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Right ventricular function
in pulmonary (arterial)
hypertension

In the past decade, the right ventricle
and right ventricular (RV) function have
become the focus of increased scientific
interest and the RV is no longer “the for-
gotten chamber”. Right ventricular func-
tion is the main determinant of symp-
tomatology and outcome in patients with
pulmonary arterial hypertension (PAH;
[73]). The response of the RV to the
increasing afterload in pulmonary circu-
lation is a complex process andmaladap-
tation or RV failure predominantly de-
termines the prognosis of patients with
PAH [73]. Right heart failure in pul-
monary hypertension (PH) is caused by
increased afterload and therefore a de-
scription of the cardiopulmonary unit is
indispensable. This is best described as
the interplay between RV contractility,
ventricular elastance (Ees), and arterial
elastance (Ea), a measure of afterload
[72].

However, in the current literature
there are several measures of RV con-
tractilityand its relationtothe load it faces
(Ees/Ea). The present review focuses on
existingmeasures of RV contractility and
measures of the RV–pulmonary artery
(PA) unit and summarizes the existing
noninvasive measures of RV function.

Adaptation andmaladaptation

Right ventricular failure canbe described
as a clinical syndrome, consisting of dys-
pnea, fatigue, and congestion, which is
characterized by a decrease in RV func-
tion, leading to elevated filling pressures
and reduced cardiac output [34]. How-
ever, there is currently a debate about
accessible bedside tools for assessing RV

function and physiological parameters
describing the relation of RV contrac-
tility to its load. In certain states of the
adaptational process to increased after-
load, the RV ejection fraction (EF)might
be decreased, whereas Ees might be el-
evated [54]. This fact emphasizes the
current dilemma of, firstly, adequately
describing RV function and, secondly,
how to cope with the existing data on
physiological parameters derived from
pressure–volume loops in daily clinical
practice.

In the course of disease, and owing to
increasing afterload in PAH, RV contrac-
tility (Ees) increases in order tomaintain
RV–PA coupling (Ees/Ea). At a certain
point, “the point of uncoupling,” Ea sig-
nificantly exceeds Ees, leading to a signif-
icantly reduced Ees/Ea relationship. At
this point, the RV dilates to maintain
stroke volume (SV).

Recently it was shown that the cou-
pling of RV contractility to increased af-
terload in PH has considerable reserve,
as Ees/Ea has to decrease from normal
values of 1.5–2 to below 0.8 before an
increase in volumes and a decrease in
EF below the critical value of 35% occur
[59].

The onset of RV dilatation due to
uncoupling and eventual RV failure are
not entirely clear. It appears that the
homeometric (contractile) adaptation of
the RV to afterload buffers the Ees/Ea
ratio in the presence of significant wors-
ening of PH [73]. In animal models,
the RV dilated when the Ees/Ea ratio
decreased to 0.7–1.0 [13, 19], and the
Ees/Ea ratio was not sensitive to inter-
ventions that effectively decreased Ea

because Ees decreased proportionally
to Ea [49]. Experimental work on iso-
lated canine hearts showed that maximal
stroke work (volume× pressure) occurs
at Ea/Ees= 0.80± 0.16, whereas ventric-
ular efficiency (stroke work/myocardial
oxygen consumption) is maximal at
Ea/Ees= 0.70± 0.15. This suggests that
optimal RV–arterial coupling might oc-
cur at values lower than the range of
1.5–2 predicted by mathematical models
[10]. Recently, Axell and coworkers de-
fined the Ees/Ea threshold below which
SV or cardiac output decreased in either
animal models or patients with chronic
thromboembolic PH as around 0.7 [2],
which is lower than the cut-off defined
by Tello and coworkers [59].

Patients with PAH receiving targeted
therapies may remain stable for several
years but may present with increased RV
dimensions and decreased EF, herald-
ing clinical deterioration and decreased
survival [66, 67, 73]. As increased RV
dimensions anddecreasedEFcanonlybe
the consequence of RV–PA uncoupling,
a definition of the Ees/Ea ratio—the gold
standardmeasureofRV–PAcoupling—at
which relevant RV maladaptation be-
gins is crucial for linking physiological
measurements to noninvasively assessed
measures of RV function.

Thetransition fromadaptation tomal-
adaptation and failure is progressive and
cut-off values on volumes are difficult to
define. An RVEF of <35% has consis-
tently been shown to be associated with
decreased survival in severe PH [5, 7, 66,
69] and is easily modeled to be associ-
ated with rapid increases in end-diastolic
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Fig. 18 Assessment of right ventricular (RV) contractility and RV–pulmonary artery (PA) couplingwith the gold standard
multi-beatapproach(originalmeasurement).aUltrasound-guided insertionofpressure–volume(PV)catheter (blue asterisk).
bBalloonocclusionoftheinferiorvenacava(IVC;redasterisk). cDeflationoftheIVCballoon(yellowasterisk). dOriginalPV–loop
measurement, with load-independent contractility (end-systolic elastance, Ees), arterial elastance as ameasure of afterload
(Ea), and end-diastolic elastance (Eed) as ameasure of diastolic function

volume (EDV) and end-systolic volume
(ESV) when SV is to be preserved [70].

Reports of Ees and Ea measured with
gold standard pressure volume–loop
catheters in patients with PH are scarce.
Kuehne et al. used high-fidelity catheters
in 2004 [33]. The authors measured RV
pressures in animals and reported an
approximately threefold increase in Ees
in the presence of a sixfold increase in
Ea, resulting in a substantially decreased
Ees/Ea ratio (on average from 2 to 1) in
PH. Subsequent studies showed similarly
increased Ees but decreased Ees/Ea in
idiopathic PAH [54, 57], PAH associ-
ated with systemic sclerosis [28, 57],
and chronic thromboembolic PH [40,
54]. Two of the studies also reported
measurements during exercise, show-
ing decreased Ees/Ea even in patients
with PAH who had persistently normal
values at rest [28, 54], in contrast to
controls who maintained their Ees/Ea
ratio during exercise. Decreased Ees/Ea
during exercise in PAH was associated
with increased RV ESV and EDV [28].

With gold standard high-fidelity pres-
sure–volume technology for the mea-
surementofRVvolumes, EesandEamea-
surements have relied either on a mul-
tiple-beat method allowing for elastance
calculations on a family of pressure–vol-
ume loops generated during a decrease
of venous return ([28, 57]; . Fig. 1) or
a single-beat method with Pmax calcula-
tions andmeasurementof relative change
in volume on just one pressure–volume
loop [33, 54]. Thesingle-beatmethodhas
beenvalidated innormotensivedogswith
orwithoutacutehypoxia-inducedPH[8].
Most recently, Inuzuka and coworkers
demonstrated an associationof the afore-
mentioned single-beat estimation with
the multi-beat approach [31]. The sin-
gle-beat method was tightly correlated
with themultiple-beatmethod for assess-
ment of RV–PA coupling in patients with
and without PH [31]. In that study, the
“standard” single-beat method assuming
linearity of the Ees curve was less well
correlatedwith themultiple-beatmethod
for assessment of RV–PA coupling.

Methods to measure function
of RV–PA unit

Right ventricular function can be char-
acterized by the pressure–volume loop
relation. The gold standard for measure-
ment of ventricular contractility is the
construction of multiple pressure–vol-
ume loops as described by Suga et al.
[55] for the left ventricle and adopted
for the RV by Maughan et al. in the ca-
nine ventricle and by Redington et al. in
the human RV ([38, 48]; . Fig. 1). To
measure Ees, a linear regression is set
through the end-systolic pressure–vol-
ume relationship (ESPVR) of each one
of several cardiac cycles during load al-
terations [55].

With the development and the valida-
tion of the conductance catheter for the
volume measurement [11], research in
RV pressure–volume loops has become
more widespread, as the assessment is
simpler to perform than with previous
methods.

The conductance catheter (. Fig. 1)
measures pressure and volume simulta-
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neously. Volume is measured by setting
up an electrical field between the proxi-
mal and distal electrodes of the catheter
when positioned (via echocardiography
(. Fig. 1) or radiography) in the RV apex.
Electrical conductivity is measured by
the electrodes, and changes in conduc-
tivity reflect segmental volume changes.
The catheter is mostly volume-calibrated
via cardiac magnetic resonance imaging
(CMRI) as the gold standard for mea-
surement of volume.

There are several clinical studies in
which conductance catheters were used
to assess contractility and/or RV–arterial
coupling. The studies included patients
with idiopathic PAH, systemic sclerosis-
associated PAH [28, 57], systemic sclero-
siswithoutPH[57], chronic thromboem-
bolic PH and chronic thromboembolic
disease without PH [2, 39].

The main difference between these
studies is the method used to assess
RV–arterial coupling. Tedford et al. [57]
and Tello and coworkers [60] measured
Ees using a multi-beat method (. Fig. 1)
with preload reduction either by balloon
occlusion of the inferior vena cava (IVC)
or through the Valsalva maneuver [75].
By contrast, Tello and colleagues [59,
61, 62]and McCabe et al. [39], for in-
stance, used the conductance catheter to
measure precisely the end-systolic pres-
sure (ESP) as one of the essential values
required for determination of coupling
via the single-beat method described by
Brimioulle et al. [8]. In the single-beat
method, Ea is calculated as ESP/SV and
Ees is calculated as (Pmax– ESP)/SV,
while Pmax is estimated as the maximal
theoretical pressure that would build
up through clamping of the pulmonary
valve. Some groups used a right heart
catheter-based approach, in order to
avoid pressure–volume loop measure-
ment [63]. In that approach, ESP is
replaced by mean PA pressure [63] and
Pmax is calculated using the sine wave
extrapolation [8]. However, recently this
approach has been shown to be mislead-
ing as especially in higher pressures ESP
is significantly underestimated by mPAP
[62].

The Eed of the ventricle is a load-
independent representation of the dias-
tolic function. The clinical relevance of
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Right ventricular function in pulmonary (arterial) hypertension

Abstract
The right ventricle (RV) is the main determi-
nant of prognosis in pulmonary hypertension.
Adaptation and maladaptation of the RV are
of crucial importance. In the course of disease,
RV contractility increases through changes in
muscle properties and muscle hypertrophy.
At a certain point, the point of “uncoupling,”
the afterload exceeds contractility, and
maladaptation as well as dilation occurs to
maintain stroke volume (SV). To understand
the adaptational processes and to further
develop targeted medication directly
affecting load-independent contractility,

an accurate and precise assessment of
contractility and RV–pulmonary artery (PA)
coupling should be performed. In this review,
we shed light on existing methods to assess
RV function, including the gold standard
measurement of contractility and RV–PA
coupling, and we evaluate existing surrogates
of RV–PA coupling.

Keywords
Contractility · Right heart failure · Pulmonary
hypertension · Coupling · Right heart function

Rechtsventrikuläre Funktion bei pulmonaler (arterieller)
Hypertonie

Zusammenfassung
Die Funktion des rechten Ventrikels (RV) ist
für die Prognose der pulmonalen Hypertonie
(PH) ein entscheidender Faktor. Dabei
spielen adaptive und maladaptive Prozesse
eine wichtige Rolle. Ein entscheidender
Faktor der Adaptation ist die Erhöhung der
nachlastunabhängigen Kontraktilität des RV
als Reaktion auf die Nachlast. Diese wird zu
Beginn der Erkrankung durch z.B. muskuläre
Hypertrophie gesteigert. Am Beginn der
Maladaptation kann jedoch die Kontraktilität
den Anstieg der Nachlast nicht kompensieren,
und es kommt zu einem „Entkoppeln“ der
Achse zwischen RV und Pulmonalarterien
(PA) und zu einer Maladaptation und
Dilatation, um das das Schlagvolumen (SV)

zu erhalten. Um einerseits diese adaptiven
und maladaptiven Prozesse zu analysieren
und andererseits therapeutische Strategien
zu entwickeln, die auf die lastunabhängige
Kontraktilität zielen, sollte die Kontraktilität
des RV bestmöglich gemessen werden. In
diesem Übersichtsartikelwerden Methoden
vorgestellt, die nach derzeitigem Stand die
Funktion der RV-PA-Achse am genauesten
darstellen, und Methoden beurteilt, die als
Surrogate dafür verwendet werden.

Schlüsselwörter
Kontraktilität · Rechtsherzinsuffizienz ·
Pulmonale Hypertonie · Kopplung ·
Rechtsherzfunktion

RVdiastolic function in patients with PH
is a new area of interest in our under-
standing of RV function. Recent stud-
ies in patients with pulmonary hyperten-
sion have shown that increased RV di-
astolic stiffness is significantly associated
with outcomes including mortality and
lung transplantation [64, 69]. Patients
on PAH-specific therapy for 3 months
showed a significant decrease in RV di-
astolic stiffness compared with pretreat-
ment values [68]. On the left side of the
heart, it has long been recognized that di-
astolic dysfunction and stiffening of the
left ventricle are major contributors to
heart failure, and an integral part of the

routine evaluation of patients presenting
with heart failure is the assessment of left
ventricular diastolic dysfunction using
echocardiography [42]. Recent studies
have started to develop clinical methods
to assess RVdiastolic stiffness. Tello et al.
recently showed that RV diastolic stiff-
ness is highly associated with impaired
RV strainmeasuredwith feature tracking
[61] and they introduced a novel param-
eter (RV longitudinal strain/EDV [BSA])
to estimate Eed in chronic pressure over-
load.

Right ventricular diastolic function
is typically quantified from the end-
diastolic pressure–volume relationship
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Table 1 Important tools in cardiacmagnetic resonance imaging for assessment of RV function

Conventional functional parameter Examples of studies including MRI and PAH

RV-EDV Swift et al. [54]

RV-ESV Badagliacca et al. [4]

RV-EF Sanz et al. [50]

RV-SV Van de Veerdonk et al. 2017 [63]

RV-SV/ESV

RVmass

Native T1map Examples of studies including T1mapping in PAH

T1 times in RV free wall Tello et al. [59]

RV insertion points Mewton et al. [41]

Septum Garcia-Alvarez et al. [17]

MR feature tracking strain Examples of studies including feature tracking
strain in PAH

Global longitudinal strain Tello et al. [61]

Global radial strain Sato et al. [52]

Global circumferential strain

EF ejection fraction, EDV end-diastolic volume, ESV end-systolic volume,MRImagnetic resonance imaging, PAH pulmonary arterial hypertension, RV right
ventricular, SV stroke volume

(EDPVR). Under ideal conditions, the
EDPVR would be measured from multi-
beat pressure–volume loopswith preload
reduction(. Fig. 1). TheESV/beginning-
diastolic pressure (BDP) and end-dias-
tolic volume (EDV)/end-diastolic pres-
sure (EDP) would be determined from
each pressure–volume loop and then
fitted to an EDPVR. However, EDPVR
has also been determined from single-
beat pressure–volume loops (. Fig. 1).
Right ventricular pressure traces from
right heart catheterization are used to
determine begin-diastolic pressure and
end-diastolic pressure, while CMRI is
used to determine ESV and EDV. Studies
on RV diastolic function have used an
exponential fit [P= α exp(βV)– 1] to de-
scribe RV diastolic stiffness [47, 59, 61,
64, 68, 69]. The derivative of the EDPVR
is a measure of chamber stiffness or the

change of pressure for a given change in
volume.

Surrogates of RV–PA coupling

ThedescriptionofRVfunctioninrelation
to its load is of high interest for clinicians.
Currently, several methods exist to de-
fine Ees/Ea RV–PA coupling in a semi-
invasive or even noninvasive approach.

Sanz et al. described a method to
simplify measurements of elastance and
avoid pressure measurements when as-
sessingcontractilityandRV–arterial cou-
pling [51]. The method assumed that
Emax is defined as ESP/ESV; ESP was
replaced by mPAP and Ea was calcu-
lated asmPAP/SV.Thus, Ees/Ea was sim-
plified to SV/ESV without validation by
the gold standard of Ees assessment (the
multi-beat method with preload reduc-

tion and simultaneously measured pres-
sure–volume loops). It should be em-
phasized that SV/ESV is inversely related
to RVEF, as demonstrated by the for-
mula SV/ESV=EF/(1– EF); SV/ESV and
RVEF have a prognostic meaning, and
should be taken as parameters of func-
tional interaction and of not coupling.
Furthermore, RVEF and SV/ESV have
been shown to be predictive of outcome
in patients with PAH [7]. Cut-off values
for RVEF shown to be associated with
mortality are 35% [66] and for SV/ESV,
54% [7].

Kuehne et al. were the first to describe
assessment of pressure–volume loops in
patients with PAH (n= 6). They mea-
sured volume using CMRI and synchro-
nized this with pressure measurements
from a fluid-filled catheter [33]. The
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Fig. 28 Echocardiographic functional parameter of the right ventricle.GLSglobal longitudinal strain, TDI tissueDoppler
imaging, TAPSE tricuspid annular plane systolic excursion, FAC fractional area change, RV-EDD right ventricular end-diastolic
diameter, RA right atrium, RV right ventricle, LV left ventricle

Ees was calculated using the single-beat
method described before [8].

Other surrogates of RV–PA coupling
rely solely on echocardiographic data
[25]. Since measuring Ees and Ea via
pressure–volume loops is invasive and
expensive, simpler noninvasive surro-
gates are being sought. One of these is
the Doppler echocardiography measure-
ment of the ratio of tricuspid annular
plane systolic excursion (TAPSE) to sys-
tolic pulmonary artery pressure (PASP;
[25]). The TAPSE/PASP ratio has been
shown to be a potent independent pre-
dictor of pre-capillary PH and prognosis
in heart failure [6, 18, 20, 25–27], with
a defined prognostic cut-off value of
0.36mm/mmHg [24]. TheTAPSE/PASP
ratio has also been shown to be an inde-
pendent predictor of outcome in PAH
[58]. Initially thought of as an indirect
assessment of the ventricular length–ten-
sion relationship [25], TAPSE/PASP has
been considered a surrogate of Ees/Ea,
based on the assumption that TAPSE
estimates contractility and PASP esti-
mates afterload [6, 18, 20, 24, 26, 27,
58]. Other suggested echocardiographic
surrogates are the ratios of RV fractional
area change (FAC) to mean pulmonary
artery pressure (mPAP, invasively mea-
sured; [45, 46, 50]) RV area change to
RV end-systolic area (ESA; [15]) TAPSE

to pulmonary artery acceleration time
(PAAT; [36]) and SV to ESA (derived
by dividing PASP/ESA as a surrogate of
Ees; [9, 44] by PASP/SV as a surrogate
of Ea). None of these parameters has
been validated against pressure–volume
loop-derived parameters yet.

Conventional imaging
parameters to assess RV
function

CardiacMRI is of crucial importance for
imaging in PAH (. Table 1) and it gives
information on RV function and fibrosis
(. Table 1).

Right ventricular dilation has been
associated with a worse prognosis [56].
Furthermore, an RVEF below 35% was
identified as the leading parameter in
predictingmortality inPAH[5]. Badagli-
acca and colleagues demonstrated more
clinical worsening events in patients with
an elevated mass/volume ratio [4]. Be-
side conventional parameters describing
volume and mass, delayed enhancement
imaging on MRI is well known and es-
tablished. Magnetic resonance imaging
is very important for assessing the im-
pact of drugs on cardiac function, as it is
noninvasive. A study by an Amsterdam
group included 80 patients with incident
PAH (hereditary, idiopathic, or drug-

induced). Patients were in functional
class II or III. The benefits of either
upfront combination therapy with an
endothelin-receptor antagonist (ETRA)
and a phosphodiesterase-5 inhibitor
(PDE5i) or each of these agents given
as monotherapy were examined. The
authors found that RV volumes, as RV
end-diastolic volume, improved in pa-
tients with upfront combination therapy
but not in patients with monotherapy
[65]. TheEuro-MR Study [43] found im-
provements in RV systolic and diastolic
volumes as well as in stroke volume.

The RV-insertion point enhancement
is strongly associated with elevated PA
pressures and showed worse outcomes
in patients with PAH [14]. In addition
to the link with reduced regional con-
tractility [53], delayed enhancement is
an interesting and important tool for the
diagnosis of PH patients.

Delayed enhancement imaging re-
veals regional myocardial abnormalities,
whereas T1 mapping, an emerging tool
in CMRI identifies diffuse myocardial
abnormalities by measuring native RV
T1 based on pre- and post-contrast T1
times [41]. T1 mapping (. Table 1) has
the potential to be a marker of fibrosis
[17, 30], which has recently been high-
lighted as part of an adaptive response to
prevent cardiomyocyte overstretch and
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to maintain RV shape for optimal func-
tion, and of a maladaptive response that
increases diastolic stiffness [1]. Recently,
Tello et al. showed the association of
invasively measured pressure–volume
loop-derived end-diastolic RV stiffness
with T1 mapping, emphasizing its diag-
nostic value for fibrosis and end-diastolic
stiffness [59].

Magnetic resonance imaging strain is
an emerging tool for assessing regional
myocardial deformation. Myocardial de-
formation analysis using feature track-
ing is advantageous as it is applied to
bSSFP (balanced steady-state free pre-
cession imaging) cine image data, yield-
ing reliable strain data without the need
for further image acquisitions. Recently
Tello et al. demonstrated that in chronic
pressureoverload, radial strain is increas-
ingly impaired with increasing RV EDV,
which emphasizes the fact that volume
overload is one of the central underly-
ing processes that further worsens my-
ocardial deformation [61]. Earlier, Sato
and colleagues found that combination
therapy was associated with a significant
improvement in both RV and LV func-
tion, as assessed by CMR-derived feature
tracking strain [52].

Echocardiography is one of the key
screening tools in the evaluation of PH
(. Fig. 2). Beside conventional and well-
established measures of RV function,
newer and very interesting nonconven-
tional techniques were introduced in
recent years.

Right atrial size as an indirect mea-
sure of RV function has proven to be
associated with prognosis [21, 22]. Tri-
cuspid annular plane during systolic ex-
cursion is mostly taken as a surrogate for
RV function (. Fig. 2). In some studies,
apredictionofsurvivalwasdemonstrated
[12] and was introduced in the Guide-
lines of 2009 [16]; however, it failed to
predictmortality[22]insubsequentstud-
ies, especially in NYHA III–IV and RV
dilation. It predominantly mirrors lon-
gitudinal RV function and, furthermore,
it is dependent on volume [22]. The lon-
gitudinal peak velocity at the basal seg-
ment of the free wall measured via tissue
Doppler imaging (TDI) is another tool
for assessing RV function, and tissue ve-
locity changing at the isovolumic phase

has been shown to be load-independent,
in contrast to TAPSE [71]. Right ven-
tricular size, assessed at the end-diastole,
and fractional area shortening (RV-FAC)
have been shown to predict survival [22].
The RV–myocardial performance index
(RVMPI) is a composite measure of sys-
tolic and diastolic function. An RVMPI
above 0.688 or 0.88 was predictive of sur-
vival [22, 74].

Due to the complex RV geometry,
two-dimensional (2D)echocardiography
cannot capture the inflow and the out-
flow tract in one acquisition. Real-time
three-dimensional (3D) echocardiogra-
phy is a very promising tool with which
toquantitateRV function, as the complex
RV structure is captured [23, 37]. Three-
dimensional RVEF has been shown to
be correlated with hemodynamics and
severity in PH [32]. In addition, RV
strain, especially RV longitudinal strain,
has emerging potential in predicting sur-
vival in PH patients [29]. Badagliacca
et al. demonstrated that RV dyssyn-
chrony measured via 2D echo-strain had
the highest predictive capability of peak
V’O2, even when conventional param-
eters such as RV FAC were included in
themultivariate analyses [3]. Lamia et al.
demonstrated an impaired RV strain in
borderline PAH, emphasizing the begin-
ning of impaired RV deformation even
in borderline PAH in mPAP ranges of
20–24mmHg [35]. Recently 3D echo
free-wall strain, RVEF, and FAC were
shown to serve as outcome predictors in
pediatric PH patients [32].

Conclusion

Whether the reported improvements
are also a consequence of improved
contractility facing the presented after-
load cannot be answered. However, to
assess the impact of medication on the
RV and especially on the load-indepen-
dent contractility, measures of volume,
irrespective of their importance, are
misleading as they do not mirror an
alteration of the inherent RV perfor-
mance. Therefore, studies are needed
that aim tomeasure the direct impact
of targetedmedication on the load-
independent contractility, such as our

ongoing Right Heart 3 Study (Clinical
Trials identifier NCT03362047).
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Fachnachrichten

Telemedizin - mehr Antibiosen

Fernbehandlung soll Lücken in der
Versorgung schließen sowie Praxen
und Kliniken entlasten. Doch es gibt
auch unangenehme Nebenwirkun-
gen.

Was hierzulande noch neu ist, ist in an-

deren Staaten seit Jahren gang und gäbe:
die ausschließliche Fernbehandlung. In

den USA etwa gehören Telekonsultationen
fast schon zum Alltag. Allein das auf die

Fernbehandlung spezialisierte Unterneh-

men Teladoc betreut eigenen Angaben
zufolge über 20 Millionen Patienten. Dafür

beschäftigt das Unternehmen rund 3000

Ärzte. Befeuert wird der Trend zudem von
den Versicherern, die mit diesenDienstleis-

tern zunehmend Verträge abschließen, um
sie ihren Versicherten anzubieten.

Anlass sind oft Atemwegsinfekte

Von 2011 bis 2016 ist die Zahl der pädiatri-

schenTelekonsultationen von38 auf knapp
25.000 Kontakte pro Jahr gestiegen. Hinter

jedem zweiten Anlass steckten– vermeint-
liche – Infektionen der Atemwege oder

Ohren. Nun haben Daten einer Studie des

US-Instituts für Kindergesundheit (NICHD)
ergeben, dass Telekonsultationen zu deut-

lich mehr Verordnungen von Antibiotika

führen. Kinder bis zum 17. Lebensjahr mit
Verdacht auf einen akuten respiratorischen

Infekt (Erkältung, Sinusitis, Halsweh) haben
nach telemedizinischer Betreuung absolut

21% häufiger Antibiotika erhalten als nach

Vorstellung in der Hausarztpraxis (52 ver-
sus 31%). Selbst in Notaufnahmen wurden

bei diesen Kindern seltener Antibiosen

verordnet (42%).

Große Datenbasis

Basis für diese retrospektive Kohortenun-

tersuchung sind Verordnungsdaten aus
einem nationalen Gesundheitsplan für die

Jahre 2015 und 2016. Verglichen wurden

4604 Telemedizinvisitenmit rund 38.000
Fällen in Notaufnahmen und fast einer

halbenMillion Fällen in Hausarztpraxen.

Quelle: Ärzte Zeitung
basierend auf: Pediatrics (2019)
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