EGFR 
perinukleär an. Der perinukleäre EGFR-Pool dient wahrscheinlich als Reservoir für den Kerntransport, der nach Strahlenexposition 
durch die Aktivität der PKCε (Proteinkinase Cepsilon) reguliert wird. Der nukleäre EGFR agiert zum einen als Transkriptionsfaktor 
und induziert die Transkription von zellzyklus- und proliferationsrelevanten Proteinen, zum anderen hat er physikalischen Kontakt 
zu für die DNA-Reparatur essentiellen Proteinen. In der Radioonkologie finden prinzipiell zwei Anti-EGFR-Therapien Verwendung. 
Antikörperstrategien, z. B. die Behandlung mit Cetuximab (Erbitux®), können in sensitiven Tumorzellen zu einer Immobilisierung 
des internalisierten EGFR in den Caveolae führen. Die Translokation in den Zellkern ist blockiert. Im Gegensatz dazu verhindern 
Kinaseinhibitoren die strahleninduzierte Kerntranslokation des EGFR nicht, hemmen aber die EGFR-Kinaseaktivität und blockieren 
so das nukleäre und zytoplasmatische „Signaling“ des Rezeptors. Auf diese Weise können beide Strategien die Reparatur von 
DNA-Schäden behindern und den Erfolg einer radioonkologischen Behandlung verbessern.
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The Outstanding Role of EGFR
A high proportion of human tumor cells is characterized by 
overexpression of epidermal growth factor receptor (EGFR), 
a protein that promotes resistance to chemo- and radiother-
apy [13, 19, 31, 50, 54, 58]. EGFR protein can be activated 
through phosphorylation at specific amino acid residues in re-

sponse to ligand binding (EGF, tumor necrosis factor-[TGF-]α 
and amphiregulin) [18, 65] as well as after exposure to a va-
riety of unspecific stimuli like ionizing radiation [52], UV 
radiation [29], hypoxia [45], hyperthermia [17], oxidative 
stress [28], and transactivation by G-protein-coupled recep-
tors [6]. Both ligand-dependent as well as ligand-independent 
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phosphorylations of EGFR result in receptor internalization 
[60] and intracellular signaling [13, 50, 51, 57, 59]. To date, inter-
nalization is assumed to be essential for receptor silencing and 
inactivation. Indeed, EGF treatment results in internalization 
of EGFR into coated pits followed by receptor degradation 
[56]. Cell exposure to oxidative stress can lead to internaliza-
tion of EGFR into caveolae, however, this process is associated 
with perinuclear accumulation of EGFR and persistent kinase 
activity, as reported by Khan et al. [28]. The broad inducibility 
of EGFR activation and internalization by cellular stress sug-
gest an essential role of EGFR during regulation of cellular sur-
vival. The special role of nuclear EGFR has been underlined 
by the clinical observation, that detection of nuclear EGFR in 
tumor biopsies is strongly correlated with treatment resistance 
and poor prognosis [2, 23, 24, 31, 48, 49, 64].

Radiation-Induced Internalization of EGFR
A characteristic compound of caveolae is the protein caveo-
lin. Caveolin gene family consists of three members: CAV1, 
CAV2, and CAV3, coding for the proteins caveolin-1, caveo-
lin-2, and caveolin-3, respectively. Caveolins associate with 
cholesterol and sphingolipids in specific areas of the cell mem-
brane to form flask-shaped pits called caveolae. Caveolae are 
involved in receptor-independent endocytosis and intracellu-
lar signaling [43]. In addition, caveolin-1 is a transmembrane 
protein and an essential component during interactions of in-
tegrin receptors with cytoskeleton-associated molecules [12]. 
Caveolae contain a high variety of proteins essential for sig-
naling. Caveolae and associated proteins form the so-called 
caveosome, which can fuse with the early endosomes [3]. 
Moreover, caveolin-1 is found at different intracellular loca-
tions. Variations in subcellular localization are associated with 
a plethora of ascribed functions for this protein. These obser-
vations suggest a general function of caveolae as an intracel-
lular signaling platform.

In agreement with that, compartmentation into caveolae 
prevents EGFR degradation and simultaneously enables in-
tracellular EGFR kinase-linked signaling [28]. These findings 
suggest a new function of EGFR – depending on its intracel-
lular localization –, which supplements its functions described 
so far and defines a new therapeutic target.

Ionizing radiation results in fast src kinase stabilization, 
activation and subsequent src-mediated caveolin-1 Y14 and 
EGFR Y845 phosphorylations. Both phosphorylations are 
stress-specific and cannot be observed after treatment with 
EGF [14], which suggests caveolae sorting of EGFR as a 
stress-associated event. Treatment with the EGFR-inhibitory 
antibody cetuximab results in some tumor cells in a strong ac-
cumulation of caveolin/EGFR complexes within cytoplasm. 
Radiation-induced caveolin-1 and EGFR phosphorylations 
are associated with nuclear EGFR transport [14, 32]. As 
shown by the src-specific inhibitor PP2, blockage of src activ-
ity inhibits caveolin-1 phosphorylation and decreases  nuclear 
transport of EGFR [14].

Translocation of EGFR from Caveolae into Endoplasmic 
Reticulum

Nuclear localization of the EGFR requires endocytosis and 
association of the receptor with the karyopherin carrier nu-
clear import system [32]. However, this association does not 
explain how a transmembrane receptor is processed into a 
nuclear non-membrane-bound receptor. As cells do have pro-
tein complexes that translocate proteins into and out of lipid 
bilayers [63], Liao & Carpenter [32] explored the possibility, 
that the Sec61 translocon could mediate nuclear transport of 
the EGFR. EGFR located within the membrane of late endo-
somes is transferred to the membranes of Golgi apparatus by 
membrane fusion and at least locates in the endoplasmic re-
ticulum (ER) membrane. For nuclear transport EGFR has to 
be set free from ER membrane to become a cytosolic protein 
and to admit access of the karyopherin system to the intrinsic 
nuclear localization site (NLS) of the EGFR. Indeed, the EG-
FR is found in complex with Sec61 following irradiation. The 
Sec61 translocon is located exclusively in the ER and ER/Gol-
gi transitional region [20] and functions to insert secretory and 
transmembrane proteins into the ER during protein synthesis 
[26]. This translocon is bidirectional and also retrotranslocates 
proteins from ER membrane to the cytosol.

EGFR Transport into Nucleus
Passage through the nuclear pore complex needs binding to 
nuclear transport receptors. Many proteins are imported via 
karyopherin β (often using karyopherin α as an adapter). In-
deed it was shown, that after irradiation the EGFR is found in 
complex with karyopherin α and RAN-GTP [13]. Prerequisite 
for karyopherin binding is the presence of an NLS within the 
cargo protein. Classic NLSs contain one or two clusters of ba-
sic residues. Monopartite NLSs have a single cluster of four to 
five basic residues, whereas bipartite NLSs are characterized 
by a second basic cluster located about ten to twelve residues 
downstream of the first cluster [16]. Molecular recognition of 
NLSs is essential for the formation of the import complex. Lin 
et al. [34] reported identification of a putative NLS within the 
EGFR sequence and proved the function. Interestingly, we 
observed phosphorylation of EGFR at residue T654, which 
is located within this putative EGFR NLS, after radiation-in-
duced nuclear EGFR transport. Furthermore, we identified 
PKCε (protein kinase Cepsilon) as the kinase responsible for 
this modification [62]. Nuclear EGFR accumulation results 
from a balance of import and export processes [13]. Recent 
evidence suggests, that nuclear export of EGFR may involve 
exportin CRM1 [21]. Existence of nuclear export sequences 
within EGFR sequence, however, has not been demonstrat-
ed.

Function of Nuclear EGFR
Nuclear EGFR detection was first reported in hepatocytes 
that underwent regeneration and in primary adrenocortical 
carcinomas [38]. High levels of EGFR were detected in the 
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nuclei of many tumors, including those of adrenocorticord, 
breast, bladder, skin, thyroid, and oral cavity [35, 36, 38, 49]. 
Nuclear EGFR appears to be the full-length phosphorylated 
receptor [11, 13, 33, 34]. Nuclear EGFR positively correlates 
with Ki-67 expression, an indicator of proliferation [36]. Con-
sequently, a function of nuclear EGFR as transcriptional acti-
vator was suggested. Indeed, transactivation domains within 
EGFR and its family members HER-2 and HER-4 were 
identified and found to be functional [25, 34]. Nuclear EGFR 
and HER-2 were shown to associate with specific DNA se-
quences designated AT-rich sequence and HER-2-associated 
sequence, respectively [25, 34]. Promoters that are targeted 
by nuclear EGFR are those of cyclin D1, iNOS, and B-Myb 
[1, 21, 34]. Given the notion that ErbB receptors lack a puta-
tive DNA-binding domain, it is suspected that these recep-
tors first associate with DNA-binding transcription factors 
and then enhance target gene transcription via their intrinsic 
transactivational activity. In this regard, nuclear EGFR in-
teracts with STAT3 and co-regulates iNOS expression [1]. In 
addition, STAT3 activation may be associated with Bcl-XL 
expression which can link nuclear EGFR with regulation of 
cell death also [27]. Furthermore, cooperation of nuclear EG-
FR with the transcription factor E2F1 activates expression 
of B-Myb, a positive regulator of G1/S cell-cycle progression 
[21].

The observation that nuclear EGFR is phosphorylated 
at autophosphorylation sites indicates that kinase activity of 
EGFR is present within nucleus and suggests that this kinase 
activity may be relevant for the function of nuclear EGFR. 
Indeed, Wang et al. [61] could demonstrate, that proliferating 
cell nuclear antigen (PCNA) is subject to tyrosine phosphory-
lation at a specific site in an EGFR-dependent manner and 
that this phosphorylation enhances PCNA stability on chro-
matin. Thus, these data link tyrosine kinase activity of nuclear 
EGFR with cell proliferation and DNA repair by regulating 
PCNA function.

In addition, Bandyopadhyay et al. [5] described that 
nuclear EGFR can interact with DNA repair and cell sur-
vival directly. They observed physical interaction of EGFR 
with DNA-dependent kinase (DNA-PK). Furthermore, 
they demonstrated that blocking EGFR signaling by ce-
tuximab,  an anti-EGFR monoclonal antibody, resulted in 
reduction of nuclear DNA-PK protein and kinase activity, 
implicating a role of EGFR in regulation of DNA repair. 
Indeed, it could be shown that nuclear EGFR is associ-
ated with phosphorylation of DNA-PK at residue T2609, 
which indicates DNA-PK activity during nonhomologous 
end-joining DNA repair [13]. Blockage of nuclear EGFR 
transport by cetuximab  decreased DNA-PK activity and 
consequently increased residual DNA damage and reduced 
survival after radiation treatment in A549 cells [15]. These 
observations suggest a crucial role of nuclear EGFR for 
regulation of DNA repair following treatment with geno-
toxic substances.

Nuclear EGFR Transport: a Therapeutic Target?
As already mentioned above, increased nuclear localization 
of the EGFR is associated with treatment resistance and poor 
prognosis of tumors [23, 36, 49]. Treatment of cells either with 
inhibitory antibodies or tyrosine kinase inhibitors [53] are ac-
cepted strategies to counteract EGFR function [22]. As mono-
therapy, tyrosine kinase inhibitors are shown to be efficient in 
palliative second-line treatment of non-small cell lung cancer 
[4]. Cetuximab showed positive effects as single treatment or 
in combination with chemotherapy in metastatic colorectal 
cancer [44]. For combination treatment regimens with radio-
therapy, preclinical and first clinical data report improved sur-
vival [8] and increased tumor control [7, 30, 39, 41, 42]. For use 
of tyrosine kinase inhibitors in combination with radiation or 
additional genotoxic treatments, no solid clinical trials exist so 
far and further clinical evaluation of this approach is neces-
sary [9, 37, 46]. Finally, both anti-EGFR strategies seem to 
be effective in principle, nevertheless the molecular mode of 
action is different. Cetuximab binds to the extracellular part 
of EGFR nearby the natural ligand binding site. This binding 
results in a phosphorylation of the receptor associated with an 
internalization [47]. Interestingly, in vitro data clearly show, 
that in some cells cetuximab binding results in accumulation 
of EGFR within cytoplasm, which is associated with blockage 
of nuclear EGFR transport following irradiation [15]. By con-
trast, in other tumor cells it was demonstrated, that cetuximab 
treatment induced nuclear EGFR accumulation within the 
nucleus [33]. These contradicting data have to be resolved in 
additional preclinical experiments and may help to interpret 
heterogeneous responses of tumors upon cetuximab treat-
ment.

In any case, the EGFR is removed from cell surface and 
further ligand-induced signaling is hampered [47]. By con-
trast, tyrosine kinase inhibitors enter the cell and block the 
cytosolic kinase activity of EGFR intracellularly. This means, 
in spite of ligand binding intracellular signaling is blocked by 
tyrosine kinase inhibitors. Based on this knowledge, a clear 
antiproliferative effect can be predicted by both anti-EGFR 
strategies. However, monotherapy seemed to be less success-
ful compared to combined treatment in achieving solid tumor 
control. The molecular explanation for the increased success 
of combination treatment with radiation, may be reasoned in 
the ligand-independent activation of EGFR by ionizing radia-
tion [14]. This activation is not associated with a proliferative 
cell response, but seems to be more related to regulation of 
cell survival and DNA damage repair [14] as indicated by 
means of clonogenic survival assays in vitro. Both, regulation 
of cell survival [10] and DNA repair [55] during treatment 
regimens with chemo-/radiotherapy were identified as attrac-
tive molecular targets during the last years. In such a scenario 
it is noteworthy, that treatment with tyrosine kinase inhibi-
tors or antibodies in combination with radiation results in in-
hibition of EGFR-dependent Akt phosphorylation, which is 
linked with regulation of cell survival [40]. Moreover, treat-
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ment with cetuximab can block nuclear 
EGFR transport in certain tumor cells, 
which is linked with inhibition of DNA 
repair [15]. However, although we ob-
served no blockage of nuclear EGFR 
transport by tyrosine kinase inhibitors, 
a clear inhibition of DNA repair was 
seen [59]. This can be explained by the 
need of kinase activity of EGFR during 
regulation of DNA-PK or other nuclear 
proteins involved in DNA repair fol-
lowing irradiation. Thus the question 
remains unanswered, whether the anti-
EGFR strategy with small molecules 
or antibodies is more efficient in tumor 
therapy. Furthermore, it is difficult to 
dissect the role of nuclear EGFR from 
“classic” membrane-associated EGFR 
signaling following irradiation of the 
cell, since both cytosolic and nuclear 
signaling overlay. Furthermore, it is 
unresolved under which molecular con-
ditions cetuximab treatment can block 
nuclear EGFR transport. Further re-
search is necessary to obtain better in-
sights into mechanism and function of 
nuclear EGFR.

Conclusion
Current knowledge about nuclear 
transport is summarized in Figure 1. 
Nuclear localization of EGFR was ob-
served either after cell stimulation with 
EGF or after treatment with genotoxic 
substances. However, the scenario de-
scribed herein in fact is oversimplified, 
since the effects of nuclear EGFR are 
superimposed by the cytosolic signal-
ing of membrane-associated EGFR. In 
addition, nuclear EGFR interacts with 
other members of the erbB receptor 
family also detected within the nucleus. 
Nevertheless, the relevance of nuclear 
EGFR for cell survival and DNA repair 
is beyond doubt. Anti-EGFR strategies, 
i.e., treatment with antibodies or kinase 
inhibitors, both can interfere with nucle-
ar EGFR transport and function. How-
ever, the role of nuclear EGFR during 
tumor therapy cannot answered so far. 
Preclinical data demonstrate clearly, 
that all tumor cell lines investigated 
respond on irradiation with nuclear 
EGFR transport. Furthermore, experi-
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Figure 1. Role of nuclear EGFR during cellular radiation response.
Radiation activates src kinase in a so far not understood manner. Src kinase phosphorylates 
EGFR at residue Y845 and caveolin-1 at residue Y14, which seems to be signal for complex for-
mation and internalization into caveolae. Incubation with cetuximab stabilizes EGFR/caveolin 
complexes and blocks further processing. EGFR-containing caveolae are transported into the 
Golgi apparatus/endoplasmatic reticulum (ER) in a microtubule-dependent way and fuse with 
ER membrane. EGFR is found in complex with translocon sec61 and is set free by its action into 
cytosol. EGFR is phosphorylated at residue T654 by means of PKCε following irradiation, which 
induces binding of karyopherin α and karyopherin β. This process enables transport through 
nuclear pore into nucleus. Karyopherins dissociate from nuclear complex and are exported back 
to cytosol. Nuclear EGFR either interacts with DNA-PK and is involved in activation of kinase 
activity essential for nonhomologous end-joining DNA repair, or acts as a transcription factor 
regulating expression of essential genes. There are several hints, that EGFR kinase activity is 
obligatory for effects of nuclear EGFR upon DNA repair. Treatment with tyrosine kinase inhibi-
tors (TKI) may interfere with this function. 

Abbildung 1. Bedeutung des nukleären EGFR während der zellulären Strahlenantwort.
Eine Bestrahlung aktiviert die src-Kinase in einer bislang unverstandenen Weise. Die src-Kinase 
phosphoryliert nachfolgend den EGFR am Rest Y845 und Caveolin-1 am Rest Y14. Beides sind 
Ereignisse, die wahrscheinlich die Komplexbildung zwischen EGFR und Caveolin-1 unterstützen 
und die Internalisierung des EGFR in die Caveolae auslösen. Eine Inkubation mit dem EGFR-spe-
zifischen Antikörper Cetuximab stabilisiert den EGFR/Caveolin-1-Komplex im Zytoplasma und 
blockiert nachfolgende Transportprozesse. Die Caveolae mit dem EGFR werden mikrotubuli-
abhängig in den Golgi-Apparat/das endoplasmatische Retikulum (ER) transportiert und ver-
schmelzen mit der ER-Membran. Der EGFR findet sich im Komplex mit dem Translocon sec61 
und wird durch dessen Aktivität in das Zytoplasma freigesetzt. Nach Bestrahlung wird der EGFR 
am Rest T654 durch die PKCε phosphoryliert und findet sich im Komplex mit den beiden Karyo-
pherinen α und β. Der EGFR passiert mit Hilfe dieses Transportkomplexes die Kernpore und wird 
in den Zellkern entlassen. Der Kerntransportkomplex löst sich auf, und die Karyopherine wer-
den in das Zytosol zurücktransportiert. Der nukleäre EGFR beeinflusst das Zellverhalten nach 
Bestrahlung auf zwei Wegen. Zum einen liegt er im Komplex mit der DNA-PK vor und reguliert 
die Aktivität dieses für die DNA-Reparatur wichtigen Enzyms. Zum anderen wirkt der EGFR als 
Transkriptionsfaktor und reguliert die Transkription von proliferationsrelevanten Genen. Offen-
sichtlich ist vor allem für die Effekte auf die DNA-Reparatur die Kinaseaktivität des EGFR im 
Zellkern essentiell, da sich durch den Einsatz von Tyrosinkinaseinhibitoren (TKI) die DNA-Repa-
raturkapazität reduzieren lässt.
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mental knockdown of EGFR expression results in a strong ra-
diosensitization and DNA repair is inhibited. Based on these 
observations, it is postulated that nuclear EGFR plays an im-
portant role during regulation of cell survival following stress 
exposure. However, to estimate the role of nuclear EGFR as 
a clinically molecular target, a selective inhibitor of nuclear 
EGFR transport has to be identified, which is subject of on-
going investigations.
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