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Abstract
Purpose Conventional predictive models are based on a combination of clinical and neuroimaging parameters using
traditional statistical approaches. Emerging studies have shown that the machine learning (ML) prediction models with
multiple pretreatment clinical variables have the potential to accurately prognosticate the outcomes in acute ischemic stroke
(AIS) patients undergoing thrombectomy, and hence identify patients suitable for thrombectomy. This article summarizes
the published studies on ML models in large vessel occlusion AIS patients undergoing thrombectomy.
Methods We searched electronic databases including PubMed from 1 January 2000 up to 14 October 2019 for studies
that evaluated ML algorithms for the prediction of outcomes in stroke patients undergoing thrombectomy. We then used
random-effects bivariate meta-analysis models to summarize the studies.
Results We retained a total of five studies that evaluated ML (4 support vector machine, 1 decision tree model) with
a combined cohort of 802 patients. The prevalence of good functional outcome defined by 90-day mRS of 0–2 when avail-
able. Random effects model demonstrated that the AUC was 0.846 (95% confidence interval, CI 0.686–0.902). A pooled
diagnostic odds ratio of 12.6 was computed. The pooled sensitivity and specificity were 0.795 (95% CI 0.651–0.889) and
0.780 (95% CI 0.634–0.879), respectively.
Conclusion ML may be useful as an adjunct to clinical assessment to predict functional outcomes in AIS patients
undergoing thrombectomy, and hence identify suitable patients for treatment. Further studies validating ML models in
large multicenter cohorts are necessary to explore this further.
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Abbreviations
AIS Acute ischemic stroke
ASPECTS Alberta Stroke Program Early CT Score
DC Discharge
DOR Diagnostic odds ratio
EVT Endovascular thrombectomy
ML Machine learning
mRS Modified Rankin score
NIHSS National Institutes of Health Stroke Scale
NPV Negative predictive value
PICOS Population, intervention, comparison, out-

come, and study design
PPV Positive predictive value
PRISMA Preferred reporting items of systematic re-

views and meta-analyses
ROC Receiver operator curves
SVM Support vector machine

Table 1 PICOs, inclusion criteria and exclusion criteria applied to database search

PICOS Inclusion criteria Exclusion criteria

Population Patients with large vessel occlusion ischemic stroke Non-thrombectomy interventions, alternative and tra-
ditional medicine (including chiropractic, Traditional
Chinese Medicine)

Patients who have undergone an endovascular procedure OR
mechanical thrombolysis

Non-neurostroke specialties

Pharmacy, dentistry, pathology, radiology, pediatrics,
emergency medicine, obstetrics and gynecology, anes-
thesiology

Allied health (dietetics, podiatry, speech therapy, mid-
wifery, occupational and physiotherapy)

Intervention Machine learning on large vessel occlusion interventions to under-
stand, review and evaluate outcomes on patients

Prediction models that do not use machine learning

Machine learning encompass various algorithms including elastic
net regression or ridge regression or naive bayes or support vector
machine or perceptron or neural networks or multilayer perceptron
or deep learning or deep neural network or convolutional neural
network or recurrent neural network or bayesian network or deci-
sion tree or random forest or gradient boosting machine or extreme
gradient boosting

Comparison Comparisons of the various ML algorithms and its impact upon the
outcome prediction in stroke patients

Traditional logistic regression for outcome prediction
in stroke patients

Outcome Modified Rankin Scale –

Symptomatic intracranial hemorrhage

Modified treatment in cerebral infarct score
Study design Articles in English or translated into English Case reports and series, ideas, editorials, and

perspectivesAll study designs including:
– Mixed methods research, meta-analyses, systematic reviews,

randomized controlled trials, cohort studies, case-control studies,
cross-sectional studies, and descriptive papers

– Grey literature/electronic and print information not controlled by
commercial publishing

Year of publication: 1 January 2000–14 October 2019

Databases: PubMed

Introduction

Acute ischemic stroke (AIS) is the leading cause of adult
disability in Singapore and with an ageing population, the
burden of stroke is expected to rise [1]. In patients with
large artery occlusion in the anterior circulation presenting
within 24h, mechanical thrombectomy may be indicated.
Presently, clinicians use a combination of clinical judgment
and neuroimaging parameters to discern if a patient will be
suitable for endovascular thrombectomy (EVT) [2]. This
decision-making has been previously modeled by a multi-
variate logistic regression model by selecting some prog-
nostic variables, and aggregating them into a usable scale
[3]; however, this classical approach is limited as it operates
on the assumption that there is a linear relationship between
the variables and the logarithmic odds of outcomes, and is
weak to collinearity between the variables [4]. By contrast,
using machine learning (ML), one can program various al-
gorithms that are free of these linear assumptions with the
benefit of being able to control collinearity by regulariza-
tion hyperparameters [5].
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Fig. 1 PRISMA flow diagram of
study selection

4 articles analyzed

3145 de-duplicated records 
screened

0 duplicates

2 additional records identified 
from searches within review 
articles references

Excluded through review of full-text 
article (n=29)
- No stroke outcomes were 

reported (n = 6) 
- Not on thrombectomy (n = 10) 
- Does not cover stroke patients 

(n = 5) 
- Full text not available (n = 2)
- No machine learning 

mentioned (n = 2)
- Insufficient statistical reporting 

of stroke outcomes (n = 3)
- Review paper (n = 1)

33 full-text articles 
assessed for eligibility

Records excluded*
(n=3114)

3143 records identified from 
database search of PUBMED

*Most common reasons for exclusion:
(1) Population that does not include stroke 

patients
(2) Population did not undergo thrombectomy
(3) No machine learning used
(4) Study type: case reports, review, editorial

Machine learning has been shown to successfully incor-
porate multifactorial events in various fields for clinically
relevant outcomes, such as the diagnosis of acute coronary
syndromes [6]. Similarly, emerging studies seem to indi-
cate that there is great potential in introducing ML models
as a clinical tool to accurately predict the suitability of an
AIS patient for an EVT procedure [7–9]; however, individ-
ual studies may not be statistically powered to evaluate the
robustness of the findings or may not adequately account
for the small biases in each population. Hence, we con-
ducted a systematic review and meta-analysis to evaluate
the effectiveness of current ML models as a clinical tool

to predict the clinical outcome of AIS patients undergoing
EVT.

Methodology

This diagnostic test accuracy (DTA) meta-analysis was
conducted and reported in accordance with the Cochrane
DTA handbook [10] and preferred reporting items of sys-
tematic reviews and meta-analyses (PRISMA) guidelines
[11]. We searched PubMed from 1 January 2000 to 14
October 2019 for studies that evaluated ML algorithms
for the prediction of outcomes with the modified Rankin
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Table 2 Participant characteristics

Study Sample
size

Mean
age
(years,
SD)

Males Baseline
NIHSS
(SD/IQR)

Baseline
ASPECTS
(SD/IQR)

Time to
proce-
dure/min
(SD)

Time to re-
canaliza-
tion/min
(SD)

IV throm-
bolysis

Outcome
mRS-
90d= 0–2

Outcome
mRS-
30d= 0–2

Alawieh
(2018)
[9]

36 86.0 (4) 17 15
(SD: 7)

8.4
(SD: 1.4)

NRa NR 19 13 NR

110 84.6 (4) 39 18
(SD: 16.5)

8.5
(SD: 1.4)

NR NR 53 22 NR

Asadi
(2014a)
[7]

107 65.3
(13.8)

66 17.7
(SD: 7.9)

NR 82.3 (39) 340 (91.8) 44 NR 54

Asadi
(2014b)
[8]

50 65 (14.9) 35 20.6
(SD: 15.5)

NR 97.2 (43) 660 (374) 7 23 NR

Nishi
(2019)
[5]

387 76.0
(11.9)

206 19
(IQR:
14–23)

9
(IQR:
8–10)

NR NR 214 148 NR

SD standard deviation, NIHSS National Institutes of Health stroke scale, ASPECTS Alberta stroke program early CT score, IQR interquartile
range, mRS-90d modified rank scale (mRS) at 90 days, mRS-30d modified rank scale (mRS) at 30 days
aNR refers to not reported

scale (mRS), modified thrombolysis in cerebral infarction
(modified TICI), symptomatic intracranial cerebral hem-
orrhage score, and mortality in stroke patients undergoing
thrombectomy. Literature search in MEDLINE (PubMed)
was performed using the following terms in combina-
tion: (large vessel occlusion OR cerebrovascular occlusion
OR endovascular thrombectomy OR mechanical thrombec-
tomy) and (artificial intelligence OR machine learning). We
included all studies (randomized controlled trials, prospec-
tive/retrospective cohort studies, case-control studies), ac-
cording to the PICOS (Table 1). We excluded all studies
not reporting stroke outcomes following thrombectomy.
The literature search and data extraction were performed
independently by two reviewers, and all disagreements
were resolved by mutual consensus. The corresponding
authors of three papers were contacted by email to provide
data not directly available in the original publication but
have not responded by the time of submission, hence the
papers were excluded.

Study protocol and full text articles were independently
reviewed by an expert team comprising senior neurologists.

Apart from stroke outcomes of patients, we also collected
data on age, sex, smoking, the presence of diabetes melli-
tus, hypertension, hyperlipidemia, atrial fibrillation, previ-
ous ischemic stroke and coronary artery disease. Baseline
information included National Institute of Health Stroke
Scale (NIHSS), Alberta Stroke Program Early CT Score
(ASPECTS), modified Rankin scale (mRS), systolic blood
pressure, time of admission (door), time to intravenous
thrombolysis (needle), time to procedure start (puncture),
time to recanalization, intravenous thrombolysis, endovas-
cular intervention, anesthesia type (general anesthesia vs.
conscious sedation), vascular occlusion site and stroke eti-

ology according to TOAST criteria [12, 13]. Outcomes
collected include mRS 0–2 at discharge, 90-day follow-
up, and 30-day follow-up, symptomatic intracranial hemor-
rhage, mortality, modified TICI score 2b/3, NIHSS at dis-
charge and NIHSS with early clinical improvement. For
the prediction models, we collected data of the accuracy
metrics, including sensitivity, specificity, positive predic-
tive value (PPV), negative predictive value (NPV), preci-
sion, accuracy, true positive rates, false positive rates, true
negative rate, false negative rate, receiver operator curves
(ROC), area under the curve (AUC), conclusion, and other
outcomes measured. In the case of data unavailability, we
requested further data by contacting the corresponding au-
thors of the relevant studies. Quality control were performed
by two independent reviewers with the Ottawa grading qual-
ity assessment [14], as shown in Appendix 1.

Statistical Analysis

In this DTA meta-analysis, the results from the five included
studies were quantitatively pooled and analyzed in R ver-
sion 3.6.2 (R Foundation for Statistical Computing, Vienna,
Austria) using general approaches laid out by Shim et al.
[15]. We used the metaprop command to pool sensitivity,
specificity, PPV, NPV, and diagnostic odds ratio (DOR).
The logit transformation was applied, and Clopper-Pear-
son exact confidence intervals were used [16]. The reitsma
(Package: mada), which employs the bivariate model, was
employed to generate the summary ROC curve and com-
pute the area under curve (AUC) [17]. The random-effects
model was utilized to account for between-study variance.
We present between-study heterogeneity using I2 and τ2
statistics. We considered I2 of <30% to indicate low het-
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Table 3 Clinical predictors and outcomes included in the training of different ML models

Paper Clinical predictors and outcomes included in ML models

Alawieh
(2018)
[9]

Demographic Age, gender, race, mRS (baseline), diabetes mellitus, hyperlipidemia, hypertension, atrial fibrilla-
tion, NIHSS (baseline), IV tPA administration

Preprocedural imaging ASPECT score (non-contrast CT scan), MR DWI (infarction site)

Intervention ADAPT thrombectomy (posterior ischemic stroke patients, or anterior circulation if CT perfusion
imaging showed a mismatch, e.g. presumed penumbra between relative cerebral blood volume and
blood flow that correlated with their presenting NIHSS score)

Intervention (time-specific) Onset-to-groin time

Procedural or post-procedu-
ral complications

Postprocedural hemorrhage, parenchymal hematoma 2 (PH2)-type symptomatic intracerebral hem-
orrhage

Outcomes mRS (90days)
Asadi
(2014a)
[7]

Demographic Age, diabetes mellitus, hypertension, hypercholesterolemia, atrial fibrillation, history of ischemic
attack, neurological examination, NIHSS (baseline), IV-tPA prior to EVT, intra-arterial chemical
thrombolytic agents

Pre-procedural imaging Initial diagnostic angiogram, occlusion site (in the case of multiple sequential occlusions, the prox-
imal vessel was used as a data point, and depending on the extent and segments involved, the artery
was categorized as first, second and third occlusion)

Intervention EVT (Solitaire stent-retriever, MERCI, Penumbra devices), if present, associated or post-recanal-
ization hemodynamically significant stenoses were also treated with angioplasty or stent insertion

Intervention (time-specific) Procedure duration, time of onset to recanalization

Procedural or postprocedu-
ral complications

Arterial perforation, puncture site hematoma, pseudoaneurysm, intracranial hemorrhage transfor-
mations (silent, symptomatic), number of attempts for recanalization, patient general anesthesia
status

Outcomes mRS (90days), TICI, neuroimaging (postprocedural CT scans 24–36h)
Asadi
(2014b)
[8]

Demographic Age, acute posterior circulation stroke, diabetes mellitus, hypertension, hypercholesterolemia,
atrial fibrillation, history of ischemic heart disease, previous cerebral stroke or transient ischemic
attack, neurological examination, NIHSS (baseline), IV-tPA prior to EVT, intra-arterial chemical
thrombolytic agents

Pre-procedural imaging Initial diagnostic angiogram, occlusion site (in the case of multiple sequential occlusions, the prox-
imal vessel was used as a data point, and depending on the extent and segments involved, the artery
was categorized as first, second and third occlusion)

Intervention EVT (Solitaire stent-retriever, MERCI device), if present, associated or post-recanalization hemo-
dynamically significant stenoses were also treated with angioplasty or stent insertion

Intervention (time-specific) Procedure duration, time of onset to recanalization

Procedural or postprocedu-
ral complications

Arterial perforation, puncture site hematoma, pseudoaneurysm, intracranial hemorrhage transfor-
mations (silent, symptomatic), number of attempts for recanalization, patient general anesthesia
status

Outcomes mRS (90days), TICI, neuroimaging (postprocedural CT scans 24–36h)
Nishi
(2019)
[5]

Demographic Age, sex, mRS (baseline), hypertension, diabetes mellitus, atrial fibrillation, intake of antithrom-
botic drugs, pattern of stroke onset (wake-up, found, witnessed stroke), NIHSS (baseline), blood
glucose level on arrival, IV-tPA, care-dependent

Pre-procedural imaging CT or MRI (site of occlusion), ASPECT score

Prediction methods in-
cluded

PRE score, AT2

Intervention EVT (stent retriever, aspiration catheter)

Intervention (time-specific) Onset-to-door time

Procedural or post-procedu-
ral complications

NRa

Outcomes mRS (90days), mTICI, SICH

NIHSS National Institutes of Health stroke scale, ASPECTS Alberta stroke program early CT score, ADAPT direct aspiration first pass technique,
mRS-90d modified rank scale (mRS) at 90 days, mRS modified rank scale (mRS), EVT endovascular thrombectomy
aNR refers to not reported
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Fig. 2 Forest plot of the diag-
nostic odds ratio reported by
studies that applied a machine
learning method to predict clini-
cal outcomes in ischemic stroke
patients undergoing thrombec-
tomy

Fig. 3 Forest plot of the sensi-
tivity reported by studies that ap-
plied a machine learning method
to predict clinical outcomes in
ischemic stroke patients under-
going thrombectomy

Fig. 4 Forest plot of the speci-
ficity reported by studies that ap-
plied a machine learning method
to predict clinical outcomes in
ischemic stroke patients under-
going thrombectomy

erogeneity between studies, 30–60% to indicate moderate
heterogeneity, and >60% to indicate substantial heterogene-
ity. Two-sided P values of <0.05 were regarded to indicate
nominal statistical significance.

Results

The PRISMA flowchart is presented in Fig. 1. MEDLINE
literature search retrieved 3143 results, and bibliographic
searches from review articles references uncovered two ad-
ditional studies. After an initial screen, 3110 studies were
excluded as they did not include stroke patients, thrombec-
tomy patients, did not use machine learning methods, or
were of an inappropriate study type. In the remaining 33
full-text papers, full text review excluded 29 papers and 4
papers were included in our analysis.

Baseline Characteristics

We retained a total of five studies that evaluated ML. Sup-
port vector machine was utilized across four studies and
decision tree was utilized in Alawieh 2018 [9]. In the study
by Nishi 2019 [5], regularized logistic regression, random
forest, and support vector machine were utilized. To re-
duce heterogeneity, we analyzed the support vector machine
model in Nishi 2019. In addition, the Alawieh (2018) paper
included 2 separate cohorts, comprising one retrospective
and one prospective. Hence, despite the PRISMA in Fig. 1
showing four included articles, the number of included stud-
ies totaled five.

The five studies (1 prospective and 4 retrospective stud-
ies) comprised a combined cohort of 805 patients, of
which 690 patients (mean age: 75.4 years, 52.6% males)
reported outcome assessment and was included in the anal-
ysis. A significant proportion of patients (42.1%) received
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Fig. 5 Summary receiver operating characteristic curve (ROC). Curve
is not part of the ROC. HSROC Hierarchical Summary Receiver Oper-
ating Characteristic

IV thrombolysis. The primary outcome measured was mRS
at 90 days when available. When unavailable, mRS at the
closest time point was obtained and specified. The mRS
measures the degree of disability in stroke patients, with
a good functional outcome defined as mRS 0–2. A good
functional outcome was achieved in 37.7% of patients. As
the symptomatic intracranial hemorrhage, mortality, modi-
fied treatment in cerebral infarct score 2b/3, NIHSS at dis-
charge, and NIHSS with early clinical improvement were
not reported across all studies, they were excluded from
the analysis. The participant characteristics of the included
studies are shown in Table 2.

Across the five cohorts, the type of machine learning
modalities utilized and how they were derived are varied.
A summary of the machine learning modalities, compris-
ing machine learning model, software algorithm, training
procedure, and optimizing metrics of the included studies
is attached in Appendix 2. The quality of training data,
comprising type of study, cohort size, class imbalance, nor-
malization/standardization, and validation are summarized
in Appendix 3. Clinical predictors and outcomes included
in the five studies are summarized in Table 3.

Machine Learning Pooled Outcomes

The diagnostic odds ratio in predicting the outcome of
AIS patients undergoing endovascular thrombectomy is
presented in Fig. 2. Random effects model demonstrated
that the odds ratio was 12.6 (95% confidence interval:
5.26–30.36, I2= 68%).

The sensitivity is presented in Fig. 3. Random effects
model demonstrated that the pooled sensitivity was 0.795
(95% confidence interval: 0.651–0.889, I2= 70%).

The specificity is presented in Fig. 4. Random effects
model demonstrated that the pooled specificity was 0.780
(95% confidence interval: 0.634–0.879, I2= 85%).

The random effects model demonstrated that the pooled
negative predictive value was 0.874 (95% confidence in-
terval: 0.728–0.947) (I2= 84%). The random effects model
demonstrated that the pooled positive predictive value was
0.697 (95% confidence interval: 0.640–0.749, I2= 0.0%).

The summary ROC is presented in Fig. 5. The AUC
of the summary ROC was 0.846 (95% confidence interval:
0.686–0.902).

Discussion

This diagnostic test accuracy meta-analysis demonstrates
the utility of ML algorithms as an adjunctive tool in iden-
tifying good candidates in acute ischemic stroke patients
indicated for endovascular thrombectomy (EVT) with mod-
erate to high AUC, sensitivity, specificity, NPV and PPV;
however, there exists a large heterogeneity across ML mod-
els. The accuracy of ML will undoubtedly improve over
time as algorithms are trained on larger and more robust
databases, improving patient selection for endovascular
thrombectomy.

Traditional predictive models include ASPECTS score,
baseline NIHSS, M1 occlusion, Boston acute stroke imag-
ing scale (M1-BASIS), and the DEFUSE-2 trial. When con-
sidering the effectiveness of traditional clinical predictive
models as compared to the ML models, the AUC was uti-
lized [18, 19]. Compared to that of the ML model (AUC for
ML model= 0.846), the AUC for ASPECTS (0.730), M1-
BASIS (0.721), NIHSS (0.728), and the DEFUSE-2 trial
(0.730) demonstrated a lower value [18, 19]. This demon-
strates a relative superiority of ML models compared to
traditional predictive models in prognosticating stroke pa-
tients who are indicated for thrombectomy.

A pooled diagnostic odds ratio (DOR) of 12.6 demon-
strates the potential of utilizing ML algorithms as a predic-
tive tool for good clinical outcomes with higher discrimina-
tory power compared to conventional models [20]; however,
as the DOR is usually used as an output statistic, rather than
a summary test statistic, as it can be achieved at different
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combinations of sensitivity and specificity. Examining the
random effects model, it demonstrated a pooled sensitivity
and specificity 0.795 and 0.780, respectively, each near-
ing 80%. On the other hand, traditional predictive models,
such as the ASPECT score, conventionally used to exclude
patients for the use of reperfusion therapy, showed higher
sensitivity of 0.91 and specificity of 0.88 compared to that
of ML models [21]. We propose that the differences may
be due to high heterogeneity across the studies analyzed.
Observing the forest plots for sensitivity in Fig. 3, the first
three cohorts by Alawieh and Asadi (2014a) showed much
higher sensitivities of around 0.90 as compared to the re-
maining two cohorts. On the other hand, Nishi and Alawieh
(2018b) showed much higher specificities of around 0.90 as
compared to the remaining three cohorts. These are compa-
rable to traditional models like ASPECT. Hence, we note
that a large heterogeneity exists across ML models, affect-
ing the accuracy of the pooled prognostic estimate [22].

Additionally, accounting for the prevalence of good and
poor clinical outcomes amongst acute ischemic stroke pa-
tients, we derived the pooled positive predictive value and
negative predictive value of 0.697 and 0.874. A high nega-
tive predictive value of 87% shows that a high proportion of
patients who are predicted by ML to have poor outcomes
do in fact suffer from poor outcomes postthrombectomy,
hence guiding the risk-benefit decision-making process for
thrombectomy [23]. Hence, we proposed that current ML
models can be used as an adjunctive clinical tool with a high
discriminatory value to predict the suitability of an AIS pa-
tient for an EVT procedure. Using ML algorithms, patients
with predicted poor mRS-90d may be assessed to be at
a higher risk for poorer outcomes, corresponding to a lower
benefit from the intervention. Hence, EVT procedures may
be deemed unsuitable if the risk outweighs the potential
benefit.

Recent studies showed that due to its high discriminatory
value, ML has the potential to be more effective compared
to older regression models in predicting the clinical out-
come in other diseases [24]. In stroke patients, ML has been
shown to translate data like spatial regularization of diffu-
sion-weighted index into statistical data [25], and imaging
algorithms that are able to estimate the extent of potentially
salvageable tissues [26]. This implies that with the correct
combination of factors and algorithm, ML might be able to
accurately predict outcomes of stroke patients undergoing
endovascular thrombectomy.

However, we emphasize that the interplay of factors and
confounders in the human body is very complex, and a sig-
nificant amount of training over a large dataset needs to
be applied to ML to compensate for these factors [27].
This may partially explain the observed large heterogeneity
across ML models in our study. Nonetheless, the converse
may also hold true. With sufficient training, ML algorithms

may be able to augment physician’s decision making by ac-
counting for relationships and interactions between differ-
ent variables that the clinician may not be aware of, hence
enabling clinicians to make a more informed decision about
a patient’s treatment.

We postulate that the implementation of a machine learn-
ing tool into clinical practice may be less challenging than
previously thought, owing to its convenience, ease of use
and personalization. Currently, indications for a thrombec-
tomy include a contraindication to tissue plasminogen ac-
tivator thrombolysis, a timing of within 6h onset of stroke,
a large vessel intracranial vessel, and the use of conven-
tional scoring including NIHSS ≥10 and ASPECTs ≥6. We
propose that machine learning can be considered as a sec-
ondary tool to indicate thrombectomy use. On notification
of a patient presenting with AIS, demographic data and
medical history may be automatically extracted from the
hospital database into the ML algorithm. After preliminary
clinical assessment and investigations are completed, the
clinician may further input relevant parameters and investi-
gation findings into the ML algorithm to quickly determine
the potential benefit and hence suitability of the patient in
undergoing thrombectomy. The majority of the studies ana-
lyzed in this meta-analysis used a form of widely used ma-
chine learning called support vector machine (SVM). This
is a commonly used machine learning tool, having previ-
ously been used in cancer genomics, due to the strength
of the algorithm and the flexibility in the data presentation
[28]. Furthermore, the primary clinical outcome is mRS,
a widely used clinical outcome measure in stroke patients.
This provides a relatively smoother transition to the uptake
of machine learning to aid clinicians.

Limitations

Certain limitations of this study should be acknowledged.
First, only a small number of studies were included in the
analysis, of which the majority utilized SVM. This may
reduce the generalizability of the findings across different
ML models and patient cohorts.

Second, some of the utilized clinical predictors may not
have been reported fully in the papers. Furthermore, among
the reported clinical predictors used, while the categories
of predictors are largely similar, the individual predictors
included under each category differ across studies. Hence,
this may introduce heterogeneity across the studies included
in the meta-analysis.

Third, while machine learning has tremendous potential
its “black box” limitation mandates that ML models require
large databases to improve their accuracy, and the true un-
derlying relationships between influential factors remains
largely unknown to the user [29, 30].
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Fourth, an mRS score of 0–2 was used to represent
a good outcome post-thrombectomy. The negative outcome
reported may not have been a direct result of the thrombec-
tomy, but rather a complication of an existing comorbidity,
which may affect the reliability of the SVM if sufficient
variables were not accounted for.

Fifth, while the quality of training data is overall high,
most of the studies (n= 4) were retrospective, which may
introduce bias into the training of ML models. Furthermore,
software algorithms differed across studies. Hence, further
prospective studies are needed to improve the training of
ML models.

Conclusion

The moderate to high AUC, sensitivity, specificity, nega-
tive predictive value and diagnostic odds ratio demonstrate
that ML is a good adjunct clinical tool to predict the suit-
ability of an AIS patient undergoing EVT. As seen in the
heterogeneity of the studies analyzed, further development
is required to improve the accuracy of various ML models.
Training the algorithms over larger datasets and allocating
more resources towards the refinement of algorithms may
help improve its sensitivity and specificity so that it may
potentially be used as a confirmatory tool in the future.
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