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there are many lesions typically associated with epilepto-
genic seizures, that at least the term typically epileptogenic 
lesion is appropriate.

The effort to search for an epileptogenic lesion depends 
on the clinical presentation and on the electroencephalogra-
phy (EEG) findings:

When a patient presents with an acute symptomatic 
seizure, that is a seizure in the context of an acute disease 
(trauma, infection, stroke), a standard computed tomogra-
phy or MRI is sufficient to rule out a disease urgently to 
treat (ICH, sinus thrombosis, etc.).

When a patient presents with an unprovoked seizure or 
with an epilepsy syndrome (definition: two unprovoked sei-
zures occurring > 24 h apart [2] or one seizure, if paraclini-
cal findings (EEG: e.g., 3/s spike-waves discharges, MRI: 
e.g., hippocampal sclerosis) point to an increased epilepto-
genicity) or when a child between 6 months and 5 years of 
age presents with complex febrile seizures, 1.5- or better 
3-T MRI should be performed. The highest effort is targeted 
to patients with drug-resistant epileptic seizures defined as 
seizures that persist despite adequate medication with two, 
tolerated anti-epileptic drugs.

EEG is important, as approximately 40 % are primarily 
generalized or genetic (formerly idiopathic) epilepsy syn-
dromes, in which by definition no underlying structural 
lesion is present. Typical genetic epilepsy syndromes in 
childhood include rolandic epilepsy, childhood absence 
epilepsy, juvenile absence epilepsy, and juvenile myoclonic 
epilepsy. A typical genetic epilepsy syndrome in adults is 
wake-up grand mal epilepsy with tonic-clonic seizures typi-
cally occurring within the first 2 h after waking-up.

In approximately 60 % of cases, epilepsy syndromes are 
focal, that is epileptic seizures originate within networks 
limited to one hemisphere: if an epileptogenic lesion is 
detected, they are classified as structural–metabolic (for-
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Primary goal of magnetic resonance imaging (MRI) in epi-
lepsy patients is to detect an epileptogenic lesion defined as 
radiographic lesion that causes seizures [1]. Although the 
radiologist cannot be sure whether a lesion causes seizures, 
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3D-T1-w (or 3D-T2, 3D-FLAIR) data sets can be helpful 
(Fig. 1). Briefly, after spatial normalization, segmentation, 
smoothing, and comparison with a large reference popula-
tion examined by the same imaging protocol, three parame-
ter maps displaying the cortical thickness and the extension 
of the cortex into the white matter and the gray–white junc-
tion are highlighted [8]. Of note, if a small FCD is high-
lighted by morphometric analysis, the MR images must be 
carefully re-inspected: the lesion must also be visible on the 
MRI data sets, otherwise it is a false-positive lesion. This 
means morphometric analysis is an elegant tool to find a 
“nearly unvisible” and thus overlooked FCD, it may also 
show the true extension of a lesion [9, 10]

When an epileptogenic lesion has been identified, its spa-
tial relationship to eloquent cortex and white matter tracts 
must be clarified. In many epileptogenic lesion, not only the 
lesion itself but also perilesional tissue constituting the epi-
leptogenic zone (definition: area of cortex indespensable for 
the generation of seizures [1]) must be resected to achieve 
seizure freeness. The following procedures are incorporated 
in a standardized presurgical work-up:

1. fMRI for language lateralization (Fig. 1)
For language fMRI, we apply a block-design experi-

ment (TR 2500 ms, TE 30 ms, 41 axial slices, matrix size 
64 × 64 pixels, voxel size 3 × 3 × 3 mm3, 136 volumes, 8 vol-
umes activation, 8 volumes rest, acquisition time 5:40 min) 
with at least two different tasks: a language production 
task consisting of verb generation as task versus visually 
presented nouns as rest condition; a language comprehen-
sion test of synonyms recognition versus parallelized color 
comparison. Results are computed with thresholds > 0.4 and 
0.5 and final assessment also considers the handedness as 
addressed with the Edinborough handedness score [11].

fMRI shows left lateralization in > 90 % of healthy indi-
viduals, but only approximately 78 % of epilepsy patients. 
Bilateral (approximately 16 %) or right lateralization 
(approximately 6 %) is more common in epilepsy patients 
and associated with an earlier age of brain injury and with 
weaker right-hand dominance [12]. fMRI can reliably 
detect strongly left-lateralized language. In a meta-analysis 
comparing fMRI with the Wada test as gold standard for 
preoperative assessment of lateralization of language and 
memory function, fMRI and Wada test agreed in 94 % for 
typical language lateralization and in 51 % for atypical lan-
guage lateralization [13]. This means, if fMRI clearly shows 
left lateralization of language, the test is sufficient. If fMRI 
does not show left-lateralized language clearly, confirma-

merly symptomatic) epilepsies. If a lesion has not been 
found (yet), they are classified as cryptogenic epilepsies. 
The most common focal epilepsy syndrome is temporal lobe 
epilepsy, and the most common underlying epileptogenic 
lesion is hippocampal sclerosis. Hippocampal sclerosis was 
by far the most common finding, when patients were stud-
ied with MRI since the late 1980s. Detection rate depended 
on the exact angulation perpendicular to the hippocampal 
long axis, and soon the terms “Epilepsy MRI” and “tem-
poral angulation” were used synonymously. Nowadays, 
hippocampal sclerosis is detected with appropriate 3-T 
MRI protocols in nearly all cases, and additional automated 
FLAIR analysis in patients undergoing selective amygda-
lohippocamectomy indicate that mild hippocampal sclero-
ses are either difficult to classify neuropathologically or do 
not exist [3–5]. Interestingly, the incidence of hippocampal 
sclerosis in large epilepsy surgery centers has significantly 
decreased during the past decade; the incidence of long-
term epilepsy-associated tumors is also declining, while the 
incidence of focal cortical dysplasias (FCDs) increases [6]. 
FCDs are often small, they do not change during life and 
in many instances have been overlooked for years (Fig. 1). 
To detect them the radiologist needs clinical information, 
especially about the semiology of the seizures pointing to 
the region in which the seizure likely originate. MRI exami-
nation must be a reasonable compromise between spatial 
resolution and signal/noise or contrast/noise ratio acknowl-
edging that epilepsy patients are often uncooperative and 
will not tolerate “long” sequences. In a rank analysis of MRI 
sequences suited for the detection of epileptogenic lesions, 
cumulative percentage of lesion entities detected after the 
first to fifth sequence were 84.8 % for FLAIR, 91.6 % for 
coronal T2-weighted (w) fast spin-echo or STIR, 97.4 % 
for T2*, 99.4 % for T1-w or inversion recovery, and 100 % 
for contrast-enhanced T1-w sequences. After FLAIR, T2/
STIR, T2*, and T1-w sequences, 99.4 % of all lesions and 
all lesion types were detected except for subtle pial angio-
matosis [7]. Therefore, a 3-T MRI protocol including the 
following sequences (Table 1) has been proposed, this pro-
tocol is also suggested to be used in an outpatient clinic [7]. 
Of note, due to ongoing myelination, FLAIR sequences are 
of little value in the first 3 years of life: during this period, 
T1-w and T2-w sequences focusing on a high signal/noise 
ratio are preferred.

When an epileptogenic lesion has not been found, but 
semiology of the seizures and EEG findings clearly point 
to a focal seizure onset, morphometric analysis of the 

Fig. 1 Presurgical work-up in an 18-year-old patient with drug-resistant epilepsy likely originating in the right frontal lobe. An isotropic 3D FLAIR 
SPACE sequence with 1 mm3 voxels shows a small transmantle sign in the depth of the middle frontal gyrus (a: crosshair). Morphometric analysis 
of the 3D MPRAGE sequence confirms the subtle signal abnormality (b). Diffusion tensor tractography shows the corticospinal tract 8 mm dorsal 
to the lesion (c). A word generation task shows left-sided language representation with little co-activation in the right inferior frontal gyrus (d). 
1.5-T magnetic resonance imaging following implantation of subdural end depth electrodes shows the depth electrode with its tip at the lesion (e)
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ral pole and the tip of the Meyer’s loop was 34 mm with a 
range from 23.1–40 mm [18]. Here, we use an extension to 
the probabilistic index of connectivity method, which cal-
culates not only the probability that a voxel is connected 
to the selected ROI by performing random walk iterations 
and counting the visits but also considers the directional 
information of the curves passing through the voxel [20, 
21]. The probability information of voxels receiving visits 
from opposing directions creates probabilistic maps of con-
nectivity. Parameters used are 105 random walk iterations 
from every seed region voxel and applying an exponent of 
4 to the eigenvalues, whereas the stopping criterion was FA 
> 0.1.

Ideally, activated voxel and calculated white matter tracts 
are coregistered to the 3D T1-w data set and stored into a 
neuronavigation system. To date, this is only allowed for 
the FACT algorithm (Fig. 1), while probabilistic and global 
algorithm have no CE or Food and Drug Administration 
approval yet.

Other tools are complementarily used to depict the 
interictal zone (18FDG-PET, EEG-fMRI) or are a topic of 
research (resting state fMRI, MR encephalography). If these 
noninvasive tools together give no hint on the epileptogenic 
zone, intracranial EEG recordings and electrical stimulation 
mapping via subdural or depth electrodes are considered 
[22]. Here, the exact visualization of the electrode contacts 
are again task of the neuroradiologist (Fig. 1) [23].
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Table 1 Magnetic resonance imaging protocol for patients with focal epilepsy syndromes
Number Acquisition 
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1 ~ 7 3D T1-weighted (w) FFE or MPRAGE Sagittal (sag)/1 × 1 × 1 mm3 Multiplanar reformattion
Voxel-based morphometry

2 ~ 4–5 2D T2-w TSE Axial (ax)/3–5 mm Exact angulation
3 ~ 7–10 3D FLAIR VISTA or SPACE sag/1 × 1 × 1 mm3 Focal cortical dysplasias

HS
Altern. 5 2D FLAIR-TSE and ax/2–3 mm
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