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Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a DNA repair enzyme that can reduce the efficacy of some anticancer drugs
targeting topoisomerase 1 (TOP1) making it a promising target for antitumor therapy when combined with TOP1 poisons.
Here we describe the synthesis of a number of adamantane-monoterpene conjugates 20a–g and 21a–g connected through a
1,3,4-thiadiazol-2(3H)-imine linker, where acyclic, monocyclic, and bicyclic structural types of monoterpenes were used. All
the synthesized compounds demonstrated activity against TDP1 in micromolar range, with the most potent inhibitor being
compound 21a (IC50 1.2 μM). The cytotoxic effects of these compounds determined in the HEK293A and HeLa cell lines
were low to moderate. These findings imply that such compounds are promising for further development of new TDP1
inhibitors with favorable physicochemical properties.
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Introduction

One of the enzymes involved in the control and modifica-
tion of topological states of DNA is Topoisomerase 1
(TOP1). It plays a crucial role in processes like transcrip-
tion, DNA replication, recombination, and chromatin
remodeling [1, 2]. The catalytic mechanism of this enzyme
involves the introduction of a temporary single-stranded
break in DNA, which results in the rotation of the free DNA

strand and the release of topological stress. Once DNA is
relaxed, TOP1 religates the breaks by reversing its covalent
binding.

Inhibition of the reverse cleavage of TOP1 is an under-
lying mechanism of action of some anticancer drugs.
Camptothecin, isolated from the bark of the Camptotheca
acuminata (Nyssaceae), was the first known TOP1 inhibitor.
Antitumor drugs such as topotecan, irinotecan, and belote-
can are semi-synthetic derivatives of camptothecin and are
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used in the treatment of a wide range of cancers, including
leukemia, breast cancer, ovarian cancer, lung cancer etc. [3].

Chemotherapeutics, including camptothecin derivatives,
have a number of disadvantages that can reduce its effec-
tiveness and cause side effects such as diarrhea, kidney
failure, neutropenia and thrombocytopenia. In addition,
some tumors may become resistant to chemotherapy drugs,
which makes treatment more difficult. Tyrosyl-DNA-
phosphodiesterase 1 (TDP1) is a DNA repair enzyme,
responsible for the cleavage of covalent TOP1-DNA com-
plexes, including those resulting from the action of
camptothecin-derived drugs [4]. Several studies have shown
that the TDP1 enzyme mediates the drug resistance of some
cancers [5]. Cell cultures with increased TDP1 expression
are known to show resistance to TOP1 inhibitors [6], while
cells with a low content of this enzyme are usually sensitive
to TOP1 inhibitors [7]. A similar effect is also observed in
animal models, a line of genetically modified TDP1
knockout mice showed hypersensitivity to camptothecin
[8, 9]. Thus, the development of TDP1 inhibitors could lead
to drugs that effectively enhance antitumor therapy.

Currently, a number of compounds demonstrating inhi-
bitory properties against TDP1 are known, such as thiazo-
lidine-2,4-dione derivatives 1 and 2 containing aromatic and
monoterpene moieties [10], compounds with usnic acid
backbone 3 [11], deoxycholic acid derivatives 4 [12], iso-
quinolines 5 [13], benzophenanthridinones 6 [14] and a
number of others [15–17] (Fig. 1).

Substances (for instance 7–11 in Fig. 2.) combining
monoterpene and adamantane fragments through linkers of
various types have also shown their effectiveness in inhi-
biting TDP1 [18, 19]. Furthermore, adamantane derivatives
12 and 14 having 1,2,4-triazole and 1,3,4-thiadiazole frag-
ments not only exerted anti-TDP1 properties, but also
demonstrated a synergistic effect on cancer cells when
combined with topotecan [20, 21] (Fig. 2).

In this paper, we continued our research on the synthesis
of adamantane-monoterpene conjugates connected via a
heterocyclic core and the study of their inhibitory activity
against TDP1; i.e., we synthesized a number of (1,3,4-
thiadiazole-2(3H)-ylidene)-2,2,2-trifluoroacetamides con-
taining an adamantane scaffold in the fifth position of the

Fig. 1 Some compounds are
active against the TDP1 enzyme

Fig. 2 Adamantane-
monoterpene conjugates
exerting anti-TDP1 properties
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Table 1 TDP1 inhibitory activities and cytotoxicity of compounds

Compound IC50, μM СС50, μM НЕK293А СС50, μM HeLa СС50, μM MRC-5

20a

3.5 ± 0.2 >100 >100 >100

20b

1.4 ± 0.1 53 ± 3 61.5 ± 0.5 68 ± 6

20c

1.4 ± 0.3 50 ± 1 60 ± 1 >100

20d

3.94 ± 0.01 80 ± 20 >100 >100

20e

3.0 ± 0.6 42 ± 9 52 ± 6 >100

20f

1.92 ± 0.01 >100 60 ± 2 >100

21a

1.2 ± 0.1 >100 >100 >100

21b

1.8 ± 0.1 34 ± 20 56 ± 4 63 ± 9
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heterocyclic nucleus and having a monoterpene substituent
of different nature in the third position, as well as their
analogs without the trifluoroacetyl group. There are some
studies showing that compounds containing a 1,3,4-thia-
diazol-2(3H)-imine core exhibit valuable pharmacological
activities (antitubercular [22], antiradical [23] etc.), to the
best of our knowledge, there are no data regarding inhibi-
tory properties of substances with 1,3,4-thiadiazol-2(3H)-
imine core against TDP1.

Chemistry

For the synthesis of target products acyl chloride 15 was
converted into compound 16 by its interaction with thio-
semicarbazide in THF with 90% yield at first. Compound
16 then underwent intramolecular cyclization in con-
centrated sulfuric acid at room temperature to form corre-
sponding 2-amino-1,3,4-thiadiazole 17 as described in [20].
Subsequent treatment of compound 17 with trifluoroacetic
anhydride in DCM under cooling conditions afforded tri-
fluoroacetamide 18 with 87% yield. Reaction of compound
18 with bromides 19a–f, obtained by the treatment of cor-
responding monoterpene alcohols with PBr3 or the NBS/
PPh3 mixture, in DMF in the presence of potassium car-
bonate and sodium iodide at room temperature gave N-

alkylated products 20a–f with good to excellent yields.
Trifluoroacetamides 20a–f were then transformed into cor-
responding imines 21a–f by alkaline hydrolysis using LiOH
in the THF/H2O biphasic medium at 60 °C.

Biology

The compounds synthesized were tested against TDP1
using a fluorescent biosensor [24]. Furamidine, a com-
mercially available TDP1 inhibitor (IC50 1.23 µM), was
used as a reference. All the compounds were shown to
exhibit activity in the low micromolar concentration
range. The most effective inhibitor is compound 21a
containing a 3,7-dimethyloctyl substituent (Table 1). It is
interesting to note that there is no clear trend between
trifluoroacetamide derivatives and imines in the values of
semi-inhibitory concentrations. On one hand, compound
21a turned out to be a more effective inhibitor compared
to its precursor 20a; a similar trend of 21 being more
potent TDP1 inhibitor than 20 is observed in pairs
21d–20d, 21e–20e, 21f–20f. On the other hand, when
comparing the values of semi-inhibitory concentrations in
pairs 21b–20b and 21c–20c, one can conclude that tri-
fluoroacetyl group has slight positive effect on the ability
to inhibit TDP1.

Table 1 (continued)

Compound IC50, μM СС50, μM НЕK293А СС50, μM HeLa СС50, μM MRC-5

21c

2.4 ± 0.1 70 ± 10 29 ± 5 63 ± 6

21d

2.7 ± 1.0 14 ± 2 12.5 ± 0.5 15 ± 1

21e

3.70 ± 0.01 14.5 ± 0.5 12.5 ± 0.5 18 ± 2

21f

2 ± 1 15 ± 2 12.5 ± 0.5 21 ± 3
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When comparing cytotoxic properties of compounds
synthesized, one can conclude that the presence of tri-
fluoroacetyl group significantly reduces CC50 values of a
substance (Table 1, Fig. S1 in Supplementary). This cor-
relation can be seen in almost all pairs of compounds such
as 21b–20b, 21d–20d, 21e–20e, 21f–20f and is observed on
both non-tumor cell lines: HEK293A (human embryonic
kidney) and MRC-5 (human lung fibroblasts) and cancer
cell line HeLa (cervical carcinoma).

Knowing the intrinsic cytotoxicity of the compounds is
important in assessing the potential side effects of the
concomitant therapy. TDP1 inhibitors should have minimal
intrinsic toxicity as they are envisaged to be topotecan
sensitizers. The cytotoxic effect of the compounds had
moderate or low toxicity (20a–f, 21a–c) on HEK293A,
MRC-5, and HeLa cells. None of the compounds poten-
tiated the effect of topotecan, regardless of the inhibitory
potency and intrinsic cytotoxicity, neither on cancer cells
(HeLa) nor on non-tumor cells (HEK293A, MRC-5) (see
Fig. S2 in supplementary).

Modeling

Twelve 1,3,4-thiadiazole derivatives were docked into the
binding site of the TDP1 (PDB ID: 6W7K, resolution
1.70 Å) [25] enzyme. The TDP1 docking scaffold has been
previously found to be robust [26]. The scoring functions
GoldScore(GS) [27], ChemScore(CS) [28, 29],

ChemPLP(Piecewise Linear Potential) [30] and ASP(Astex
Statistical Potential) [31] in the GOLD (v2020.2.0) docking
algorithm were used. The GOLD docking algorithm is
known to be an excellent molecular modeling tool [32, 33].

The binding scores, for the TDP1 catalytic pocket, are
given in Table S1; all the ligands have reasonable values.
When the scores of the active ligands were correlated
against their IC50 values, only weak trends were seen for
ASP (R2 – 0.144), ChemPLP (R2 – 0.133), GS (R2 – 0.080)
and CS (R2 – 0.263, see Fig. S3).

The predicted binding poses of the thiadiazole deriva-
tives were examined; no dominant binding poses were
found by the four scoring functions. ChemPLP and GS
predicted similar poses for 20a,b,f, 21a–c. All the ligands
overlapped with the co-crystallized ligand as well as
occupying the catalytic pocket including the His263 and
His493 amino acid residues. The adamantane group was
predicted to bind to the same pocket as the phthalic acid of
the co-crystallized structure by all four scoring functions.
The binding mode, as predicted by ChemPLP, of the ligand
with the best overall properties 20f is shown in Fig. 3. The
aliphatic ring docked into a pocket below the adamantane
binding pocket and the trifluoroacetimide extends towards
the allosteric site but does not reach it (see Fig. 3A). The
sulfur of the thiadiazole ring forms a hydrogen bond with
the OH of Tyr204. His263 is predicted to form a π-alkyl
interaction with the adamantane group (see Fig. 3B).

Molecular dynamics simulations have suggested that the
TDP1 inhibitors occupy an allosteric binding pocket next to

Fig. 3 The docked pose of 20f in the catalytic site of TDP1 as pre-
dicted by the ChemPLP scoring function. A The ligand is shown in the
ball-and-stick format. The catalytic pocket is to the right-hand site, the
co-crystallized ligand is depicted as green sticks. The allosteric pocket
is not predicted to be occupied (see circled area) although the tri-
fluoroacetamide reaches towards it. The protein surface is rendered;
blue depicts regions with a partial positive charge on the surface; red

depicts regions with a partial negative charge and gray shows neutral
areas. B The predicted configuration depicted as balls-and-sticks,
H-boding is seen between the sulfur atom of the thiadiazole ring and
the OH of the side chain of Tyr204 (stick format). The catalytic His263
amino acid residue is shown as sticks. The adjacent amino acids
(<5 Å), buttressing the ligand, are shown as lines. The amino acids’
hydrogens on are not shown for clarity
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the catalytic site as shown in Fig. 3A [34]. Molecular
modeling and structural activity relations studies of usnic
acid derivatives confirm the existence of this allosteric site
and its occupancy having a beneficial effect on the overall
binding efficacy [35]. None of the ligands were predicted to
occupy the allosteric pocket explaining the relatively
modest binding affinity observed.

Chemical space

The calculated molecular descriptors MW (molecular
weight), log P (water-octanol partition coefficient), HD
(hydrogen bond donors), HA (hydrogen bond acceptors),
PSA (polar surface area) and RB (rotatable bonds) are given
in Table S2. The values of the molecular descriptors lie in
lead-like chemical space for PSA and HD, for HA in both
lead- and drug-like space and in drug-like space for RB and
MW. Finally, log P spans between drug-like space and
beyond Known Drug Space (for the definition of lead-like,
drug-like and Known Drug Space (KDS) regions see ref.
[36] and Table S3). No correlations were found between the
IC50 values of the active ligands and their descriptors.

The Known Drug Indexes (KDIs) for the ligands were
calculated to gauge the balance of the molecular descriptors
(MW, log P, HD, HA, PSA and RB) (for details see sup-
porting materials). The KDI2a values for the ligands range
from 3.43 to 4.36 with a theoretical maximum of 6 and the
average of 4.08 (± 1.27) for known drugs and the values are
quite good.

Both chemical series 20 and 21 contain electron rich
imine moiety rendering them susceptible to an electrophilic
attack. To check the overall redox stability of the ligands
20f and 21f were chosen and their ionization potentials
(one-electron oxidation) and electron affinity (one-electron
reduction) were calculated using density functional theory
(DFT) and compared to the statistical distribution of known
drugs [37]. The ionization potentials are 7.9 and 7.2 eV,
respectively and 95% of drugs lie in the 6.0–9.0 eV range;
the electron affinities are −0.7 and 0.3 eV with known
drugs in the −1.5–2.0 eV range [37]. Thus, 20f and 21f are
within the ranges of known drugs and are not expected to be
excessively reactive.

Methodology

Molecular modeling

The compounds were docked against the crystal structure of
TDP1 (PDB ID: 6W7K, resolution 1.70 Å) [25], which
were obtained from the Protein Data Bank (PDB) [38, 39].
The GOLD (v2020.2.0) software suite was used to prepare

the crystal structures for docking, i.e., the hydrogen atoms
were added, water molecules deleted and the co-crystallized
ligands identified: 4-[(2-phenylimidazo[1,2-a]pyridin-3-yl)
amino]benzene-1,2-dicarboxylic acid (TG7). The Scigress
version FQ 3.4.4 program [40] software suite was used to
build the ligands and the MM3 [41–43] force field was used
to identify the global minimum using the CONFLEX
method [44] followed by structural optimization. The
docking center for the TDP1 catalytic pocket was defined as
the position of the co-crystallized ligand TG7 with 10 Å
radius. Fifty docking runs were allowed for each ligand with
default search efficiency (100%). The basic amino acids
lysine and arginine were defined as protonated. Further-
more, aspartic and glutamic acids were assumed to be
deprotonated. The GoldScore(GS) [27] and ChemScor-
e(CS) [28, 29] ChemPLP(Piecewise Linear Potential) [30]
and ASP(Astex Statistical Potential) [31] scoring functions
were used to predict the binding modes and relative binding
energies of the ligands using the GOLD
v2020.2.0 software suite.

The QikProp 6.2 [45] software package was used to cal-
culate the molecular descriptors of the molecules. The relia-
bility of QikProp for the calculated descriptors is established
[46]. The Known Drug Indexes (KDI) were calculated from
the molecular descriptors as described by Eurtivong and
Reynisson [47]. For application in Excel, columns for each
property were created and the following equations used do
derive the KDI numbers for each descriptor: KDI MW: =
EXP(-((MW-371.76)^2)/(2*(112.76^2))), KDI Log P:
=EXP(-((LogP-2.82)^2)/(2*(2.21^2))), KDI HD: =EXP(-
((HD-1.88)^2)/(2*(1.7^2))), KDI HA: =EXP(-((HA-5.72)^2)/
(2*(2.86^2))), KDI RB= EXP(-((RB-4.44)^2)/(2*(3.55^2))),
and KDI PSA: =EXP(-((PSA-79.4)^2)/(2*(54.16^2))). These
equations could simply be copied into Excel and the
descriptor name (e.g., MW) substituted with the value in the
relevant column. To derive KDI2A, this equation was used: =
(KDI MW+KDI LogP + KDI HD+KDI HA+KDI
RB+KDI PSA) and for KDI2B: = (KDI MW × KDI LogP ×
KDI HD × KDI HA × KDI RB × KDI PSA).

The Gaussian 16 software suite [48] was used with
unrestricted DFT. The B3LYP functional hybrid approach
was employed [49–51] and standard 6–31+G(d,p) diffused
basis set [52, 53] was used for geometry optimization and
frequency analysis (keywords: opt freq). The zero-point
vibrational energies (ZPE) were scaled according to Wong
(0.9804) [54]. In all cases, normal modes revealed no
imaginary frequencies indicating that they represent minima
on the potential energy surface. The subsequent energy
calculations were then performed with the larger
6–311+G(2df, p) basis set. Adiabatic ionization potentials
(IP) and adiabatic electron affinities (EA) were calculated as
described in Forseman and Frisch [55]. The energies and
ZPA are given in Table S4 Scheme 1.
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Chemistry

All chemicals were purchased from commercial sources
(Sigma Aldrich (St. Louis, MO, USA)), Acros Organics
(Geel, Belgium) and used without further purification. 1H
and 13C NMR spectra were recorded on Bruker AV-400
(Bruker Corporation, Billerica, MA, USA) (400.13 MHz
and 100.61 MHz) and Bruker DRX-500 (Bruker Corpora-
tion, Billerica, MA, USA) (500.13 MHz and 125.76 MHz).
Mass spectra (70 eV) were recorded on a DFS Thermo
Scientific high-resolution mass spectrometer. A PolAAr
3005 polarimeter (Optical Activity, Ramsey, UK) was used
to measure optical rotations [α]D. Melting points were
measured on a Mettler Toledo FP900 Thermosystem
apparatus (Mettler Toledo, Cornellà de Llobregat, Spain).
Merck silica gel (Merck, Darmstadt, Germany, 63–200 µm)
was used for column chromatography. Conversion of the
starting materials was detected by Thin Layer Chromato-
graphy (ALUGRAM SIL G/UV254, Duren, Germany) using
hexane-EtOAc (3:1) solvent mixture. Spectral and analy-
tical measurements were carried out at the Multi-Access
Chemical Service Center of Siberian Branch of Russian
Academy of Sciences (SB RAS).

Synthesis of 2-(adamantane-1-carbonyl)hydrazine-1-
carbothioamide 16

To a suspension of thiosemicarbazide (10.1 g, 110.8 mmol)
in 200 ml of THF cooled to 0 °C was added a solution of

1-adamantanecarboxylic acid chloride 15 (10.0 g,
50.4 mmol) in 30 ml THF. The mixture was stirred at room
temperature overnight; the solvent was evaporated under
reduced pressure. To the residue was added water, the
precipitate was filtered off, washed with water several times
and dried, which afforded 11.5 g (90%) of compound 16 as
a white solid. 1H NMR (400MHz, DMSO-d6) δ 1.58–1.72
(m, 6H), 1.76–1.87 (m, 6H), 1.91–2.05 (m, 3H), 6.99 (s,
1H), 7.82 (s, 1H), 9.09 (s, 1H), 9.39 (s, 1H). 13C NMR
(101MHz, DMSO) δ 181.8, 176.3, 39.6, 38.0, 36.1, 27.5.

Synthesis of 5-(adamantan-1-yl)-1,3,4-thiadiazol-2-amine 17

Compound 16 (1.1 g, 4.7 mmol) was added to 20 ml of
concentrated sulfuric acid. The solution was stirred over-
night at room temperature. The mixture was poured into ice
and then neutralized carefully with aqueous ammonia until
pH 7-8. The resulting solid was filtered off, washed with
water and dried. Recrystallization from ethanol gave the title
compound as a pale yellow solid (0.8 g, 78%). 1H NMR
(300MHz, DMSO-d6) δ 1.66–1.79 (m, 6H), 1.84–1.96 (m,
6H), 1.97–2.09 (m, 3H), 6.95 (s, 2H). 13C NMR (126MHz,
CDCl3) δ 168.6, 167.7, 42.9, 37.4, 36.1, 28.0.

Synthesis of N-(5-(adamantan-1-yl)-1,3,4-thiadiazol-2-yl)-
2,2,2-trifluoroacetamide 18

To a suspension of amine (1.00 g, 4.26 mmol) and triethyla-
mine (0.66ml, 4.74 mmol) in 20 ml of anhydrous DCM

Scheme 1 Synthesis of target compounds 20a–f and 21a–f
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cooled to 0 °C was slowly added trifluoroacetic acid anhy-
dride (0.66ml, 4.74mmol). The resulting solution was stirred
at room temperature for 1 h, then the solvent was removed
under reduced pressure and a saturated solution of NaHCO3

was added. The solid was filtered off, washed with water and
dried. The product was isolated as a white solid (1.23 g, 87%).
1H NMR (300MHz, Chloroform-d) δ 1.69–1.86 (m, 6H),
1.99–2.08 (m, 6H), 2.08–2.20 (m, 3H). 13C NMR (126MHz,
CDCl3) δ 173.6, 167.1, 162.1 (q, J= 38.4 Hz), 116.3 (q,
J= 286.1Hz), 42.5, 38.2, 36.1, 28.1. HRMS: m/z 331.0957
(M+ C14H16O1N3F3S1

+, calc. 331.0961).

General procedure for the synthesis of compounds 20a–f

A mixture containing trifluoroacetamide 18 (0.90 g,
2.72 mmol), appropriate bromide (2.74 mmol), potassium
carbonate (0.45 g, 3.26 mmol) and sodium iodide (0.05 g,
0.33 mmol) in 9 ml of DMF was stirred at room temperature
overnight. The mixture was then diluted with water and the
product was extracted with ethyl acetate. The combined
organic phase was washed with brine and dried over sodium
sulfate. The product was isolated by column chromato-
graphy on silica gel (eluent hexane/ethylacetate).

N-((Z)-5-(Adamantan-1-yl)-3-(3,7-dimethyloctyl)-1,3,4-
thiadiazol-2(3H)-ylidene)-2,2,2-trifluoroacetamide 20a

Colorless oil, yield 90%
1H NMR (300MHz, Chloroform-d) δ 0.84 (d,

J= 6.6 Hz, 6H), 0.94 (d, J= 6.4 Hz, 3H), 1.05–1.17 (m,
3H), 1.17–1.24 (m, 1H), 1.24–1.40 (m, 3H), 1.48 (dq,
J= 13.3, 6.7 Hz, 1H), 1.59–1.70 (m, 1H), 1.70–1.84 (m,
6H), 1.84–1.94 (m, 1H), 1.94–2.04 (m, 6H), 2.10 (q,
J= 3.1 Hz, 3H), 4.30–4.50 (m, 2H). 13C NMR (101MHz,
CDCl3) δ 170.4, 166.9, 165.3 (q, J= 36.8 Hz), 117.1 (q,
J= 285.7 Hz), 49.5, 42.3, 39.1, 38.3, 36.7, 36.2, 35.2, 30.2,
28.2, 28.0, 24.6, 22.7, 22.6, 19.4. HRMS: m/z 471.2526
(M+ C24H36O1N3F3S1

+, calc. 471.2523).

N-((Z)-5-(Adamantan-1-yl)-3-((S)-3,7-dimethyloct-6-en-1-yl)-
1,3,4-thiadiazol-2(3H)-ylidene)-2,2,2-trifluoroacetamide 20b

Colorless oil, yield 88%
1H NMR (300MHz, Chloroform-d) δ 0.95 (d, J= 6.3 Hz,

3H), 1.12–1.29 (m, 1H), 1.30–1.49 (m, 2H), 1.57 (s, 3H),
1.62–1.69 (m, 3H), 1.69–1.84 (m, 7H), 1.84–1.96 (m, 2H),
1.96–2.02 (m, 7H), 2.07–2.16 (m, 3H), 4.30–4.50 (m, 2H),
5.04 (t, J= 7.1 Hz, 1H). 13C NMR (126MHz, CDCl3) δ
170.15, 166.71, 165.14 (q, J= 36.8 Hz), 131.29, 124.19,
116.93 (d, J= 285.8 Hz), 49.30, 42.14, 38.19, 36.46, 36.04,
34.91, 29.70, 28.04, 25.51, 25.13, 19.09, 17.43. HRMS: m/z
469.2369 (M+ C24H34O1N3F3S1

+, calc. 469.2366). α½ �22:7D =
+4.5 (c 1.65 in CHCl3).

N-((Z)-5-(Adamantan-1-yl)-3-((E)-3,7-dimethylocta-2,6-dien-
1-yl)-1,3,4-thiadiazol-2(3H)-ylidene)-2,2,2-
trifluoroacetamide 20c

Yellow oil, yield 80%
1H NMR (500MHz, Chloroform-d) δ 1.54 (s, 3H), 1.61

(s, 3H), 1.70–1.81 (m, 6H), 1.81–1.84 (m, 3H), 1.95–1.99
(m, 6H), 2.00–2.07 (m, 4H), 2.07–2.12 (m, 3H), 4.94 (d,
J= 7.4 Hz, 2H), 4.98–5.03 (m, 1H), 5.36 (t, J= 7.4 Hz,
1H). 13C NMR (126MHz, CDCl3) δ 170.2, 166.3, 165.0 (q,
J= 36.7 Hz), 143.1, 131.7, 123.4, 116.9 (q, J= 285.8 Hz),
116.1, 48.8, 42.0, 39.3, 38.1, 36.0, 28.0, 26.0, 25.5, 17.4,
16.4. HRMS: m/z 467.2213 (M+ C24H32O1N3F3S1

+, calc.
467.2210).

N-((Z)-5-(Adamantan-1-yl)-3-(2-((S)-2,2,3-
trimethylcyclopent-3-en-1-yl)ethyl)-1,3,4-thiadiazol-2(3H)-
ylidene)-2,2,2-trifluoroacetamide 20d

White solid, mp 61.6–62.3 °C, yield 86%
1H NMR (400MHz, Chloroform-d) δ 0.77 (s, 3H), 0.93

(s, 3H), 1.54–1.60 (m, 3H), 1.60–1.69 (m, 1H), 1.70–1.84
(m, 7H), 1.84–1.94 (m, 1H), 1.96–2.01 (m, 6H), 2.02–2.08
(m, 1H), 2.09–2.16 (m, 3H), 2.34 (dddd, J= 15.2, 7.6, 3.0,
1.6 Hz, 1H), 4.35 (ddd, J= 13.2, 8.6, 4.8 Hz, 1H), 4.46 (dt,
J= 13.1, 7.8 Hz, 1H), 5.15–5.26 (m, 1H). 13C NMR
(75MHz, CDCl3) δ 170.3, 166.8, 165.2 (q, J= 36.8 Hz),
148.2, 121.4, 116.9 (q, J= 285.6 Hz), 50.6, 47.1, 46.8,
42.2, 38.2, 36.0, 35.0, 28.7, 28.0, 25.6, 19.5, 12.5. HRMS:
m/z 467.2213 (M+ C24H32O1N3F3S1

+, calc. 467.2215).
α½ �23:7D = −5.5 (c 0.61 in CHCl3).

N-((Z)-5-(Adamantan-1-yl)-3-(((1 R)-6,6-
dimethylbicyclo[3.1.1]hept-2-en-2-yl)methyl)-1,3,4-
thiadiazol-2(3H)-ylidene)-2,2,2-trifluoroacetamide 20e

Yellowish oil, yield 84%
1H NMR (500MHz, Chloroform-d) δ 0.60 (s, 3H), 1.14

(d, J= 8.7 Hz, 1H), 1.18 (s, 3H), 1.68–1.82 (m, 6H),
1.89–2.00 (m, 6H), 2.00–2.06 (m, 1H), 2.07–2.14 (m, 4H),
2.16–2.31 (m, 2H), 2.34 (dt, J= 8.7, 5.7 Hz, 1H), 4.80–4.89
(m, 2H), 5.48–5.56 (m, 1H). 13C NMR (126MHz, CDCl3) δ
169.8, 166.9, 165.1 (q, J= 36.8 Hz), 141.1, 123.2, 116.8 (q,
J= 285.7 Hz), 55.3, 43.7, 42.0, 40.2, 38.1, 37.9, 35.9, 31.2,
31.1, 27.9, 25.8, 20.7. HRMS: m/z 465.2056 (M+

C24H30O1N3F3S1
+, calc. 465.2053). α½ �22:7D =−9.9 (c 2.27

in CHCl3).

N-((Z)-5-(Adamantan-1-yl)-3-(2-((1 R)-6,6-
dimethylbicyclo[3.1.1]hept-2-en-2-yl)ethyl)-1,3,4-thiadiazol-
2(3H)-ylidene)-2,2,2-trifluoroacetamide 20f

Colorless oil, yield 81%
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1H NMR (400MHz, Chloroform-d) δ 0.74 (s, 3H), 0.98
(d, J= 8.6 Hz, 1H), 1.24 (s, 3H), 1.68–1.83 (m, 6H),
1.93–1.99 (m, 6H), 1.99–2.04 (m, 1H), 2.05–2.15 (m, 6H),
2.31 (dt, J= 8.6, 5.6 Hz, 1H), 2.38–2.51 (m, 1H), 2.53–2.65
(m, 1H), 4.32 (ddd, J= 13.2, 8.0, 5.5 Hz, 1H), 4.45 (dt,
J= 13.2, 7.6 Hz, 1H), 5.22 (tt, J= 3.1, 1.5 Hz, 1H). 13C
NMR (126MHz, CDCl3) δ 170.0, 166.7, 165.0 (q,
J= 36.7 Hz), 143.4, 119.4, 116.9 (q, J= 285.6 Hz), 49.1,
45.1, 42.1, 40.3, 38.1, 37.7, 36.0, 35.1, 31.6, 31.2, 27.9,
26.0, 20.8. HRMS: m/z 479.2223 (M+ C25H32O1N3F3S1

+,
calc. 479.2209). α½ �22:7D = −2.9 (c 1.60 in CHCl3).

General procedure for the synthesis of compounds 21a-f

To a solution of appropriate compound 20 in 10 ml of
THF was added an aqueous solution of LiOH (prepared
by dissolving 0.84 g (20 mmol) of LiOH*H2O in 10 ml of
water). The mixture was stirred at 60 °C for 10 h. After
completion of the reaction (detected by gas chromato-
graphy), the organic phase was separated and the product
was extracted with diethyl ether. The combined organic
phase was washed with brine and dried over sodium
sulfate. The product was isolated by column
chromatography.

5-(Adamantan-1-yl)-3-(3,7-dimethyloctyl)-1,3,4-thiadiazol-
2(3H)-imine 21a

White solid, mp 92.1–92.9 °C, yield 71%
1H NMR (400MHz, Chloroform-d) δ 0.83 (d, J= 6.6,

6H), 0.90 (d, J= 6.4 Hz, 3H), 1.06–1.15 (m, 3H),
1.16–1.35 (m, 2H), 1.40–1.57 (m, 3H), 1.64–1.80 (m, 8H),
1.81–1.86 (m, 6H), 2.00–2.06 (m, 3H), 3.83 (t, J= 7.3 Hz,
2H). 13C NMR (126MHz, CDCl3) δ 163.4, 156.8, 45.4,
41.7, 39.0, 37.8, 36.9, 36.2, 34.7, 30.4, 28.1, 27.8, 24.5,
22.6, 22.5, 19.4. HRMS: m/z 375.2703 (M+ C22H37N3S1

+,
calc. 375.2697).

5-(Adamantan-1-yl)-3-((S)-3,7-dimethyloct-6-en-1-yl)-1,3,4-
thiadiazol-2(3H)-imine 21b

Colorless oil, yield 67%
1H NMR (400MHz, Chloroform-d) δ 0.92 (d,

J= 6.3 Hz, 3H), 1.16 (dddd, J= 13.4, 9.3, 7.5, 6.0 Hz, 1H),
1.31–1.42 (m, 1H), 1.42–1.55 (m, 2H), 1.57 (d, J= 1.3 Hz,
3H), 1.65 (t, J= 1.3 Hz, 3H), 1.66–1.80 (m, 7H), 1.80–1.88
(m, 6H), 1.88–2.00 (m, 2H), 2.01–2.07 (m, 3H), 3.75–3.92
(m, 2H), 5.01–5.12 (m, 1H). 13C NMR (126MHz, CDCl3) δ
163.3, 156.7, 131.0, 124.6, 45.3, 41.7, 37.8, 36.8, 36.2,
34.6, 30.0, 28.1, 25.6, 25.3, 19.2, 17.5. HRMS: m/z
373.2546 (M+ C22H35N3S1

+, calc. 373.2543). α½ �24:7D =
+2.5 (c 0.40 in CHCl3).

5-(Adamantan-1-yl)-3-((E)-3,7-dimethylocta-2,6-dien-1-yl)-
1,3,4-thiadiazol-2(3H)-imine 21c

Colorless oil, yield 69%
1H NMR (400MHz, Chloroform-d) δ 1.57 (s, 3H),

1.64–1.66 (m, 3H), 1.66–1.71 (m, 3H), 1.71–1.74 (m, 5H),
1.74–1.77 (m, 1H), 1.82–1.85 (m, 6H), 1.98–2.12 (m, 7H),
4.43 (d, J= 6.6 Hz, 2H), 5.06 (ddt, J= 6.9, 5.3, 1.5 Hz,
1H), 5.34 (tq, J= 6.7, 1.3 Hz, 1H). 13C NMR (126MHz,
CDCl3) δ 163.4, 157.0, 139.6, 131.4, 123.8, 118.5, 45.1,
41.7, 39.3, 37.8, 36.2, 36.1, 28.1, 26.2, 17.6, 16.4. HRMS:
m/z 371.2390 (M+ C22H33N3S1

+, calc. 371.2392).

5-(Adamantan-1-yl)-3-(2-((S)-2,2,3-trimethylcyclopent-3-en-
1-yl)ethyl)-1,3,4-thiadiazol-2(3H)-imine 21d

White solid, mp 65.2–67.1 °C, yield 72%
1H NMR (400MHz, Chloroform-d) δ 0.76 (s, 3H), 0.95

(s, 3H), 1.58 (dd, J= 2.8, 1.4 Hz, 3H), 1.60–1.80 (m, 8H),
1.81–1.85 (m, 6H), 1.86–1.97 (m, 2H), 1.99–2.08 (m, 3H),
2.34 (dddd, J= 15.2, 7.4, 2.9, 1.5 Hz, 1H), 3.84 (dd,
J= 8.1, 6.4 Hz, 2H), 5.18–5.27 (m, 1H). 13C NMR
(151MHz, CDCl3) δ 163.4, 156.8, 148.3, 121.6, 47.5, 46.8,
46.6, 41.8, 37.9, 36.3, 35.2, 28.2, 28.1, 25.7, 19.7, 12.5.
HRMS: m/z 371.2390 (M+ C22H33N3S1

+, calc. 371.2388).
α½ �23:7D =−3.3 (c 0.31 in CHCl3).

5-(Adamantan-1-yl)-3-(((1 R)-6,6-dimethylbicyclo[3.1.1]
hept-2-en-2-yl)methyl)-1,3,4-thiadiazol-2(3H)-imine 21e

Colorless oil, yield 61%
1H NMR (400MHz, Chloroform-d) δ 0.74 (s, 3H), 1.15

(d, J= 8.6 Hz, 1H), 1.20 (s, 3H), 1.61 – 1.74 (m, 6H),
1.75–1.85 (m, 6H), 1.97–2.05 (m, 4H), 2.11 (td, J= 5.6,
1.5 Hz, 1H), 2.14–2.29 (m, 2H), 2.29–2.34 (m, 1H),
4.25–4.34 (m, 2H), 5.38–5.46 (m, 1H). 13C NMR
(126MHz, CDCl3) δ 163.7, 156.5, 143.0, 120.3, 51.3, 43.4,
41.6, 40.4, 37.9, 37.7, 36.2, 31.2, 31.0, 28.0, 26.1, 20.9.
HRMS: m/z 369.2233 (M+ C22H31N3S1

+, calc. 369.2230).
α½ �24:7D = −16.8 (c 0.46 in CHCl3).

5-(Adamantan-1-yl)-3-(2-((1 R)-6,6-dimethylbicyclo[3.1.1]
hept-2-en-2-yl)ethyl)-1,3,4-thiadiazol-2(3H)-imine 21f

White solid, mp 49.5–49.6 °C, yield 70%
1H NMR (400MHz, Chloroform-d) δ 0.79 (s, 3H), 1.13

(d, J= 8.5 Hz, 1H), 1.23 (s, 3H), 1.62–1.76 (m, 6H),
1.77–1.88 (m, 6H), 1.97–2.09 (m, 5H), 2.10–2.25 (m, 2H),
2.28–2.47 (m, 3H), 3.82 (ddd, J= 8.8, 6.7, 2.3 Hz, 2H),
5.27 (tt, J= 3.0, 1.5 Hz, 1H). 13C NMR (126MHz, CDCl3)
δ 163.1, 156.7, 144.6, 118.1, 77.1, 45.4, 45.4, 41.7, 40.5,
37.8, 36.2, 34.7, 31.5, 31.2, 28.0, 26.1, 21.0. HRMS: m/z
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383.2390 (M+ C23H33N3S1
+, calc. 383.2387).

α½ �23:7D =−11.5 (c 0.26 in CHCl3).

Biological assays

TDP1 activity

TDP1 activity was determined as described in the work
[24]. Briefly, we used a DNA biosensor, which is a 16-mer
single-stranded DNA oligonucleotide carrying a fluor-
ophore (FAM) at the 5′-end and a quencher (BHQ1) at the
3′-end. The biosensor (5′-[FAM] AAC GTC AGGGTC
TTC C [BHQ]-3′) was synthesized in the Laboratory of
Nucleic Acids Chemistry at the Institute of Chemical
Biology and Fundamental Medicine (Novosibirsk, Russia).
Due to the activity of the enzyme, the quencher is removed,
which leads to an increase in the fluorescence intensity. The
reaction was carried out at different concentrations of
inhibitors (1.5% of DMSO, Sigma, St. Louis, MO, USA, in
the control samples). The reaction mixtures contained TDP1
buffer (50 mM Tris-HCl pH 8.0, 50 mM NaCl, and 7 mM
β-mercaptoethanol), 50 nM biosensor, and an inhibitor
being tested. Purified TDP1 (1.5 nM) triggered the reaction.

The reactions were incubated on a POLARstar OPTIMA
fluorimeter (BMG LABTECH, GmbH, Ortenberg, Ger-
many) to measure fluorescence. The values of IC50 were
determined in minimum three independent experiments and
were calculated using embedded software MARS Data
Analysis 2.0 (BMG LABTECH, GmbH, Ortenberg,
Germany).

Cytotoxicity assays

Cytotoxicity of the compounds against HeLa (human cer-
vical cancer), MRC-5 (human lung fibroblasts), and
HEK293A (human embryonic kidney) cell lines was
examined using the EZ4U Cell Proliferation and Cytotoxi-
city Assay (Biomedica, Vienna, Austria), according to the
manufacturer’s protocols. The cells were grown in DMEM
with 50 IU/mL penicillin, 50 μg/mL streptomycin (MP
Biomedicals, Santa Ana, CA, USA), and 10% of fetal
bovine serum (Biolot, St. Petersburg, Russia) in a 5% CO2

atmosphere. After reaching 30–50% confluence, the tested
compounds were added to the medium. The volume of the
added reagents was 1/100 of the total volume of the culture
medium, and the amount of DMSO (Sigma, St. Louis, MO,
USA) was 1% of the final volume. A minimum of two
independent tests were performed with each inhibitor. To
evaluate the influence of the inhibitors on the cytotoxic
effect of topotecan (Selleck Chemicals, Houston, TX,
USA), 50% cytotoxic concentrations (CC50) of topotecan
were determined either in the presence or in the absence of
10 µM TDP1 inhibitors. Minimum two independent tests

were performed with each inhibitor in combination with
topotecan.
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