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tention networks. Patterns of distribution and development 
of both amyloid-β plaques and atrophy are linked with net-
work connectivity changes, suggesting that start and spread 
of pathology interacts with network connectivity. Qualita-
tively similar findings have been observed in other neuro-
degenerative disorders, suggesting shared mechanisms of 
network-based pathophysiology across diseases.
Conclusion Spread of neurodegeneration is intimately 
linked with the functional connectivity of intrinsic brain 
networks. These pathophysiological insights pave the way 
for new multi-modal network-based tools to detect and 
characterize neurodegeneration in individual patients.

Keywords Neurodegenerative diseases · Alzheimer’s 
disease · Multi-modal imaging · Intrinsic brain networks

Introduction

Multi-modal brain imaging provides distinct in vivo win-
dows into the human brain and thereby specific ways to 
characterize brain disorders. Different methods range from 
structural magnetic resonance imaging (MRI), revealing 
volumetric aspects of brain tissue, to diffusion-weighted 
MRI, detecting water diffusion along brain fibers and 
thereby structural connectivity, to functional MRI, being 
sensitive to blood oxygenation changes caused indirectly 
by regional brain activity. When using multi-modal neuro-
imaging to characterize brain disorders, the variety of dis-
tinct brain aspects calls for integrating pathophysiological 
models. Macroscopic intrinsic brain networks represent 
a fundamental large-scale organization of the mammalian 
brain, which can be detected in vivo by resting-state func-
tional MRI [1]. Intrinsic brain networks are characterized by 
coherent ongoing blood oxygenation-dependent activity that 

Abstract
Purpose Multi-modal brain imaging provides different in 
vivo windows into the human brain and thereby different 
ways to characterize brain disorders. Particularly, resting-
state functional magnetic resonance imaging facilitates the 
study of macroscopic intrinsic brain networks, which are 
critical for development and spread of neurodegenerative 
processes in different neurodegenerative diseases. The aim 
of the current study is to present and highlight some para-
digmatic findings in intrinsic network-based pathophysiol-
ogy of neurodegenerative diseases and its potential for new 
network-based multimodal tools in imaging diagnostics.
Methods Qualitative review of selected multi-modal imag-
ing studies in neurodegenerative diseases particularly in Al-
zheimer’s disease (AD).
Results Functional connectivity of intrinsic brain net-
works is selectively and progressively impaired in AD, 
with changes likely starting before the onset of symptoms 
in fronto-parietal key networks such as default mode or at-
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fluctuates at about 0.1 Hz, and are consistently found in dif-
ferent species [2], along the whole human ontogenetic tra-
jectory [3], and across different states of consciousness [4]. 
Critically, since intrinsic networks are sensitive to different 
brain disorders’ changes via altered coherence in ongoing 
activity, they offer a pathophysiological framework to char-
acterize brain disorders and to integrate different types of 
brain changes. The aim of the current paper is to present and 
highlight some paradigmatic findings in intrinsic network-
based pathophysiology of neurodegenerative diseases and 
its potential role for new network-based multimodal tools in 
imaging diagnostics.

Since already excellent reviews about intrinsic network-
centered multi-modal connectivity changes in neurodegen-
erative disorders exist [5, 6], we focused our review on few 
selected studies which we found appropriate for our study’s 
focus on network-based pathophysiology and the role of 
those intrinsic networks in multi-modal imaging. The selec-
tion of previous literature is biased in two ways: firstly it 
is centered on Alzheimer’s disease (AD), since most work 
has been done in this field; secondly, we place emphasis on 
studies of our own research laboratory due to the aim of 
the journal’s special issue, that is, to present distinct neu-
roradiology departments of 50 years Deutsche Gesellschaft 
für Neuroradiologie. This means formally, we performed a 
qualitative review of author-biased selected studies about 
neurodegenerative diseases and intrinsic brain networks. In 
the beginning, we reported about selective and progressive 
changes in intrinsic networks in neurodegenerative disor-
ders, then how these changes link with neurodegenerative 
processes as revealed by multi-modal imaging. After that 
functional changes in intrinsic connectivity were linked 
with changes in structural connectivity; this allows us in 
the end to mention some relevant points about network- or 
connectivity-based multi-modal imaging tools for the char-
acterization of neurodegeneration.

Altered Intrinsic Brain Networks in Neurodegenerative 
Diseases

Intrinsic networks are measured by patterns of functional 
connectivity in resting-state functional magnetic resonance 
imaging (fMRI) data, that is, spatial patterns of correlated 
fMRI signals [1]. Specific patterns of such stationary cor-
related blood oxygenation level-dependent (BOLD) signal 
time courses define specific intrinsic networks. Examples 
for such networks are the default mode or attention networks 
as well as primary sensory or sensori-motor networks. In 
2004, Greicius et al. [7] were the first showing that a brain 
disorder has an impact on an intrinsic brain network. They 
demonstrated that patients with AD dementia had reduced 
functional connectivity in the default mode network par-

ticularly in parietal and hippocampal sub-regions. In 2007, 
we found that in patients with mild cognitive impairment 
being at increased risk for AD, reduced functional con-
nectivity was present only in selected intrinsic networks, 
namely the medial fronto-parietal default mode and lateral 
attention network [8]. Other networks such as primary sen-
sory and motor networks were unchanged, and connectivity 
changes were independent from structural changes, that is, 
atrophy mainly in medial temporal lobes. Agosta et al. [9] 
found in a similar way that such patterns of selected intrin-
sic network changes proceed and extend from patients with 
mild cognitive impairment to patients with AD dementia, 
suggesting progressive and selective changes in functional 
connectivity across intrinsic networks along the course of 
the disease. Recently, Lim et al. [10] found both reduced 
and increased functional connectivity in the default mode 
and lateral attention networks in cognitively normal people 
but with significant amyloid-β plaque load as measured by 
in vivo Pittsburgh-compound-B (PiB) positron emission 
tomography (PET); amyloid-β pathology is assumed to 
be the critical causal agent in AD pathogenesis [11]. This 
finding suggests both a preclinical start of aberrant intrin-
sic network connectivity in AD and a link between aberrant 
intrinsic connectivity and AD’s molecular key pathology, 
that is, amyloid-β deposition.

Even though less examined than in AD, other neurodegen-
erative diseases such as fronto-temporal lobar degenerations 
or Parkinson’s disease show similar patterns of progressive 
network changes (for review [6]). For example, in patients 
with behavioral variant fronto-temporal dementia, functional 
connectivity of the salience network including anterior cin-
gulate and insula is primarily disrupted [12], while in patients 
with Parkinson’s disease, intrinsic connectivity between cor-
tical-thalamic-cerebellar networks is preferentially altered 
[13]. For comprehensive review of intrinsic network changes 
across different neurodegenerative disorders see [6].

Characteristically Altered Intrinsic Networks  
and Their Link with Neurodegeneration

Given such trajectories of intrinsic network changes, two 
questions arise: are changes in functional connectivity spe-
cific for distinct neurodegenerative diseases, and how do 
these changes link with patterns of neurodegeneration? 
Concerning the first question, Zhou et al. [12] demonstrated 
that in patients with behavioral variant fronto-temporal 
dementia, impaired functional connectivity was prefer-
entially found in the salience network in sharp contrast to 
patients with AD dementia, whose strongest affected intrin-
sic network was the default mode network. More gener-
ally, Seeley et al. [14] demonstrated that spatial patterns of 
atrophy across distinct neurodegenerative disorders (i.e., 
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tributions of plaques and network functional connectivity 
were highly correspondent, suggesting that plaque spread 
is linked with networks’ connectivity [18]. Furthermore, in 
network centers of high connectivity and high plaque load, 
this relationship changes in the opposite direction, that is, 
the more plaques the more connectivity is impaired, indicat-
ing the detrimental effect of amyloid pathology on intrinsic 
functional connectivity when certain levels of pathology are 
overstepped (see Fig. 1). Complementary to these empiri-
cal findings, three very recent studies using advanced math-
ematical modeling of pathology expansion demonstrated 
prion-like spread of pathological agents along brain net-
work connectivity in patients with AD and fronto-temporal 
dementia [19–21]. Taken together, these results demonstrate 
convincingly the relevance of intrinsic brain networks for 
molecular pathophysiology and pathogenesis of AD par-
ticularly in early stages of the disease.

Altered Intrinsic Networks and Disrupted Structural 
Connectivity in AD and Other Neurodegenerative 
Diseases

How do such changes in intrinsic functional connectivity link 
with structural connectivity in neurodegenerative diseases? 
Both empirical findings and computational modeling demon-
strate that tract-based structural connectivity is a key factor in 
shaping intrinsic functional connectivity [22, 23]. Recently, 
we found that selective and progressive disruptions in intrin-
sic network functional connectivity were mirrored by similar 
selective and progressive disruptions in structural connectiv-
ity of the same networks (i.e., default mode and lateral atten-
tion networks in patients with mild cognitive impairment and 
AD dementia) [24]. This finding indicates that AD has a selec-
tive and progressive substantial (i.e., structural) impact on 
intrinsic networks beyond its degrading effect on functional 

AD, semantic dementia, behavioral variant fronto-tempo-
ral dementia, progressive non-fluent aphasia, and cortico-
basal degeneration) resembles distinct intrinsic networks in 
healthy people in a way that suggests a preferential impact 
of distinct diseases on specific intrinsic networks: for exam-
ple, while AD preferentially impacts the default mode net-
work, behavioral variant fronto-temporal dementia affects 
particularly the salience network and progressive nonfluent 
aphasia a left lateralized fronto-parieto-temporal network 
comprising Broca’s and Wernicke’s area.

Concerning the question about the link between network 
changes and neurodegeneration, Zhou et al. demonstrated in 
an elegant graph-based approach that in different neurode-
generative diseases (i.e., the same as in the study by See-
ley et al. [14]), the detailed spatial pattern of atrophy can 
be explained by specific patterns of intrinsic connectivity 
in healthy controls [15]: starting from the center of atrophy, 
graded volume reduction corresponds with graded functional 
connectivity, suggesting that the spread of neurodegenera-
tion is associated with intrinsic functional connectivity.

While the studies of Seeley and Zhou focused on general 
signs of neurodegeneration across different diseases, that is, 
atrophy, each neurodegenerative disease is characterized by 
more specific molecular pathways, for example, amyloid-β 
pathology in AD. Concerning AD, aberrant functional con-
nectivity of intrinsic networks has been shown to link inti-
mately with AD’s amyloid-β pathology [16]. Using PiB-PET 
and resting-state fMRI in asymptomatic and mildly cogni-
tive impaired elderly with amyloid-β positivity, Drzezga et 
al. [17] found that a high amyloid-β plaque load is associ-
ated with a reduction of global centrality of parietal cortical 
hubs (centrality measures for each voxel its degree of func-
tional connectivity with all other voxels of the brain). More 
specifically, we found in individual patients of prodromal 
AD (i.e., predementia AD) that for several networks such as 
default mode and different attention networks, spatial dis-

Fig. 1 Model of graded spread of amyloid-β pathology along intrinsic-
brain networks. a Over the course of time amyloid-β pathology follows 
functional connectivity across intrinsic networks, typically starting in 
the default mode network and then affecting different lateral attention 

networks. b Within networks, cores of highest levels of functional con-
nectivity are affected first, later pathology spreads to the network’s 
periphery. Figure is modified from [18]
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nature of fMRI signals (i.e., BOLD signal) have substan-
tial constrains for individual reliable diagnostics [30]. For 
example, Biswal et al. [31] demonstrated significant center 
effects on ongoing fMRI activity in a huge sample of more 
than 1400 subjects collected across 35 centers. The authors 
identified several factors underlying such center effects and 
which have to be carefully controlled for across-subject and 
across-center comparisons in a diagnostic context such as 
scanner type, sequence specifications, instructions to partici-
pants, and degree of participant’s wakefulness). Quantitative 
BOLD imaging and new data acquisition techniques (e.g., 
multi-band fMRI) producing much more data in a compa-
rable amount of time to increase the power of data analysis 
might be helpful for future approaches [32].

Beyond such methodological considerations, how can in 
general intrinsic network-based pathophysiology contrib-
ute to multi-modal imaging tools for diagnostics in neuro-
degeneration? We like to mention some ideas: (I) Intrinsic 
network-based pathophysiology may provide—in its sim-
plest form—regional priors for other brain modalities. For 
example, preferential impact of different neurodegenerative 
diseases [14] may define characteristic regional ensembles 
whose distinct brain parameters (such as volumetry, metab-
olism etc.) serve as measures used for differential or early 
stage diagnostics. (II) Disease specific regions may provide 
multi-modal “fingerprints”. (III) Disease specific regions 
define functional and structural connectivity scores, which 
may be used for diagnostics. (IV) Such connectivity-based 
scores could be integrated with further multi-modal imag-
ing aspects in multi-modal connectivity-based scores: in the 
form of multi-modal patterns such as used in pattern clas-
sification [28] or as integrated scalars (e.g., via spatial cor-
relation between connectivity scores and scores of another 
modality see [28]). In summary, a lot of new options for 
network-based diagnostics are available. Coming years will 
show how successful such approaches could be.

Conclusion

Alterations in intrinsic brain networks are essential in the 
pathophysiology of neurodegenerative diseases. Therefore, 
intrinsic connectivity might provide promising network-
based imaging tools, which integrate multi-modal imaging 
data and advance diagnostics in neurodegeneration.
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