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Abstract
How foraging trails are formed and the chemical communication between individual ants is well known. However, com-
munication between partners in mutualistic relationships, such as the leaf-cutting ants (LCA) and their symbiotic fungus, 
is less studied. There is a feedback mechanism that operates in LCA colonies, with the fungus garden communicating its 
condition to the ants, most probably using chemicals. We discuss the literature on the chemistry of the LCA–forage–fungus 
system starting from selection of plants and its effect on the fungus garden. We suggest, using chemical examples, how the 
fungus might communicate with attendant ants and suggest areas for future research into this fascinating and complex system.
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Introduction

The success of ant societies depends on the foraging work-
ers selecting the most appropriate foods that are nutritive 
and non-toxic (Hölldobler and Wilson 1990). Many species 
of ants collect food and feed it directly to conspecifics and 
brood, with minimal processing, for example, the prey of 
army ants (Gotwald Jr. 1995), aphid honeydew gathered by 
mutualist species (Fischer et al. 2001) or detritus collected 
by omnivorous ants (McGlynn et al. 2009). Some ants col-
lect seeds, which are propagated in nutrient-rich soils in so-
called “ant gardens”, with ants feeding on the plant tissue 
(Davidson 1988; Chomicki and Renner 2016). Other ants, 
such as fungus farming ants from the sub-tribe Attina (tribe 
Attini), use fungal symbionts to digest plant material and 
the ants then feed on the fungal structures, rather than the 
foraged material: in essence the insects are “farming” the 
fungus (Mehdiabadi and Schultz 2010; Hölldobler and Wil-
son 2011).

The most derived form of fungus farming by ants involves 
the cultivation of Leucoagaricus gongylophorus (Singer 
1986) by leaf-cutting ants (LCA) within the genera Atta 
(Fabricius 1804) (At.) and Acromyrmex (Mayr 1865) (Ac.) 
(Mehdiabadi and Schultz 2010). There is a great deal of evi-
dence that this system is co-ordinated by chemical signals, 
but in comparison with other aspects of ant biology there is a 
lot more to discover. This ant–fungus chemical interaction is 
likely to involve a range of chemical signals—semiochemi-
cals—including allomones, kairomones and synomones (see 
Beck et al. 2017). It is known that compounds produced by 
L. gongylophorus can cause growth of pathogens towards 
the fungus (Folgarait et al. 2011; Masiulionis et al. 2015; 
Birnbaum and Gerardo 2016). We focus on the chemical 
communications between the foraged plant material, the 
LCAs and the fungus garden highlighting what is known 
and where there are gaps in knowledge.

Leaf‑cutting ant biology and essential 
conditions for the fungus garden

The LCAs consist of ca. 40 described species and are major 
defoliating herbivores in the New World impacting upon 
plant community structure (Hölldobler and Wilson 1990; 
Costa et al. 2008; Mehdiabadi and Schultz 2010; Leal et al. 
2014). Fungus-growing ants evolved approximately 60 
MYA, with recent evidence suggesting that extant LCAs 
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evolved around 19 MYA in dry habitats in Central America 
(Branstetter et al. 2017). The key to the success of LCA is 
the highly evolved mutualistic association between the ants 
and their fungal symbiont, L. gongylophorus (Ridley et al. 
1996; North et al. 1997; Schultz and Brady 2008). The fun-
gus is cultivated on pulped leaf material supplemented by 
faeces (Hölldobler and Wilson 1990), to form the so-called 
“fungus gardens”. Swollen hyphal tips—gongylidia—are a 
unique fungal adaptation and provide the sole food source 
for the ants and their developing brood (Hölldobler and Wil-
son 2011).

Complex assemblages of beneficial microorganisms 
contribute to the health of the colony with actinomycetous 
bacteria, e.g. Pseudonocardia, used as a source of antibiot-
ics by LCAs (Poulsen et al. 2007; Sen et al. 2009) while 
other bacteria fix nitrogen, increasing the productivity of the 
colony (Pinto-Tomás et al. 2009). Yeasts, while not generally 
regarded as essential, appear to contribute to degradation 
of plant materials and detoxification of potentially harm-
ful compounds, such as galacturonic acid (Mendes et al. 
2012). The fungal garden is propagated and maintained by 
hygienic behaviour (Fernandez-Marin et al. 2006; Mangone 
and Currie 2007; Della Lucia et al. 2014). For example, the 
metapleural gland secretion from ants contains antimicrobial 
compounds, such as phenyl acetic acid (Fernández-Marín 
et al. 2015), which restrict the growth of fungal and bacterial 
pathogens (Ortius-Lechner et al. 2000), such as the micro-
fungus Escovopsis (Ascomycota: Hypocreales) (Currie et al. 
1999; Haeder et al. 2009). The ants’ hygienic behaviour is 
very effective as the fungal garden does not persist if the ants 
are removed (Weber 1966; Mueller et al. 2005).

Maintenance of the microbiome is important for the 
health of the fungal garden but the primary factor affecting 
the growth of the gongylidia is the collection and prepara-
tion of a suitable substrate by foragers. Foraging trails can 
be highly adaptable to make use of the most nutritious and 
least toxic plant material within constantly changing envi-
ronments (Silva et al. 2013). Some LCAs are specialist for-
agers on either mono- or dicotyledonous plant species (e.g. 
Pereira et al. 2016), although within this range of accept-
ability suitable plant material is collected based upon its 
physical (Cherrett 1972; Nichols-Orians and Schultz 1989; 
Bollazzi et al. 2011) and chemical properties (Hubbell et al. 
1984; Howard 1987, 1988).

Factors governing selection of plants

Nutrients

The acceptance of plant material can be affected by leaf 
nutrients, and young leaves with higher concentrations of 
phosphorous, potassium or nitrogen are collected by At. 

cephalotes (L.) (Linnaeus 1758) (Berish 1986) and At. 
laevigata (Smith 1858) (Mundim et al. 2009), whereas At. 
colombica (Guérin-Méneville 1844) selects drought-stressed 
leaves, that contain a greater concentration of carbohydrates 
and proline (Meyer et al. 2006). Production of cellulolytic 
and carbohydrate-active enzymes by the microorganisms 
associated with fungus gardens varies between Atta and 
Acromyrmex, and this difference could be an adaptation 
to decomposition of the plant material foraged (Suen et al. 
2010; Kooij et al. 2014, 2015).

Secondary compounds

Within plant tissues, the mixture of either constitutive or 
induced secondary compounds can be a reliable predictor 
of plant utilization by LCA (Howard 1987, 1988, 1990; 
Howard et al. 1989). In general, compounds or mixtures of 
compounds from plants can attract or repel insects, acting 
as “push–pull” stimuli (Cook et al. 2007). In relation to the 
“pull” effect, some volatile compounds can attract LCAs in 
laboratory studies (Perri et al. 2017) but it is unclear how 
these compounds act in natural situations. There is more 
information on repellent and toxic compounds. Some exam-
ples, mainly from laboratory bioassays, have shown that 
LCAs can be repelled by plant chemical defences induced 
by mechanical damage or by hormones, such as jasmonic 
acid (Kost et al. 2011). Constitutive plant compounds pre-
vent collection of leaves since At. sexdens rubropilosa 
(Forel 1908) does not feed on leaves of Ricinis communis 
L. (Euphorbiaceae) under natural conditions, which is prob-
ably due to a mixture of fatty acids and the presence of an 
ant toxin, ricinine (Bigi et al. 2004) and At. cephalotes will 
avoid plant leaves containing high levels of toxic saponins 
(Folgarait et al. 1996).

It has been suggested that At. cephalotes are more com-
mon where young or “pioneer” plants predominate, rather 
than in more mature or established neotropical forest, 
because young and pioneer plants have lower levels of pro-
tective—toxic or repellent—chemicals (Farji-Brener 2001). 
These findings are supported by laboratory bioassays, where 
discs cut from young leaves were selected in preference 
to old leaves both by At. cephalotes and Ac. octospinosus 
(Reich) (Littledyke and Cherrett 1975, 1978).

Endophytes and plant fungal pathogens

Plants produce their own chemical defences, but this can 
be modulated by the presence of benign endophytes that 
do not cause disease but alter plant physiology so that 
asymptomatic cucumber leaves inoculated with a single 
species of endophyte emit compounds associated with 
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damage, such as β-ocimene and 4,8-dimethyl-1,3,7-non-
atriene which can repel ants (Estrada et al. 2013). It is also 
possible that LCAs select plant materials based upon the 
compatibility of the endophyte community with the fungal 
garden (Van Bael et al. 2011; Estrada et al. 2014, 2015).

Pathogenic fungi also induce chemical changes in 
plants. As a selected cohort of 42 plants in the dry forest 
of Costa Rica became more infected with fungal pathogens 
in the wet season, they produced more phytoalexins which 
repelled At. cephalotes foragers (Hubbell et al. 1984). 
Among these compounds, there were sesquiterpenes and 
triterpenes in the leaves of Cordia alliodora (Ruiz and 
Pav) Oken (Boraginaceae) and Verbesina gigantea Jacq. 
(Asteraceae), which were found to be repellent at naturally 
occurring concentrations (Chen et al. 1983; Hubbell and 
Wiemer 1983; Hubbell et al. 1984).

Imperfect foraging and the need 
for feedback

Free-living ants self-select forage in an attempt to opti-
mize its preparation for growth of fungal monocultures 
(De Fine Licht and Boomsma 2010), but if ants have not 
encountered and foraged a plant before, collection and 
transport back to the fungal garden is driven by accept-
ability of the material to the ants (Rockwood and Hub-
bell 1987). Foragers are able to detect and rapidly reject 
plants that contain compounds toxic or repellent to the ants 
(Seal and Tschinkel 2007). Some plants that repel ants also 
retard growth of the fungus (Diaz Napal et al. 2015) and 
individual compounds (e.g. caffeine) inhibit the growth 
of fungi and can explain why At. sexdens rubropilosa for-
ages low-caffeine varieties of Coffea sp. (Miyashira et al. 
2012). Other plants with mycostatic effects in vitro are 
those that are not foraged upon (Lapointe et al. 1996). For 
example, Virola sebifera Aubl. (Myristicaceae) is not col-
lected by At. sexdens rubropilosa and this may be due to 
lignans, which show fungistatic effects in the laboratory 
(Pagnocca et al. 1996).

Although leaf-cutting ants assess the suitability of 
plant material, we know that foraging is imperfect as what 
LCAs select and incorporate into the fungal garden may 
not always be optimal for the growth of the fungus (Herz 
et al. 2008). Some extracts of plants, plant compounds and 
synthetic molecules can be toxic to the fungus, but nei-
ther toxic nor repellent to the ants (Ambrozin et al. 2006; 
Bigi et al. 2004; Bueno et al. 2005; Howard et al. 1988; 
Pagnocca et al. 1990, 1996, 2006; Victor et al. 2001). So, 
survival of the colony in circumstances where ants make a 
wrong decision then depends on effective communication 
between the fungal garden and the attendant ants.

Delayed responses and learning

Once plant material is taken back to the nest, the response 
of the ants to mycotoxic compounds in particular can be 
delayed (Saverschek et al. 2010; Saverschek and Roces 
2011) termed “delayed rejection” (Ridley et al. 1996). 
For example, there are some plants in the habitat of Ac. 
ambiguus (Emery 1888) that are not collected as they are 
unsuitable for the fungus garden (Saverschek et al. 2010). 
However, colonies of Ac. ambiguus that had not previ-
ously been exposed to these plants did not reject immedi-
ately (Saverschek and Roces 2011). When Ac. ambiguus 
were provided with plant material treated with undetect-
able fungicide, they learned to associate plant odours and 
cues from damaged fungi with the foraged leaves, which 
caused rejection in behavioural experiments (Arenas and 
Roces 2016a, b). This rejection is thought to be due to 
volatile signals, re-enforced by close contact with leaf 
surfaces (Saverschek et al. 2010; Saverschek and Roces 
2011). Under no-choice laboratory conditions At. sexdens 
(Linnaeus 1758) foragers will collect leaves of Sesamum 
indicum L. (Pedaliaceae) and although the leaves even-
tually repel ants the colony cannot recover (Bueno et al. 
1995), due at least in part to a mixture of fatty acids which 
are toxic to the fungus when combined (Ribeiro et al. 
1998). This suggests that there is some chemical change 
in the fungus as it utilizes the resource due to plant tox-
ins and which is perceived by the ants within the fungal 
garden (Herz et al. 2008; Thiele et al. 2014). Chemicals 
are transferred between At. sexdens rubropilosa and the 
fungus colony by direct contact (North et al. 1999), which 
may take the form of chemically marking acceptable food 
(Bradshaw et al. 1986) or by antennal contact between 
workers (Lenoir 1982).

Detection of changes in the fungal garden

We argue that based upon the perception of chemicals 
emitted by fungal gardens LCAs are able to distinguish 
between healthy and disturbed or degrading colonies, 
based upon characteristics of the strain of fungus that they 
cultivate and the chemical compounds produced by other 
organisms in the microbiome, and are able to detect per-
turbations in the chemical profile. Production of primordia 
by the fungal garden would reduce somatic growth and 
the nutrients available to the colony and be perceived by 
ants as a change in the chemistry of the fungus. Reproduc-
tion of the fungus is suppressed by the activities of ants 
(Pagnocca et al. 2001) and the presence of these mush-
rooms is usually a symptom that the colony is in decline 
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(Fisher et al. 1994a, b). Of more immediate significance 
for the survival of the colony is fungal distress or death 
due to toxins or pathogens. North et al. (1999) suggest that 
as the fungus dies it produces breakdown products and 
these compounds act as semiochemicals. Ants that self-
select and take many different types of forage back to the 
nest create a patchwork of different plant materials in the 
fungal garden. In nests of At. sexdens rubropilosa, this is 
manifested as unequal production of staphylae—clusters 
of gongylidia—by the fungal garden (Camargo et al. 2008) 
and may be what the ants detect. In a healthy colony, a first 
response of LCAs is to secrete antimicrobial molecules 
to prevent or halt the spread of pathogens (Fernandez-
Marin et al. 2006, 2015) and pathogens are excised by 
At. colombica (Mighell and van Bael 2016). This abil-
ity to discriminate pathogens and mutualists presents the 
possibility that the pathogenic species causes chemical 
changes in the fungal garden as it produces enzymes or 
physical structures that disrupt the gongylidia (Marfetán 
et al. 2015). The fungal garden that is damaged either by 
toxic forage or by pathogens is disposed of at the waste 
dump and there is some research to show that the process 
of transferring damaged fungi, together with toxic forage 
to the waste dump, is an important step in the associative 
learning process, especially for naive worker ants (Arenas 
and Roces 2016a, b, 2017; Scott et al. 2010).

Fungal compounds governing ant behaviour

As saprotrophs, fungi cause chemical changes in sub-
strates, and this activity can be detected as changes in the 
chemicals surrounding the fungus, especially as volatiles 
produced by primary or secondary metabolism (Morath 
et al. 2012). There is significant evidence that fungi pro-
duce semiochemicals which affect physiology, survival 
and behaviour in many insect taxa (e.g. Davis et al. 2013), 
including ants (Holighaus and Rohlfs 2016). Mueller et al. 
(2017) have recently highlighted the diversity of fungal 
genotypes cultivated by the extant Atta and Acromyrmex, 
and this is likely to have an effect on the metabolism of 
the fungi and inter alia the compounds involved in com-
munication with LCAs. In turn, the range of acceptable 
plant materials and, therefore, the diet breadth of indi-
vidual colonies, could be driven by the different strains 
of fungus, as Mueller et al. (2017) suggest. We speculate 
that these differences, over evolutionary time, may result 
in greater degrees of fidelity between LCAs and their fun-
gal strains. Colony-specific chemical profiles emitted by 
the different genotypes of fungi—in particular aldehydes, 
amides and their methyl esters—contribute to nestmate 
recognition in Ac. octospinosus nests (Hernandez et al. 

2006; Sainz-Borgo et al. 2013). Ants that fed on fungi 
from colonies other than their own are accepted more read-
ily into the foreign colony (Richard et al. 2007).

So, it is probable that different strains of L. gongylopho-
rus each produce a chemical profile, or signature, which 
helps to perpetuate associations across lineages of ants. A 
healthy fungus would not have to invest significant metabolic 
resources for the maintenance of this chemical signature as 
it is a consequence of primary metabolism. Induction of 
stress in the fungus, due to sub-optimal forage or pathogens 
is likely to alter this chemical signature. Since the fungus 
would incur a metabolic cost by allocating resources to the 
production of secondary compounds (Böllmann et al. 2010), 
we believe that the semiochemicals perceived by ants would 
be existing metabolites that are up-regulated or that undergo 
minor structural modification. We further suggest that these 
compounds would be relatively simple metabolites. For 
example, the eight carbon oxylipins, derived from peroxida-
tion of lipids constitute a structurally diverse group of fungal 
compounds with a wide range of ecological functions (Brod-
hun and Feussner 2011), while in fungi they are involved in 
growth, development (Tsitsigiannis 2005; Tsitsigiannis and 
Keller 2006, 2007; Brodhun and Feussner 2011) and as sig-
nalling molecules between pathogenic fungi and their plant 
hosts (Tsitsigiannis and Keller 2007). Furthermore, other 
molecules of C7 and greater, such as alkanes, aliphatic alco-
hols, acids and ketones initiate the alarm response of leaf-
cutting ants, but occur in varying proportions between Atta 
and Acromyrmex species (Norman et al. 2017). It would be 
interesting to investigate if there is some similarity between 
the blends of molecules that govern recognition of nestmates 
or that signal alarm in LCAs and stress in fungi.

Conclusions

Plant chemistry determines whether plants are collected by 
LCAs and, in turn, the effects of this material on the fungal 
garden modify behaviour of LCAs. Within the nest chemi-
cal treatment with secreted molecules, removal of dam-
aged areas and disposal on waste dumps are key behav-
iours; the process of removal and disposal seems to drive 
colony learning. Exactly how the fungus communicates 
either distress as it is damaged or a change in reproductive 
state and which compounds are involved and the genetic 
basis of their production are not yet known. Collection, 
extraction, analysis and bioassay of fungal compounds 
associated with Atta and Acromyrmex would start to piece 
together their role and how they convey information.
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