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Abstract
Protein kinase CK2 is a validated target for cancer therapy. Many natural products have shown inhibitory activity against
CK2 as potential anti-cancer drug candidates. A compatible quantitative structure-activity relationship (QSAR) model of
natural products is necessary to identify the structural determinants related to their biological activities and provides valuable
clues for the discovery of natural leads as anticancer drugs. In this study, genetic algorithm (GA) and multiple linear
regression (MLR) methods, combined with preferred molecular descriptors, were employed to build QSAR models of CK2
natural product inhibitors. The best model, composed of eight molecular descriptors, yielded Q2

Loo= 0.7914 and
R2= 0.8220 for the training set and Q2

ext= 0.7921 and R2
ext= 0.7998 for the test set, indicating the model’s robust reliability

and high predictability. As a proof of concept, a true external test set, distinct from the training and test sets, was synthesized
and tested in vitro to verify the predictive ability of this model. The predicted pIC50 values of 13 compounds showed less
than 30% relative error (including 10 compounds with relative errors less than 20%), further validating the predictive
performance of this model. And compound M18, M24, and M26 were identified as potential CK2 inhibitors with the
predicted pIC50 values of 11.29, 8.79, and 12.03 respectively. Furthermore, the underlying structural mechanisms through
which key molecular descriptors influenced their inhibitory activities against CK2 were elucidated. All these results provide
valuable information for the discovery of CK2 inhibitors.
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Introduction

Natural products refer to endogenous chemical con-
stituents or their metabolites in animals, plants, and
microorganisms with structural diversity and broad-
spectrum pharmaceutical activities. Historically, natural
products have been regarded as valuable sources of drug
leads and therapeutic agents [1]. They usually contain
aromatic rings and a large number of hydrogen-bond
acceptors and donors, which are considered as privileged
structures to interact with drug targets [2]. For instance,
protein kinase CK2 is involved in the development of
cancer as a key regulator of cellular pathways, and many
natural compounds have been identified as CK2 inhibitors,
therefore representing potential anti-cancer drug candi-
dates [3].

To date, considerable efforts have been devoted to dis-
covering natural products as CK2 inhibitors. A number of
polyphenol analogs, such as coumarins, flavones, anthra-
quinones, and ellagic acid, as well as linear scaffold
2-propenone derivatives, have shown inhibitory activity
against CK2. A small library of 7-hydroxycoumarin and
trifluoromethyl derivatives of coumarin was synthesized
and tested in vitro, demonstrating moderate inhibitory
activity (IC50) against CK2 ranging from 0.28 to 39 μM
[4, 5]. Meanwhile, attempts have been made to investigate
the possibility of flavone derivatives as CK2 inhibitors,
including natural flavones [6], synthesized 3-hydroxy-4’-
carboxyflavones, and 4’-hydroxyflavone analogs [7, 8].
Among them, FLC26 was the most potent, with an IC50

value of 9 nM. Emodin, a representative of anthraquinones,
displayed a moderate inhibitory effect on CK2 activity
(IC50= 2 μM) [9]. Virtual screening was employed to
identify ellagic acid [10] as a potent inhibitor of CK2
(IC50= 20 nM). Besides the mentioned compounds with
polycyclic scaffolds as CK2 inhibitors, linear scaffold
2-propenone derivatives were also described as CK2 hits.
Cozza et al. identified curcumin and its degradation product
ferulic acid as the most potent CK2 inhibitors
(IC50= 0.84 μM) [11]. Our group designed and synthesized
a series of 2-propenone derivatives using fragment-based
drug design, and compounds 8a and 8b exhibited inhibitory
activity against CK2 with IC50 values of 0.9 μM and
0.6 μM, respectively [12]. Despite the different chemical
scaffolds they possess, a general binding mode was found in
the CK2α-natural products complexes. Specifically, a
hydrophobic deep cleft between the N- and C-terminal
lobes of CK2 accommodates the aromatic rings of inhibi-
tors. Polar interactions, such as hydrogen bonds, halogen
bonds, or electrostatic interactions formed by amino,

hydroxyl, and nitrogen heterocycles with the hinge region
(Glu114 and/or Val116), as well as hydroxyl and carbox-
ylate groups with positive areas (Lys68), are responsible for
anchoring inhibitor orientation.

Identification of the structural determinants related to
natural products’ inhibition of CK2 provides valuable clues
for the optimization and screening of novel CK2 inhibitors.
Computational chemistry and chemical informatics methods
are powerful tools for identifying structural features and
properties of inhibitors that are strictly related to their bio-
logical activities [13]. For instance, based on low-energy
and docking conformations, 3D-QSAR models of coumarin
derivatives were developed to elucidate the structural
mechanisms through which substitutions influence the
inhibitory potency of compounds [14]. A reliable QSAR
model of indeno[1,2-b]indole derivatives was built to reveal
key molecular descriptors responsible for their biological
activities and to predict possible hits of virtual screening as
active inhibitors [15]. Compound 00082235 was validated
by in vitro CK2 activity testing with an IC50 value of
2.33 µM.

As a matter of fact, the mentioned QSAR studies were
based on a dataset with a certain scaffold, and thus exerted
predictive power on the specific scaffold. That is to say,
the predictive ability of a QSAR model is largely limited
by the training set because only query chemicals similar to
the training set can be reliably predicted. In order to
enlarge the applicability domain (AD) of QSAR models, it
will be significant to pursue a compatible QSAR model
with general prediction power on query chemicals without
chemical scaffold limitations. The more diverse the
training chemicals, the larger the AD [16]. For instance,
based on a diverse set of PI3Kγ inhibitors, a robust and
highly predictive QSAR model was developed and suc-
cessfully assessed using another set of compounds outside
the training and test sets with various structures [17].
Qualitative classification models of CK2 natural product
inhibitors were built to identify privileged substructures
related to CK2 inhibition using machine learning algo-
rithms [18].

In this study, a robust and predictive QSAR model of
CK2 natural product inhibitors was developed for the
discovery of novel CK2 inhibitors. Eight molecular
descriptors were identified as key factors related to CK2
inhibition. Furthermore, the prediction ability was also
validated by in vitro CK2 activity assay of a true external
set that was not involved in modeling. It is expected that
this study will convey valuable information to
researchers in the design of CK2 inhibitors as anti-
cancer drugs.
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Results and analysis

QSAR modeling results

Based on the screening of 613 molecular descriptors, 100
models were generated using a combination of GA and
MLR methods. Subsequently, 32 independent models were
obtained by filtering these inter-correlated models using
QUIK (Q Under Influence of K) rule. Considering the
scoring and ranking of these models evaluated by Multi-
Criteria Decision Making (MCDM) method, model NO.
1446, involving eight descriptors, was selected as the
optimal one. Obviously, the approximate ratio of training
set (95) to descriptors (8) is reasonable, meeting the rule of
thumb with a ratio exceeding 5. The correlation matrix
analysis shown in Table 1 indicated no overfitting correla-
tion between any two descriptors. Furthermore, there was
no collinearity among the descriptors in the model, as
proven by Kxx= 0.2751 (multivariate correlation index)
and ΔK= 0.0860 (global correlation among descriptors).

pIC50ð�LogIC50Þ ¼ 4:1417þ 1:8453IVDEþ 1:052IC1

þ0:8610Chi D=Dtþ 0:4001nArX� 1:0876C� 006

þ0:3547SdssC þ 0:9469CATS2D 08 DAþ 0:1983F08½C� O�
ð1Þ

To obtain a robust and predictive model, rigorous vali-
dation of the QSAR model was performed using both
internal (LOO cross-validation method) and external vali-
dation metrics (Y-randomization test). Considering Q2

Loo >
0.5 and R2 > 0.6 as indicators of a robust and predictive
QSAR model, the statistical parameters Q2

Loo= 0.7914 and
R2= 0.8220 for the training set (Q2

ext= 0.7921 and
R2

ext= 0.7998 for the test set) shown in Table 2, as well as
the correlation line of the experimental and predicted inhi-
bitory activity values (Fig. 1A), demonstrated the high
performance of the optimal model. Meanwhile, the lower
values of R2

Yscr and Q2
Yscr of the Y-scrambling test also

indicated the reliability of this model, which was not gen-
erated by chance. Furthermore, this model was considered

acceptable as the statistical parameters R2
ext= 0.7998,

k= 0.9851, and (R2
ext-R0

2)/R2
ext= 0.06 fulfill the require-

ments proposed by Roy et al. [19].

AD analysis

The applicability domain of QSAR models should be clar-
ified since the developed models can generate trustworthy
predictions only if the new compound lies within the
applicability domain of the model. The Leverage and
standardized approach were employed to define the AD of
the optimal model. As shown in Fig. 1B, the inhibitory
activity of the whole dataset was predicted well enough that
all values fell within the range of less than 3 standard
residuals. Five compounds in the training set (39, 40, 97,
108, and 109) were identified as structural outliers with h
values higher than the leverage threshold (h*= 0.284) due
to the unique chemical groups presented in these com-
pounds, such as the ethyl group in compounds 39 and 40,
the sulfonyl group in compound 97, as well as the four rings
in compounds 108 and 109. However, small residues
(−0.200, 0.253, −0.053, −0.278, −0.109, respectively)

Table 1 Correlation matrix analysis of eight descriptors of the optimal model

Descriptors IVDE IC1 Chi_D/Dt nArX C-006 SdssC CATS2D_08_DA F08[C–O]

IVDE 1

IC1 −0.002 1

Chi_D/Dt −0.238 0.010 1

nArX 0.177 0.387 −0.010 1

C-006 0.117 −0.004 −0.094 −0.106 1

SdssC −0.224 0.392 0.091 −0.111 0.090 1

CATS2D_08_DA 0.208 −0.315 −0.270 −0.003 −0.010 −0.649 1

F08[C–O] 0.214 −0.431 −0.341 −0.129 0.086 −0.398 0.619 1

Table 2 Statistical parameters for internal and external validation of
the optimal model

Internal validation
(training set)

External validation (test set)

NTraining 95 NTest 20

Q2
LOO 0.7914 Q2

F1 0.7921

R2 0.8220 Q2
F2 0.7874

R2
adj 0.8055 Q2

F3 0.7186

RMSEtr 0.4228 R2
ext 0.7998

CCCtr 0.9023 RMSEext 0.5315

RMSEcv 0.4577 CCCext 0.8749

CCCcv 0.8857 r2m 0.6401

Q2
LMO 0.7649 Δr2m 0.1978

R2
Yscr 0.0847 k 0.9851

Q2
Yscr −0.1304 (R2

ext–R
2
0) /R

2
ext 0.0600
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between their experimental values and predicted ones
indicated the high predictive ability of the developed model.

Variable Importance Plot (VIP) and loading plot
analysis

Eight molecular descriptors, namely IVDE, IC1, Chi_D/Dt,
nArX, C-006, SdssC, CATS2D_08_DA, and F08[C–O],
were regarded as determinants of inhibitory activity against
CK2. VIP was analyzed to rank the relative importance of
the variables (Fig. 2A). Among them, three molecular
descriptors—CATS2D_08_DA, F08[C–O], and nArX—
scoring higher than 1 (VIP scores of 1.54307, 1.3576, and
1.18082, respectively) were regarded as the most determi-
nant factors of CK2 inhibition, whereas the other descrip-
tors with VIP scores lower than 1 were considered less
important. This conclusion could also be made from
the loading plot indicated in Fig. 2B, which elucidated the
contribution of descriptors to the response pIC50. The
closer the descriptors to the effect values, the greater
the contributions to their inhibitory activity. Obviously,

CATS2D_08_DA, F08[C–O], and nArX may play domi-
nant roles responsible for CK2 inhibition due to the
smallest distance from the response pIC50, while the other
ones far away from the response values or its projection
point but near from the origin could be considered as less
important descriptors.

Mechanism interpretation of the optimal model

As indicated by Eq. 1, except for C-006, which is negatively
correlated with the inhibitory activities of natural products,
the other descriptors with positive coefficients would be
beneficial for CK2 inhibition. The top three most significant
descriptors, CATS2D_08_DA, F08[C–O], and nArX were
focused on and discussed in detail (Fig. 3).

CATS2D_08_DA is regarded as the priority favorable
factor responsible for CK2 inhibition. This 2D structure-
based atom pair descriptor describes the number of potential
hydrogen bond donor/acceptor atoms (e.g., oxygen, nitro-
gen, etc.) at a topological distance of 8 (eight bond dis-
tances). For instance, compounds 54, 55, and 56 showed

Fig. 1 A Linear fitting graph of experimental versus predicted pIC50

values for the optimal QSAR model (B) Williams plot of the optimal
model for CK2 natural product inhibitors, where horizontal dotted line

means the ±3 standardized residuals for response values, and vertical
solid line means the warning leverage value h*

Fig. 2 A Variable importance plot (VIP) and (B) factor loading scatterplot for the eight descriptor variables in the best QSAR model
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high inhibitory activity against CK2 with CATS2D_08_DA
values of 2. This could be explained by the polar interactions
involving H-bond donor/acceptor atoms of inhibitors and
Glu114 and/or Val116 and/or Lys68 of CK2. Specifically,
the hydroxyl at R5 and carboxylate group of compound 54
established H-bond and electrostatic interactions with
Lys68. In contrast, the R5 hydrogen atom-substituted com-
pound 53 (pIC50= 4.52) generated a CATS2D_08_DA
descriptor value of zero, resulting in a significant 10,000-
fold reduction in inhibitory activities relative to compound
54 (pIC50= 8.05). Interestingly, this descriptor could be
used to elucidate the reason for the 5000-fold less potency of
R2 non-ionizable substituents tricyclic quinoline (R2=
CONH2, IC50= 30 nM) and compound 10 (R2=CN,
IC50 > 2500 nM) compared to CX-4945 with (R2=COOH,
IC50= 0.1 nM) in vitro [20].

nArX is the number of X atoms (halogen atoms) sub-
stituted on the aromatic ring of molecules. This descriptor is
positively correlated with inhibitory activity, indicating that

the more halogen atoms on the aromatic ring, the more
potent inhibitory activity a compound exhibit. Accelerating
studies have confirmed that halogen bonds occurring
between halogen atoms and an oxygen atom are the novel
driving force for the binding of inhibitors with protein
kinase. This was also confirmed by a previous study that the
halogen atoms of the benzimidazole analog TBB formed
interactions with the hinge region residues Val116 and
Glu114 [21], respectively. Additionally, halogen atoms
were identified as privileged substructures based on the
classification model of CK2 natural product inhibitors [18].
By comparing the structures and activities of compounds 5
(pIC50= 7.70) and 52 (pIC50= 4.55), three halogen atoms
substituted on the flavonoid scaffold generated a 1400-fold
increase in inhibitory activity compared to three hydrogen
atoms at the corresponding positions.

F08 [C–O] is a two-dimensional frequency fingerprint
indicating the frequency of the C–O bond at the corre-
sponding topological distance. A higher frequency of C–O

Fig. 3 Mechanistic correlations of (A) positive and (B) negative descriptor variables responsible for the inhibition of CK2
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features located at a topological distance of 8 is beneficial to
CK2 inhibition. Since coumarins possess a bicyclic scaffold
with an F08 [C–O] value lower than 8, it is reasonable to
understand the fact that coumarins exhibited lower inhibi-
tory activity relative to flavonoids with higher F08 [C–O]
values. The nitro and hydroxyl groups of compound 10
created an additional center for oxygen and thus generated
the F08 [C–O] value of 10, which provided reliable evi-
dence for the lower potency of compound 46 (pIC50= 4.68)
with an F08 [C–O] value of 1.

The negatively correlated descriptor, C-006, denotes a
CH2RX-type fragment in which R indicates an O or S
atom connected through C and X. A negative correlation
with the descriptor indicates that lower C-006 values may
lead to higher biological activity. For example, com-
pounds 97, 39, and 40 with C-006 values of 1 showed
moderate inhibitory activities against CK2 with pIC50

values of 4.64, 5.3, and 5.1, respectively. Whereas com-
pound 13, without a CH2-group, has a smaller C-006
value but exhibits higher inhibitory activity (pIC50= 7.05)
than compound 40 (pIC50= 5.1).

Other descriptors, including SdssC, IC1, Chi_D/Dt, and
IVDE, had less impact on the inhibitory activity of com-
pounds. Regardless of the type of inhibitor (active or
inactive), there was no remarkable discrepancy in the values
of these descriptors. As indicated in Table S1 (supporting
information), the four descriptors of potent compounds 1
and 4 are similar to those of compounds 53, 44, and 46 with
lower inhibitory activity, respectively.

Bioassay validation of a true external test set

One important objective of QSAR modeling is to predict the
inhibitory activity of new chemical entities outside the
training and test sets against CK2. In this study, 26 natural
product derivatives (M1-M16 with and M17-M26 without
experimental IC50 values) were selected as a true external
test set to evaluate the predictive ability of the developed
model (Table 3 and Fig.S1). Among them, a series of
2-propenone derivatives containing an amine-substituted
five-membered heterocycle and a benzoic acid (or phenol)
were investigated by combining fragment-hybrid computa-
tional design with in vitro assay [12]. Another 10 molecules
were identified as theoretical hits based on a hybrid virtual
screening of CK2 natural product inhibitors (work in
progress).

Enzymatic CK2 inhibition assay indicated that most
2-propenone derivatives exhibited moderate inhibitory
effects against CK2α, with the pIC50 values ranging from
3.70 to 6.22, which were used to evaluate the predictive
ability of the developed model. As shown in Fig. 4, except
for compound M5, M8 and M11, the predicted pIC50 values
of 13 compounds showed less than 30% relative error

(including 10 compounds with relative errors less than
20%), further validating the predictive performance of this
model. The less than 10-fold discrepancy between predicted
and experimental pIC50 values meant that this model was
applicable for CK2 inhibitors with linear scaffolds.

Besides the validation of the QSAR model by the inhi-
bitors with known IC50 values, this QSAR model was also
involved in a hybrid virtual screening of CK2 natural pro-
duct inhibitors. As shown in Table S2, the top 10 theoretical
hits (M17-M26) were considered as potent CK2 inhibitors,
with pIC50 values ranging from 4.34 to 12.03, which will be
further evaluated and tested by the kinase assay. Interest-
ingly, the top three compounds M18, M24, and M26, with
predicted pIC50 values of 11.29, 8.79, and 12.03 respec-
tively, exhibited higher values for two molecular descrip-
tors, CATS2D_08_DA and F08 [C–O] (Table S2).

Additionally, molecular docking was performed to elu-
cidate the binding modes of two theoretical hits M18 and
M19 with CK2. As shown in Fig. 5, both M18 and M19
were sandwiched into the hydrophobic pocket consisting of
Leu45, Val53, Val66, Ile95, Phe113, Met163 and Ile174.
Polar interactions were also formed between the OH of M18
and the backbone CO of Val116, the carbonyl of M19 with
NH2 of Val116, as the OH of M19 with the side chain of
Lys68.

Comparison with previous 2D QSAR models of CK2
inhibitors

There has been growing interest over computational methods
to construct 2D QSAR models of CK2 inhibitors for pre-
dicting the biological activities of new compounds. For
instance, 2D-QSAR models of tricyclic quinoline analogs as
CK2 inhibitors were developed using MLR and support vector
machine methods. The atomic mass and polarizabilities and
also number of heteroatoms in molecules were identified as the
main independent factors contributing to the CK2 inhibition
activity [22]. Ouammou et al performed QSAR studies on
phenylaminopyrimidine-(thio) urea derivatives as CK2 inhi-
bitors using MLR approach along with Quantum chemical
descriptors, and found two most important descriptors LogP
and D.M related to CK2 inhibition [23]. Since the mentioned
QSAR studies were based on a dataset with a certain scaffold,
and thus have the exclusive predictive ability for query com-
pounds similar to the training set. Here a robust and predictive
QSAR model were proposed based on CK2 natural product
inhibitors with diverse chemical scaffolds, and showed good
predictive ability for the 2-propenone derivatives outside the
training and test sets. For natural products, CATS2D_08_DA,
F08[C–O], and nArX were considered as three most important
molecular descriptors influencing their inhibitory activities
against CK2. To get a rigorous validation of the robustness
and predictivity of this model, a comprehensive true external
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Table 3 The experimental activity (EA pIC50), predicted activity (PA pIC50) and residuals of the true external compounds

Name Structures EA pIC50 PA pIC50 Residuals

M1 5.13 5.89 −0.76

M2 5.03 3.61 1.42

M3 4.94 5.86 −0.92

M4 4.63 3.58 1.05

M5 3.99 5.91 −1.92

M6 3.89 3.63 0.26

M7 6.22 5.90 0.32

M8 6.10 3.62 2.48

M9 3.99 3.36 0.63

M10 3.85 3.39 0.46

M11 4.03 2.56 1.47

Medicinal Chemistry Research



Table 3 (continued)

Name Structures EA pIC50 PA pIC50 Residuals

M12 4.16 3.52 0.64

M13 4.92 4.65 0.27

M14 3.97 5.11 −1.14

M15 3.70 2.97 0.73

M16 4.18 5.33 −1.15

M17 – 4.34 –

M18 – 11.29 –

M19 – 6.10 –

M20 – 5.08 –

M21 – 4.89 –

Medicinal Chemistry Research



test set with more diversified structures and broad-spectrum
bioactivities is expected.

Conclusion

Natural products have been regarded as potential ther-
apeutic leads for many diseases. Here, a robust and pre-
dictive QSAR model was established based on a diverse
set of CK2 natural product inhibitors using the GA-MLR
methodology. Besides the statistical parameters of
Q2

Loo = 0.7914 and R2 = 0.8220 for the training set, and
Q2

ext = 0.7921 and R2
ext = 0.7998 for the test set, the less

than one order discrepancy between predicted and
experimental pIC50 values of the true external test set
further verified the powerful predictive ability and high
reliability of this developed model. Eight molecular
descriptors were analyzed to elucidate the structural
mechanisms responsible for the inhibitory activity of
compounds. It is expected that this model, as presented in
the current study, will be beneficial for the discovery of
CK2 inhibitors.

Materials and methods

Data set and molecular descriptors calculation

In viewing of diverse molecular scaffolds and broad-
spectrum bioactivities, 115 CK2 natural product inhibitors
(Fig. 6) were selected from the published literature
[4, 8, 10, 11]. The experimental IC50 values of the entire
dataset were converted to pIC50 values (-Log IC50) as the
dependent variable distributed from 4.0 to 9.0. Then all
these compounds were randomly split into a training set
(95) and a test set (20) at a ratio of 5:1 as listed in Table S1
(Supplementary Materials). Following the general workflow
shown in Fig. 7, a reliable QSAR model were developed to
identify key molecular descriptors related to the inhibitory
activities.

In order to get the approximate bioactive conformations
of the data set, the co-crystallized compounds 33, 74, 108,
109 and 111–114 complexed with CK2 (Corresponding to
PDB ID: 4DGM, 2QC6,1M2P, 2ZJW, 1M2Q, 6HOQ,
6HOR and 6HOT, respectively) were considered as bioac-
tive conformations, and other compounds were constructed

Table 3 (continued)

Name Structures EA pIC50 PA pIC50 Residuals

M22 – 5.81 –

M23 – 6.56 –

M24 – 8.79 –

M25 – 5.42 –

M26 – 12.03 –

Medicinal Chemistry Research



with ChemBioDraw Ultra 14.0 (https://www.chemdraw.
com.cn/) based on the bioactive conformations of their
analogs. Then all compounds were subsequently optimized
using 3D module. 2D molecular descriptors including basic
descriptors, constitutive indices, ring descriptors, topologi-
cal indices, connectivity indices, etc. were calculated by
DRAGON 7.0 (https://chm.kode-solutions.net/). To reduce
the redundancy of constant and intercorrelated descriptors,
multicollinearity (the occurrence of high intercorrelation
among two or more descriptors) terms need to be removed
before multiple linear regression. In this section, constant
and near-constant descriptors (more than 80% compounds
sharing the same value) and highly inter-correlated
descriptors (intercorrelation > 0.95) descriptors were exclu-
ded to remove useless information and improve modeling
efficiency, and finally, 613 descriptors were retained for
developing the regression model.

GA-MLR-OLS-based QSAR models

QSAR modeling was carried out by multiple linear regres-
sion (MLR)-ordinary least square (OLS) procedure as
implemented in QSARINS 2.2.4 [24, 25]. Genetic algorithm
technique was used to select the most relevant descriptors
with respect to an objective function. Based on the selected
descriptors, MLR analysis was performed on the training set
and then, evaluated by test set. Since the ratio of the number
of training compounds to the descriptor variables should be
greater than 5(N/M > 5) [26], the maximum number of
variables (descriptors) included in the model was no more
than 19 (95/5= 19). Firstly, based on 613 molecular
descriptors, a low-dimensional model is generated using the
all-subset module to explore all possible combinations
between two descriptors to avoid a completely random start
of the GA. Subsequently, new combinations with additional

Fig. 4 Experimental and Predicted pIC50 values of the true external test set

Fig. 5 Binding modes of two theoretical hits, (A) M18, (B) M19 with CK2
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descriptors are explored using the GA module to measure
the robustness of the model and generate the best model
using the leave-one-out (LOO) cross-validation coefficient
(Q2

LOO derived based on MLR) as the fitness function. The
next step was to exclude the worse subsets, and then breed
the remaining subsets. The modeling parameters include
population size, mutation rate and number of genetic gen-
erations and set to 200, 20 and 2000, respectively. Only the
top 10 models were retained for each set of models with the
same size. Furthermore, the QUIK (Q Under Influence of K)
rule was employed to exclude the generated models with
high predictor collinearity [27].

Model performance evaluation

A LOO cross-validation (internal validation) and test set
validation (external validation) were performed to evaluate
the performance of models.

As for the LOO-based internal validation of training
set, the parameters including cross-validation coefficient
Q2

LOO, correlation coefficient R2 and adjustment coeffi-
cient R2

adj were regarded as significant indexes to assess
the robustness and stability of a model. Two parameters,
Q2

LOO ≥ 0.5 and R2 ≥ 0.8 are considered as the popular
criteria to define the robustness and predictive ability of
QSAR models [28]. In order to check the stability of
QSAR models, Y-scrambling validation was also applied
by response scrambling with maximum iterations of 2000
[24, 29]. The model was not considered to be generated
randomly when the resulting models obtained with ran-
domized response should have significantly lower Q2

values than the proposed ones.
The external predictive performance of a model was

evaluated by taking Q2
ext, r

2
m, R

2
ext, Q

2
F1, Q

2
F2, Q

2
F3, as

well as CCCext, RMSEext, r
2
m and Δr2m into consideration.

Here Q2
Fn > 0.7; CCCtest > 0.85; r2 m > 0.5; Δ r2 m < 0.2

Fig. 7 Schematic illustration and
applications of QSAR modeling
for CK2 natural product
inhibitors

Fig. 6 Molecular skeleton
structure of 115 CK2 natural
product inhibitors
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were used to a criteria of a good external prediction per-
formance. Moreover, root mean squared error (RMSE,
including RMSEtr and RMSEtest) were taken as an additional
measure to assess the accuracy of a model.

The model performance was ranked by Multi-Criteria
Decision Making (MCDM) technique using scores from 0
to 1, in which 1 means the best performance and 0 the worst
[24]. Internal fit (R2), cross-validation (Q2), and external
validation (Q2

ext and R2
ext) are the parameters evaluated by

the MCDM procedure. A QSAR model with the highest
value of all statistical parameters and the best MCDM score
will be selected as the optimal one.

AD analysis

Only compounds falling into the AD of one QSAR model
could be reliably predicted [16]. AD was presented through
the Williams plot (leverage value h versus the standardized
residual of each compound). The hat value (h) is used to
characterize the leverage of a compound in the original
variable space, and the leverage value is set to
h*= 3(p+ 1)/n, where p represents the number of descrip-
tors and n represents the number of compounds in the
training set. For the effect space, a compound will be
recognized as a response outlier if its normalized residuals
are greater than 3 [24, 30].

Compounds synthesis and CK2 kinase assay

A true external set was defined as compounds (with or
without experimental biological activities) which were not
involved in QSAR modeling, and was employed to further
evaluate the predictive ability of QSAR models. In this
study, 26 compounds including 12 novel CK2 inhibitors
synthesized by Qi et al. [12], 4 synthesized compounds and
14 compounds screened from natural product libraries were
collected as a true external set.

The synthesis and chemical characterization of com-
pounds M9-M12 is described in Scheme 1. The materials
and reagents were purchased from Sigma-Aldrich
(Shanghai, China). The intermediate II was obtained by
protecting the hydroxyl group of starting material I,
which went through substitution with oxalyl chloride to
provide Compound III. And then various amines were
coupled to afford amide IV. Finally, hydrolysis of the
ester group with sodium hydroxide followed by hydro-
chloric acid treatment were performed to afforded the
desired compounds. All synthesized compounds were
characterized with various spectroscopic methods.
1HNMR spectra were measured in DMSO-d6 on a Bruker
Avance DRX 400 MHz. Mass spectra (MS) were recor-
ded on a Q-TOF maxis (Agilent Technologies 1290
Infinity).

4,3-(3-(2-amino-1,3,4-thiadiazol-5-yl)prop-2-en-1-yl)
phenol (M9)

1HNMR(400MHz, DMSO-d6)δ 8.89 (s, 1H), 8.50 (s, 1H),
7.66 (d, J= 15.8 Hz, 1H), 7.19 (d, J= 7.7 Hz, 2H), 6.80 (dd,
J= 17.4, 11.5 Hz, 2H), 6.60 (dd, J= 9.7, 5.2 Hz, 1H).ESI-
MS m/z:246.0344 [M-H]-, calcd for C11H9N3O2S
:247.0415.

3-(3-(2-aminothiazoly) propenyl) phenol (M10)

1HNMR (400MHz, DMSO-d6) δ 12.36 (s, 1H), 9.76 (s,
1H), 7.62 (d, J= 15.8 Hz, 1H), 7.51 (d, J= 3.5 Hz, 1H),
7.25 (dd, J= 5.6, 2.1 Hz, 2H), 7.07 – 7.01 (m, 2H),
6.87–6.82 (m, 2H).ESI-MS m/z:245.0386 [M-H]-, calcd for
C12H10N2O2S :246.0463.

3-(3-(4-propenamide) propenyl) phenol (M11)

1HNMR (400MHz, DMSO-d6δ 10.31 (s, 1H), 7.71 (d,
J= 7.7 Hz, 2H), 7.47 (d, J= 15.7 Hz, 1H), 7.33 (t,
J= 7.9 Hz, 2H), 7.21 (t, J= 8.0 Hz, 1H), 7.06 (t, J= 7.4 Hz,
1H), 6.98 (d, J= 6.4 Hz, 2H), 6.78 (d, J= 15.7 Hz,
2H).ESI-MS m/z:238.0881[M-H]-, calcdfor C15H13NO2:
239.0946.

3-(3-(4-chloroaniline) propenyl) phenol (M12)

1HNMR (400MHz, DMSO-d6) δ 10.35 (s, 1H), 9.66 (s,
1H), 7.73 (d, J= 8.8 Hz, 2H), 7.50 (d, J= 15.7 Hz, 1H), 7.39
(d, J= 8.8 Hz, 2H), 7.24 (t, J= 7.8 Hz, 1H), 7.07–6.99 (m,
2H), 6.82 (d, J= 8.0 Hz, 1H), 6.73 (d, J= 15.7 Hz, 1H).ESI-
MSm/z:272.0486 [M-H]-, calcd for C15H12NO2Cl
:273.0557.

ADP-GloTM Kinase Assay (Promega, Madison, WI,
USA) was used to test the inhibitory activity of the true
external set against CK2 [31, 32]. The IC50 values for test
compounds were determined at 5% DMSO with 7 con-
centrations of each tested inhibitor at the range of
0.002–2000 μM. The kinase reaction was performed in
25 µL mixture containing 10 µL casein kinase 2 solution,
5 µL different concentrations compounds and 10 µL sub-
strate/ATP mixing solution. Incubate for 60 min at room
temperature, 25 µL of ADP-GloTM Reagent was added to
terminate the kinase reaction and deplete the remaining
ATP. Then 50 µL Kinase Detection Reagent was added to
convert ADP to ATP within 30 min, and allow the newly
synthesized ATP to produce a luminescence signal using
luciferase/luciferin reaction, which was recorded by the
luminescence panel of Microplate Reader (Enspire2300-
001A, Perkin Elmer, Waltham, MA, USA). The lumines-
cent signal is proportional to the ADP concentration pro-
duced and correlated with the kinase activity.

Medicinal Chemistry Research



Molecular Docking

In order to predict the binding modes of theoretical hits with
CK2, molecular docking was performed by using Auto-
Dock Vina v1.2.0 [33]. The active site of the receptor was
defined as a three-dimensional grid of (50 × 50 × 50) points
with a grid spacing of 0.375 Å at the center of mass of the
ligand (PDB ID: 4DGN and 6HOQ) [11, 34]. The
Lamarckian genetic algorithm (LGA) was employed as the
conformational search method to explore the binding modes
between CK2 and the inhibitors.

Supplementary information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00044-024-03271-7.
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