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Abstract
Purpose Perfusion-weighted (PWI) magnetic resonance imaging (MRI) and O-(2-[18F]fluoroethyl-)-l-tyrosine ([18F]FET)
positron emission tomography (PET) are both useful for discrimination of progressive disease (PD) from radiation necrosis
(RN) in patients with gliomas. Previous literature showed that the combined use of FET-PET andMRI-PWI is advantageous;
hhowever the increased diagnostic performances were only modest compared to the use of a single modality. Hence, the
goal of this study was to further explore the benefit of combining MRI-PWI and [18F]FET-PET for differentiation of PD
from RN. Secondarily, we evaluated the usefulness of cerebral blood flow (CBF), mean transit time (MTT) and time to
peak (TTP) as previous studies mainly examined cerebral blood volume (CBV).
Methods In this single center study, we retrospectively identified patients with WHO grades II–IV gliomas with suspected
tumor recurrence, presenting with ambiguous findings on structural MRI. For differentiation of PD from RN we used
both MRI-PWI and [18F]FET-PET. Dynamic susceptibility contrast MRI-PWI provided normalized parameters derived
from perfusion maps (r(relative)CBV, rCBF, rMTT, rTTP). Static [18F]FET-PET parameters including mean and maximum
tumor to brain ratios (TBRmean, TBRmax) were calculated. Based on histopathology and radioclinical follow-up we diagnosed
PD in 27 and RN in 10 cases. Using the receiver operating characteristic (ROC) analysis, area under the curve (AUC)
values were calculated for single and multiparametric models. The performances of single and multiparametric approaches
were assessed with analysis of variance and cross-validation.
Results After application of inclusion and exclusion criteria, we included 37 patients in this study. Regarding the in-sample
based approach, in single parameter analysis rTBRmean (AUC= 0.91, p< 0.001), rTBRmax (AUC= 0.89, p< 0.001), rTTP
(AUC= 0.87, p< 0.001) and rCBVmean (AUC= 0.84, p< 0.001) were efficacious for discrimination of PD from RN. The
rCBFmean and rMTT did not reach statistical significance. A classification model consisting of TBRmean, rCBVmean and rTTP
achieved an AUC of 0.98 (p< 0.001), outperforming the use of rTBRmean alone, which was the single parametric approach
with the highest AUC. Analysis of variance confirmed the superiority of the multiparametric approach over the single
parameter one (p= 0.002). While cross-validation attributed the highest AUC value to the model consisting of TBRmean and
rCBVmean, it also suggested that the addition of rTTP resulted in the highest accuracy. Overall, multiparametric models
performed better than single parameter ones.

� Jürgen Panholzer
juergen.panholzer@kepleruniklinikum.at

1 Department of Neurology, Kepler University Hospital, Linz,
Austria

2 Faculty of Medicine, Johannes Kepler University, Linz,
Austria

3 Institute for Statistics and Mathematics, WU University of
Economics and Business, Vienna, Austria

4 Department for Pathology and Molecular Pathology,
Neuromed Campus, Kepler University Hospital, Linz, Austria

5 Department for Neuroradiology, Neuromed Campus, Kepler
University Hospital, Linz, Austria

6 Department for Nuclear Medicine, Neuromed Campus,
Kepler University Hospital, Linz, Austria

7 Institute of Nuclear Medicine, Steyr Hospital, Steyr, Austria

8 Department of Radiology, Clinic of Nuclear Medicine,
Medical University Graz, Graz, Austria

K

https://doi.org/10.1007/s00062-023-01372-1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00062-023-01372-1&domain=pdf
http://orcid.org/0000-0001-7167-3665


352 J. Panholzer et al.

Conclusion A multiparametric MRI-PWI and [18F]FET-PET model consisting of TBRmean, rCBVmean and PWI rTTP
significantly outperformed the use of rTBRmean alone, which was the best single parameter approach. Secondarily, we
firstly report the potential usefulness of PWI rTTP for discrimination of PD from RN in patients with glioma; however,
for validation of our findings the prospective studies with larger patient samples are necessary.

Keywords Astrocytoma · Pseudoprogression · Amino acid PET · Perfusion maps · Radiation therapy

Introduction

Next to surgery and chemotherapy, radiation is part of stan-
dard treatment in patients with glioma [1]. Postradiation
effects include radiation necrosis (RN) and pseudoprogres-
sion, manifesting as magnetic resonance imaging (MRI)
T1-postgadolinium contrast enhancement [2]. While RN
represents a necrotic local tissue reaction to radiation,
pseudoprogression may constitute an overresponse to ther-
apy [3]. The Response Assessment in Neuro-Oncology
(RANO) group proposed structural MRI including dif-
fusion-weighted imaging (DWI) as standard protocol for
glioma assessment [4]; however, postradiation features seen
in structural MRI often overlap with those of progressive
disease (PD), limiting the accuracy [5].

As, opposed to necrotic tissue, PD is characterized by
hypervascularization and hypercellularity, MRI perfusion-
weighted imaging (PWI) and DWI provide additional infor-
mation for differentiation. Prior studies confirmed the use-
fulness of dynamic susceptibility contrast-enhanced (DSC)
MRI perfusion-derived CBV and ADC increasing the speci-
ficity for differentiation of RN from PD [6]. While the ef-
ficacy of MRI-PWI is generally accepted, some results are
conflicting as for instance Boxerman et al. could not dif-
ferentiate treatment-related changes from PD on the basis
of initial CBV measurement alone [7]. While some authors
reported the usefulness of specific thresholds for CBV for
differentiation of treatment-related changes from PD [8],
others claimed the opposite [9] and stated a dependence
of CBV on MGMT promotor methylation [10]. The CBV
measurements may be heterogeneously distributed in recur-
rent lesions [9, 11] and overlap between PD and treatment-
related changes [12, 13]. The nonquantitative nature and
lack of complete lesion coverage in the presence of sus-
ceptibility artefacts limit the DSC MRI perfusion method
[14–16].

Another modality to distinguish RN from PD is using
radiolabeled amino acids like O-(2-[18F]fluoroethyl-)-L-ty-
rosine ([18F]FET) [17]. After passing through the blood-
brain barrier, [18F]FET is transferred into cells by amino
acid transporters. This transfer is measured by positron
emission tomography (PET) [18]. Overall, previous stud-
ies accredited [18F]FET-PET (using TBR= tumor to brain
ratio) superior accuracy for differentiation of RN from PD
compared to MRI-PWI (CBV) [17, 19, 20]. A few studies

showed increased diagnostic performance when combining
MRI-PWI with [18F]FET-PET for differentiation of RN
from PD, and only under specific circumstances or with at
best modest benefit [17, 19].

In summary, previous literature suggests that both MRI-
PWI and [18F]FET-PET are potentially useful for differen-
tiation of RN from PD in glioma patients. While, overall,
current literature indicates [18F]FET-PET to be superior
and combination with MRI-PWI may slightly increase di-
agnostic performance as discussed above. Ultimately, the
overall benefit of combiningMRI-PWI with [18F]FET-PET
for differentiation of RN from PD compared to using a sin-
gle modality is not clear to this day. Therefore, in this single
center study, we evaluated the potential of multiparametric
analysis combining MRI-PWI with [18F]FET-PET. Secon-
darily, we assessed the usefulness of cerebral blood flow
(CBF), mean transit time (MTT) and time to peak (TTP) as
previous studies mainly examined cerebral blood volume
(CBV).

Methods

Patient Population

From our database, we retrospectively identified all
[18F]FET-PET brain scans (n= 411) performed between
January 2016 and July 2021 at Neuromed Campus, Kepler
University Hospital Linz, Austria. Further selection was
based on the criteria and patients’ digital records stated be-
low. We conducted this study according to ethical principles
of the Declaration of Helsinki.

Inclusion Criteria

1. Adult patients (>18 years) with histopathological veri-
fied glioma (WHO grades II, III or IV) according to the
WHO 2016 classification.

2. Referral for [18F]FET-PET for differentiation between
PD and RN due to previous MRI findings suspicious for
PD according to RANO [21].

3. Previous radiotherapy as part of the standard therapy of
patients with glioma.
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Exclusion Criteria

1. >2 months between initial PET and previous MRI scan.
2. Change in therapy or surgery of the target lesion after

initial scans in the examined period.
3. Lack of histopathological, radiological, and clinical fol-

low-up and therefore compromised outcome evaluation.

MRI Protocol

Except for one patient, all scans were obtained from a single
MRI scanner (3 Tesla Skyra®, Siemens, Munich, Germany).
For the remaining patient, scans were obtained from another
device (3 Tesla Verio®, Siemens). Scanning parameters for
all sequences are available in the supplement (file name =
cross-validation). A prebolus was applied before adminis-
tration of the main bolus via intravenous route (gadolinium-
based agent, 0.1ml/kg body weight; infusion rate, 5ml/s
followed by 25ml of NaCl). Structural MRI scans based
on T2 and contrast-enhanced T1 sequences were obtained.
Perfusion maps were generated by Syngo MR Neuro Perfu-
sion Engine® (Siemens, Munich, Germany). We performed
postprocessing leakage correction based on the Boxerman-
Weisskoff method [22].

[18F]FET PET Protocol

The synthesis and use of [18F]-FET and PET imaging was
conducted in accordance with current guidelines and as de-
scribed in our previous studies [23–25]. All patients under-
went FET-PET imaging, either by a Gemini GXL® (Philips,
Amsterdam, Netherlands) or a Veroes® (Philips, Amster-
dam, Netherlands) device. Patients fasted for a minimum
of 6h before intravenous injection of 185 MBq of FET.
PET images were acquired 30min after injection (3-D ac-
quisition). Computed tomography was used for attenuation
correction.

Image Analysis

For this study, a single author (JP), blinded to the disease
course after imaging, re-analyzed both MRI and [18F]FET-
PET data. Decisions were backed by previous assessment
of a multidisciplinary tumor board including highly experi-
enced neuroradiologists and neuronuclear medicine physi-
cians. Both structural and perfusion MRI but not FET-PET
data were analyzed with Syngo.via® (Siemens, Munich,
Germany). Subsequently, structural MRI data were co-reg-
istered with [18F]FET-PET data and analyzed via Hermes®

workstation (Hermes Medical Solutions, Stockholm, Swe-
den).

For every patient, the target lesion was defined by delin-
eation of tumor margins based on postcontrast enhancement

on T1 MRI or/and hyperintensities on T 2, drawing a 2D
region of interest (ROI). Blood vessels, resection cavity and
cerebrospinal fluid (CSF) spaces were excluded manually.
Perfusion maps (CBVmean, CBFmean, MTT, TTP) were ob-
tained by Syngo MR Neuro Perfusion Engine®. Perfusion
maps were normalized (rCBVmean, rCBFmean, rMTT, rTTP)
by drawing a standardized 2cm circular ROI in the normal-
appearing brain tissue of the contralateral hemisphere (rel-
ative value= ipsilesional value/contralesional value). While
perfusion parameters are related with each other (CBV=
CBF * MTT), we analyzed every parameter individually in
a later step.

In a second step we fused [18F]FET-PET images with
structural MRI data. The previously defined ROIs of the
lesion and contralateral normal-appearing brain tissue
were copied and used for measurement of standard uptake
value (SUV= image activity concentration [Bq/g] · patient
weight [g] / injected activity [Bq]). Mean and maximum
tumor to brain ratios (TBRmean, TBRmax) were calculated
by division of target lesions SUV by the SUV of the
contralateral normal-appearing brain tissue.

Follow-up and Final Diagnosis

Histopathologic evaluation (resection or biopsy) or radio-
clinical follow-up confirmed either PD or RN. Regarding
WHO grade II gliomas, radiological and clinical assessment
had to be stable for at least 12 months to diagnose RN. In
case of WHO grades III–IV gliomas, at least 6 months of
stable radiologic and clinical follow-up controls were re-
quired for confirmation of RN. According to the RANO
criteria PD was considered when growth of the target le-
sions in at least 2 subsequent MRI scans was present, ac-
companied by clinical deterioration or death of patient (not
attributable to other causes than tumor-related ones) [21].

Statistics

For MRI and PET parameters intergroup differences were
tested via Mann-Whitney U test. The strength of correlation
between individual parameters was assessed by Pearson’s
correlation coefficient. A coefficient of ≥0.7 marked strong,
0.4–0.6 moderate and 0–0.3 weak correlation. Using the fi-
nal diagnosis as reference, we calculated the area under the
curve (AUC) for each single and multiparametric model by
receiver operating characteristics (ROC) analysis. Statisti-
cal significances of AUC values were tested via Wilcoxon
signed-rank test [26]. Optimal cut-offs, sensitivities, speci-
ficities, and accuracies for discrimination of PD from RN
were obtained by maximization of Youden’s index. A like-
lihood ratio test (= analysis of variance) was performed
to evaluate whether a multiparametric model significantly
outperforms a single parameter approach for discrimination
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between PD and RN. Finally, leave one out cross-valida-
tion was performed for all models to account for the small
sample size and to assess the classification performance of
the models for new unseen data. Fisher’s exact test was per-
formed to test the significance of the cross-validated mod-
els. R (R Core Team 2022, Version 4.2.2, R Foundation
for Statistical Computing, Vienna, Austria) was used for
all statistical analyses. A p-value < 0.05 defined statistical
significance.

Table 1 Tumor-related characteristics

Tumor-related characteristics, WHO 2016 classification (all patients,
n= 37)

Oligodendroglioma, IDH mutant and
1p/19q codeleted

4 (10.8%)

WHO grade II 2

WHO grade III 2

Astrocytoma, IDH mutant 3 (8.1%)

WHO grade II 2

WHO grade III 1

Astrocytoma, IDH wild type 5 (13.5%)

WHO grade II 1

WHO grade III 4

Glioblastoma 24 (64.9%)

Glioblastoma, IDH mutant, WHO grade IV 0

Glioblastoma, IDH wild type, WHO
grade IV

24

Other 1 (2.7%)

Diffuse glioma, NOS, WHO grade II 1

Molecular markers

IDH

Mutant 4 (10.8%)

Wild type 31 (83.7%)

Not available 2 (5.5%)

MGMT promotor

Methylated 17 (46%)

Unmethylated 11 (29.7%)

Not available 9 (24.3%)

Therapy

Radiotherapy 37 (100%)

Re-irradiation 7 (18.9%)

Temozolomide 36 (97%)

Bevacizumab 15 (40.5%)

Re-resection 5 (13.5%)

Histological diagnosis after initial scan 8 (21.6%)

Mean follow-up duration (in months) 14

This table depicts the share of tumor types, molecular markers, and
therapy parameters in the study population. In the second column
absolute numbers and percentage of total population are given.
WHO world health organization, IDH isocitrate dehydrogenase,
NOS not otherwise specified, MGMT O-6-methylguanine-DNA
methyltransferase
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Fig. 1 ROC curves for PWI-MRI and [18F]FET-PET parameters ROC curves and their respective AUC values for PWI-MRI (rCBVmean, rCBVmean,
rMTT, rTTP) and [18F]FET-PET (TBRmean, TBRmax) parameters for differentiation between progressive disease and radiation necrosis. TBRmean

yielded the highest AUC, followed by TBRmax, rTPP, rCBVmean, rCBFmean and rMTT. ROC receiver operating characteristic, PWI-MRI perfusion
weighted magnetic resonance imaging, [18F]FET-PET O-(2-[18F]fluoroethyl-)-l-tyrosine-positron emission tomography, rCBVmean mean relative
cerebral blood volume, rCBFmean mean relative cerebral blood flow, rMTT relative mean transit time, rTTP relative time to peak, TBRmean mean
tumor to brain ratio, TBRmax maximal tumor to brain ratio, AUC area under the curve

Results

Cohort Characteristics

Out of all patients, 37 met the inclusion criteria. We repot
a median age of 55 years (range 29–84 years), 51% were
female and 49% were male. Of the patients 31 (83.8%) had
high grade (WHO grade III or IV) and 6 patients had low-
grade (WHO grade II) glioma. Glioblastoma accounted for
the highest share of all tumor subtypes (64.9%). In 9 out of
37 patients, MGMT methylation was not identified due to
poor quality of the resected tissue. In the remaining 28 pa-
tients, the promotor was methylated in 17 (60.7%) and un-
methylated in 11 patients (39.3%). RN was found in 6 of
17 patients (35.3%) with a methylated MGMT promotor
and in 1 of 10 patients (9.1%) with an unmethylated pro-
motor. With respect to the MGMT promotor status, further
statistical analysis was not possible due to small subgroups
which would have compromised the validity of the results.
While all patients received at least one course of radiother-
apy prior to initial scanning, 18.9% received at least a sec-
ond course. The chemotherapy regimen included temozolo-

mide in 97% and bevacizumab in 40.5% of all patients and
13.5% of all patients received at least a second tumor resec-
tion prior to initial scanning. The average interval between
initial [18F]FET PET and MRI scan was 5 days. The mean
follow-up (based on MRI and clinical assessment) duration
was 14 months. Histopathology defined the final diagnosis
(PD, n= 27; RN, n= 10) in 8 cases and radioclinical follow-
up in 29. Table 1 summarizes tumor-related characteristics.

Single Parameter Analysis

In PD median values for TBRmean (2.23vs. 0.97, p< 0.001),
TBRmax (2.28vs. 1.04, p< 0.001) and rCBVmean (1.78vs.
1.18, p< 0.001) were significantly higher and those for
rTTP (1.01vs. 1.11, p< 0.001) significantly lower than in
RN (Table 2). While median values for rCBFmean (1.48vs.
0.8, p= 0.098) and rMTT (1.1vs. 1.04, p= 0.801) differed
between PD and RN, the difference was not statistically
significant. In single parameter analysis, rTBRmean (AUC=
0.91, p< 0.001), rTBRmax (AUC= 0.89, p< 0.001), rTTP
(AUC= 0.87, p< 0.001) and rCBVmean (AUC= 0.84, p<
0.001) were efficacious for discrimination of PD from RN
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Fig. 2 Progressive disease example of a patient with tumor progression, 7 months after initial diagnosis of anaplastic astrocytoma, resection and
chemoradiotherapy the patient clinically deteriorated. Axial T1-weighted contrast-enhanced MRI (a) demonstrates right hemispheric progressive
tumor tissue, corresponding PWI maps CBV (b), CBF (c), MTT (d), TTP (e) and [18F]FET-PET (f) imaging are depicted.MRImagnetic resonance
imaging, PWI perfusion weighted imaging, [18F]FET-PET O-(2-[18F]fluoroethyl-)-l-tyrosine-positron emission tomography, CBVmeanmean cere-
bral blood volume, CBFmean mean cerebral blood flow,MTT mean transit time, TTP time to peak, TBRmean mean tumor to brain ratio, TBRmax max-
imal tumor to brain ratio

(Figs. 1, 2 and 3). rCBFmean (AUC= 0.68, p= 0.09) and
rMTT (AUC= 0.47, p= 0.51) did not reach statistical sig-
nificance. According to Pearson’s correlation coefficient,
TBRmean and TBRmax were highly correlated with each other.
Due to the correlation and the higher AUC of the former
parameter, TBRmax was excluded for further analysis. Op-
timal cut-offs, sensitivities, specificities, and accuracies for
discrimination of PD from RN are given in Table 2.

Multiparametric Analysis

In multiparametric analysis, a classification model consist-
ing of TBRmean, rCBVmean and rTTP achieved an AUC of
0.98 (p< 0.001) and significantly outperformed the use of
rTBRmean alone (p= 0.002), which was the single paramet-
ric approach with the highest AUC (Table 2). Exchang-
ing TBRmean for TBRmax resulted in the same AUC value,
sensitivity, specificity, and accuracy. Adding more parame-

ters did not further increase the AUC. Analysis of variance
was performed for the previously mentioned parameters and
confirmed that the multiparametric approach was superior
to the single parameter one (p< 0.002). To assess the con-
sidered models in their performances to predict new unseen
data, we performed leave one out cross-validation for all
models. While cross-validation attributed the highest AUC
value to the model consisting of TBRmean and rCBVmean, it
also suggested that the addition of rTTP resulted in the high-
est accuracy. Full results of cross-validation were uploaded
to the supplement section.

Discussion

Our study evaluated whether a multiparametric classifica-
tion model combining MRI-PWI and [18F]FET-PET is su-
perior to a single parameter approach to differentiate PD
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Fig. 3 Radiation necrosis example of a patient with radiation necrosis 20 months after initial diagnosis of glioblastoma, resection and chemoradio-
therapy, follow-up imaging showed a new contrast enhancing lesion. Axial T1-weighted contrast-enhanced MRI (a) demonstrates right hemispheric
necrosis, corresponding PWI maps CBV (b), CBF (c), MTT (d), TTP (e) and [18F]FET-PET (f) imaging are depicted. MRI magnetic resonance
imaging, PWI perfusion weighted imaging, [18F]FET-PET O-(2-[18F]fluoroethyl-)-l-tyrosine-positron emission tomography, CBVmeanmean cere-
bral blood volume, CBFmean mean cerebral blood flow,MTT mean transit time, TTP time to peak, TBRmean mean tumor to brain ratio, TBRmax max-
imal tumor to brain ratio

from RN. In single parameter analysis, rTBRmean, rTBRmax,
rTTP and rCBVmean were useful for discrimination of PD
from RN but rCBFmean and rMTT did not reach statisti-
cal significance. In multiparametric analysis, a classifica-
tion model consisting of rTBRmean, rCBVmean and rTTP sig-
nificantly outperformed the use of rTBRmean alone which
was the single parametric approach with the highest AUC.
Secondarily, we firstly report the usefulness of rTTP for
differentiation of PD from RN.

In single parameter analysis, rTBRmean, rTBRmax, rTTP
and rCBVmean were useful for discrimination of PD from
RN. The diagnostic performance of TBR (mean and max)
and rCBV was similar to previous results [17, 19, 20]. In
line with our results, CBF was reported to be not useful for
differentiation of PD from RN [27]. As reported previously,
in our cohort RN was associated with a higher frequency of

methylated than nonmethylated MGMT status [10]. Kong
et al. [10] also showed a difference of rCBVmean between
patients with unmethylated MGMT promotor but not in
the methylated promotor group. We were not able to verify
these findings as small subgroups would have compromised
the validity of statistical analysis. We firstly examined the
usefulness of PWI rMTT and PWI rTTP for differentiating
PD from RN. rMTT was not better than chance in dis-
cerning PD from RN. Even though median rTTP was only
slightly higher in RN compared to PD, it achieved a moder-
ately high AUC for differentiation PD from RN. As median
rCBFmean was lower in RN than in PD, a reduced blood
flow and therefore delayed arrival of the contrast agent in
necrotic tissue may explain the rTTP increase in RN.

In a second step we assessed the performance of a mul-
tiparametric approach. We found maximum AUC for dis-
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crimination of PD from RN when combining TBRmean,
rCBVmean and rTTP. This model significantly outperformed
the use of rTBRmean alone, which was the single paramet-
ric approach with the highest AUC. Analysis of variance
confirmed the superiority of the multiparametric over the
single parameter one. In a final step we performed leave
one out cross-validation to assess the robustness of the
considered classification models. The approach basically
confirmed the results from the multiparametric analysis.
The combination of TBRmean and rCBVmean led to the high-
est AUC value, whereas additionally adding rTTP resulted
in the highest accuracy. Overall, multiparametric models
showed better discriminating performance than each of the
univariate parametric models.

A few studies reported a clear advantage for combined
use of MRI-PWI and [18F]FET-PET (TBR), and only under
specific circumstances or with at best modest benefit. Pyka
et al. (2018) also found increased sensitivity (76%) when
combining [18F]FET-PET (TBR) with MRI (ADC+CBV)
compared to [18F]FET-PET alone (56%) at a specificity set
at 100% [19]. In contrast, we did not focus on maximization
of specificity but on AUC, as it encompasses both sensitivity
and specificity, making it a more relevant parameter for real-
life patient care. Jena et al. (2016) reported increased ac-
curacy (0.91) when combining TBRmean with rCBVmean and
maximum accuracy (0.94) when combining TBRmean with
rCBVmean and Choline/Creatine ratio [17]; however, this ap-
proach was limited by the requirement for magnetic reso-
nance spectroscopy imaging (MRSI). This is an important
practical limitation as MRSI is not widely available due to
several factors, including increased MRI scanning and post-
processing times, low sensitivity and spectral resolution, re-
quirement of expertise for specific voxel techniques, and the
danger of metabolite contamination and degradation [28,
29]. Sogani et al. (2017) found increased performance when
combining TBR (max and mean) with rCBVmean, ADCmean

and Choline/Creatine ratio [20]. The practicality of this ap-
proach was again limited by the requirement of MRSI for
achieving maximum accuracy. The results for a combined
use of TBR with PWI without MRSI was not reported. We
believe that our classification model is more practical for
real-life patient care, as it is not dependent on MRSI. Also,
Neuromed Campus, Kepler University Hospital Linz is the
sole provider of FET-PET imaging for brain tumors in this
federal state (Upper Austria) and bordering areas. Thus,
we perform all scans without selection bias in a region en-
compassing a population of 1.5–2 million people. Thus,
we believe to have a more representative patient collective
compared to previous studies; however, prospective studies
with larger samples are needed to validate our findings.

Limitations

We included both high-grade and low-grade gliomas to in-
crease overall sample size; however, the great majority had
high-grade (III–IV) glioma and only a few patients had
low-grade (II) glioma, which limited the actual heterogene-
ity. Due to the rather small sample size, we verified the
robustness of our models with leave one out cross-valida-
tion. For glioma grading we used the WHO 2016 criteria
as the histopathological records date from a timespan when
the old classification was in place (2016–2021); however,
these grading differences have no actual influence on our
results. The use of a hotspot-based method to assess quan-
titative values limits the reproducibility of our findings. We
used this method as our neuroradiologists and neuronuclear
medicine physicians have decades of experience with this
approach. Instead of creating an artificial study setting we
wanted to use the method that is actually used in our routine
clinical work. With respect to FET-PET, our study featured
only static but not dynamic parameters. As histology was
only available in 21.6% of cases, we mainly used radioclini-
cal follow-up for determination of the final diagnosis. While
a single author re-analyzed the imaging data, the decisions
were backed by a previous assessment of a multidisciplinary
tumor board including highly experienced neuroradiologists
and neuronuclear medicine physicians.

Conclusion

We report a significant benefit of multiparametric MRI-
PWI and [18F]FET-PET over single parameter analysis
for discrimination of progressive disease (PD) from ra-
diation necrosis (RN) in patients with glioma. A classi-
fication model consisting of TBRmean, rCBVmean and PWI
rTTP significantly outperformed the use of rTBRmean alone,
which was the best single parametric approach. Secondar-
ily, we firstly report the potential usefulness of PWI rTTP
for discrimination of PD from RN in patients with glioma;
however, for validation of our findings the conduction of
prospective studies with larger patient samples is necessary.

Supplementary Information The online version of this article (https://
doi.org/10.1007/s00062-023-01372-1) contains supplementary mate-
rial, which is available to authorized users.

Acknowledgements The authors are grateful to Ms. Silke Kern, the
technical team at the Department for Nuclear Medicine, Dr. Sibylle
Wimmer and Dr. Raimund Kleiser from the Department of Neuroradi-
ology for invaluable support for this study.

Author Contribution RP, JP contributed to the study conception and
design. Material preparation and data collection were performed by
JP. Statistical analysis was performed by GW and BG. JP wrote the
manuscript and was assisted by RP. OK and MS who contributed to
the final manuscript by delivering important clinical expertise.

K

https://doi.org/10.1007/s00062-023-01372-1
https://doi.org/10.1007/s00062-023-01372-1


Multiparametric Analysis Combining DSC-MR Perfusion and [18F]FET-PET is Superior to a Single Parameter Approach for... 359

Data availability The datasets are available from the corresponding
author on reasonable request.

Declarations

Conflict of interest J. Panholzer, G. Walli, B. Grün, O. Kalev,
M. Sonnberger and R. Pichler declare that they have no competing
interests.

Ethical standards All procedures performed in studies involving hu-
man participants or on human tissue were in accordance with the 1975
Helsinki declaration and its later amendments or comparable ethical
standards. Ethical approval was waived by the local Ethics Committee
of the Medical Faculty of the Johannes Kepler University in view of
the retrospective nature of the study and all the procedures performed
were part of the routine care. Informed consent was obtained from all
individual participants included in the study.

References

1. Tan AC, Ashley DM, López GY, Malinzak M, Friedman HS, Khas-
raw M. Management of glioblastoma: State of the art and future di-
rections. CA: A Cancer Journal for Clinicians. 2020;70(4):299–312.

2. Siu A, Wind JJ, Iorgulescu JB, Chan TA, Yamada Y, Sherman JH.
Radiation necrosis following treatment of high grade glioma—a re-
view of the literature and current understanding. Acta Neurochir.
1. Februar 2012;154(2):191–201.

3. Zikou A, Sioka C, Alexiou GA, Fotopoulos A, Voulgaris S, Ar-
gyropoulou MI. Necrosis, Pseudoprogression, Pseudoresponse,
and Tumor Recurrence: Imaging Challenges for the Evaluation
of Treated Gliomas. Contrast Media Mol Imaging. 2. Dezember.
Radiation. 2018;2018:6828396.

4. Ellingson BM, Bendszus M, Boxerman J, Barboriak D, Erickson
BJ, Smits M, u. a. Consensus recommendations for a standardized
Brain Tumor Imaging Protocol in clinical trials. Neuro-Oncology.
1. September 2015;17(9):1188–98.

5. Shah R, Vattoth S, Jacob R, Manzil FFP, O’Malley JP, Borghei P,
et al. Radiation necrosis in the brain: imaging features and differen-
tiation from tumor recurrence. Radiographics. 2012;32(5):1343–59.

6. Nael K, Bauer AH, Hormigo A, Lemole M, Germano IM, Puig J,
u. a. Multiparametric MRI for Differentiation of Radiation Necro-
sis From Recurrent Tumor in Patients With Treated Glioblastoma.
American Journal of Roentgenology. 1. Januar 2018;210(1):18–23.

7. Boxerman JL, Ellingson BM, Jeyapalan S, Elinzano H, Harris RJ,
Rogg JM, et al. Longitudinal DSC-MRI for Distinguishing Tumor
Recurrence From Pseudoprogression in Patients With a High-grade
Glioma. Am J Clin Oncol. 2017;40(3):228–34.

8. Young RJ, Gupta A, Shah AD, Graber JJ, Chan TA, Zhang Z, et al.
MRI perfusion in determining pseudoprogression in patients with
glioblastoma. Clin Imaging. 2013;37(1):41–9.

9. Tsien C, Galbán CJ, Chenevert TL, Johnson TD, Hamstra DA,
Sundgren PC, u. a. Parametric response map as an imaging bio-
marker to distinguish progression from pseudoprogression in high-
grade glioma. J Clin Oncol. 1. Mai 2010;28(13):2293–9.

10. Kong DS, Kim ST, Kim EH, Lim DH, Kim WS, Suh YL, et al. Di-
agnostic Dilemma of Pseudoprogression in the Treatment of Newly
Diagnosed Glioblastomas: The Role of Assessing Relative Cerebral
Blood Flow Volume and Oxygen-6-Methylguanine-DNA Methyl-
transferase Promoter Methylation Status. AJNR Am J Neuroradiol.
2011;32(2):382–7.

11. Hu LS, Eschbacher JM, Heiserman JE, Dueck AC, Shapiro WR,
Liu S, u. a. Reevaluating the imaging definition of tumor progres-
sion: perfusion MRI quantifies recurrent glioblastoma tumor frac-

tion, pseudoprogression, and radiation necrosis to predict survival.
Neuro-Oncology. 1. Juli 2012;14(7):919–30.

12. Sugahara T, Korogi Y, Tomiguchi S, Shigematsu Y, Ikushima I,
Kira T, et al. Posttherapeutic intraaxial brain tumor: the value of
perfusion-sensitive contrast-enhanced MR imaging for differentiat-
ing tumor recurrence from nonneoplastic contrast-enhancing tissue.
AJNR Am J Neuroradiol. 2000;21(5):901–9.

13. Barajas RF, Chang JS, Segal MR, Parsa AT, McDermott MW,
Berger MS, u. a. Differentiation of Recurrent Glioblastoma Mul-
tiforme from Radiation Necrosis after External Beam Radiation
Therapy with Dynamic Susceptibility-weighted Contrast-enhanced
Perfusion MR Imaging1. Radiology. November 2009;253(2):
486–96.

14. Henriksen OM, Larsen VA, Muhic A, Hansen AE, Larsson HBW,
Poulsen HS, u. a. Simultaneous evaluation of brain tumour metab-
olism, structure and blood volume using [18F]-fluoroethyltyrosine
(FET) PET/MRI: feasibility, agreement and initial experience. Eur
J Nucl Med Mol Imaging. 1. Januar 2016;43(1):103–12.

15. Heo YJ, Kim HS, Park JE, Choi CG, Kim SJ. Uninterpretable
Dynamic Susceptibility Contrast-Enhanced Perfusion MR Im-
ages in Patients with Post-Treatment Glioblastomas: Cross-Vali-
dation of Alternative Imaging Options. PLOS ONE. 21. August
2015;10(8):e0136380.

16. Alsop DC, Detre JA. Reduced Transit-Time Sensitivity in Noninva-
sive Magnetic Resonance Imaging of Human Cerebral Blood Flow.
J Cereb Blood Flow Metab. 1. November 1996;16(6):1236–49.

17. Jena A, Taneja S, Gambhir A, Mishra AK, D’souza MM, Verma
SM, u. a. Glioma Recurrence Versus Radiation Necrosis: Single-
Session Multiparametric Approach Using Simultaneous O-(2-
18F-Fluoroethyl)-L-Tyrosine PET/MRI. Clin Nucl Med. Mai
2016;41(5):e228–236.

18. Langen KJ, Galldiks N, Hattingen E, Shah NJ. Advances in neuro-
oncology imaging. Nat Rev Neurol. 2017;13(5):279–89.

19. Pyka T, Hiob D, Preibisch C, Gempt J, Wiestler B, Schlegel J, et al.
Diagnosis of glioma recurrence using multiparametric dynamic
18F-fluoroethyl-tyrosine PET-MRI. Eur J Radiol. 2018;103:32–7.

20. Sogani SK, Jena A, Taneja S, Gambhir A, Mishra AK,
D’Souza MM, et al. Potential for differentiation of glioma re-
currence from radionecrosis using integrated 18F-fluoroethyl-L-
tyrosine (FET) positron emission tomography/magnetic resonance
imaging:
A prospective evaluation. Neurol India. 2017;65(2):293–301.

21. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen
AG, Galanis E, u. a. Updated response assessment criteria for high-
grade gliomas: response assessment in neuro-oncology working
group. J Clin Oncol. 10. April 2010;28(11):1963–72.

22. Boxerman JL, Schmainda KM, Weisskoff RM. Relative Cerebral
Blood Volume Maps Corrected for Contrast Agent Extravasation
Significantly Correlate with Glioma Tumor Grade, Whereas Uncor-
rected Maps Do Not. AJNR Am J Neuroradiol. 2006;27(4):859–67.

23. Hamacher K, Coenen HH. Efficient routine production of the 18F-
labelled amino acid O-2-18F fluoroethyl-L-tyrosine. Appl Radiat
Isot. 2002;57(6):853–6.

24. Law I, Albert NL, Arbizu J, Boellaard R, Drzezga A, Galldiks N,
et al. Joint EANM/EANO/RANO practice guidelines/SNMMI pro-
cedure standards for imaging of gliomas using PET with radiola-
belled amino acids and [18F]FDG: version 1.0. Eur J Nucl Med
Mol Imaging. 2019;46(3):540–57.

25. Pichler R, Dunzinger A, Wurm G, Pichler J, Weis S, Nußbaumer K,
u. a. Is there a place for FET PET in the initial evaluation of brain
lesions with unknown significance? Eur J Nucl Med Mol Imaging.
1. August 2010;37(8):1521–8.

26. Hanley JA, McNeil BJ. The meaning and use of the area un-
der a receiver operating characteristic (ROC) curve. Radiology.
1982;143(1):29–36.

K



360 J. Panholzer et al.

27. Larsen VA, Simonsen HJ, Law I, Larsson HBW, Hansen AE. Eval-
uation of dynamic contrast-enhanced T1-weighted perfusion MRI
in the differentiation of tumor recurrence from radiation necrosis.
Neuroradiology. 1. März 2013;55(3):361–9.

28. Serkova NJ, Brown MS. Quantitative analysis in magnetic reso-
nance spectroscopy: from metabolic profiling to in vivo biomarkers.
Bioanalysis. 2012;4(3):321–41.

29. Chiang GC, Kovanlikaya I, Choi C, Ramakrishna R, Magge R,
Shungu DC. Magnetic Resonance Spectroscopy, Positron Emission
Tomography and Radiogenomics-Relevance to Glioma. Front Neu-
rol. 2018;9:33.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

K


	Multiparametric Analysis Combining DSC-MR Perfusion and [18F]FET-PET is Superior to a Single Parameter Approach for Differentiation of Progressive Glioma from Radiation Necrosis
	Abstract
	Introduction
	Methods
	Patient Population
	Inclusion Criteria
	Exclusion Criteria

	MRI Protocol
	[18F]FET PET Protocol
	Image Analysis
	Follow-up and Final Diagnosis
	Statistics

	Results
	Cohort Characteristics
	Single Parameter Analysis
	Multiparametric Analysis

	Discussion
	Limitations
	Conclusion
	Supplementary Information
	References


