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Abstract
Carboxylated chalcones and other related flavonoids were synthesized and evaluated as inhibitors of xanthine oxidase, which
is a known target for synthetic and herbal drugs used against hyperuricemia, gout, and other diseases. The 4-carboxylated
chalcones with hydroxy, methoxy, and ethoxy groups at ring A were found to exhibit in vitro inhibitory activities with IC50

values in the range of 0.057 to 0.26 μM, being 10–60-fold more potent than allopurinol. Structurally related carboxylic acids
with Δ3,9-homoisoflavonoid and flavone scaffolds also showed micromolar activity towards xanthine oxidase. At the same
time, dihydrochalcone and Δ2,3-homoisoflavonoid carboxylic acids as well as their oxa-analogues were more than two orders
of magnitude less effective inhibitors. Kinetic and molecular docking studies indicated that the carboxylated chalcones and
Δ3,9-homoisoflavonoids are mixed-type inhibitors, which mostly bind to free enzyme occupying the active site of xanthine
oxidase.
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Introduction

Naturally occurring chalcones as well as flavones, flavo-
nols, flavanones, flavanonols, anthocyanidins, isoflavones,
and homoisoflavonoids form large groups of polyphenolic
compounds belonging to the flavonoid family [1].

Biosynthesis of flavones as precursors of most flavonoids
occurs through the transformation of 2'-hydroxychalcones
[2, 3], while biosynthesis of various types of homoiso-
flavonoids is carried out by involving of methoxy group of
2'-methoxychalcones into the formation of C6-C4-C6

homoisoflavonoid skeleton [4]. The members of the flavo-
noid family (Fig. 1) as well as their synthetic structural
analogues are considered promising starting points for drug
design, demonstrating anticancer, antimicrobial, antiviral,
anti-diabetic, anti-inflammatory, and other activities [1–5].
Some chalcone derivatives such as metochalcone and
sofalcone were approved to use as choleretic and gastro-
intestinal drugs [3], while chalcone analog ilepcimide is
considered a potential antiepileptic medication [6].
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Mechanisms of bioactivity of chalcone derivatives can be
related to reversible and irreversible inhibition of enzymes
and proteins, as well as to scavenging ROS and other free
radicals [7, 8]. As an example, the chalcones with anti-
cancer activity can be directed to 5α-reductase, VEGFR-2
kinase, tubulin, cathepsin-K, topoisomerase II, and mTOR
[9–11].

Xanthine oxidase (XO) is an enzyme of the terminal step
of purine metabolism catalyzing the oxidative transforma-
tion of hypoxanthine and xanthine to uric acid with the
generation of superoxide radical. Overproduction of urates
is the reason for hyperuricemia which can be responsible for
other diseases such as gout, renal failure, and cardiovascular
disorders [12]. In addition, the high level of serum uric acid
may lead to cancer [13]. This enzyme is known to be a
target for many synthetic [14–17] and natural compounds
including chalcones [18–21], and other flavonoids [22].
Purine analog allopurinol and non-purine XO inhibitor
febuxostat are used for the treatment of hyperuricemia and
gout [23, 24]. However, there is a current interest in further
searching for new inhibitors of this enzyme.

Mono- and polyhydroxylated chalcones were established
to inhibit XO activity and scavenge free radicals. The
number and position of hydroxyl groups of monohydroxy-,
dihydroxy-, and trihydroxy-substituted chalcones influ-
enced their inhibitory potency against human XO [18–21].
Structure-activity relationship of a series of mono- and
polyhydroxylated chalcone derivatives with dual properties
showed that the most active XO inhibitors had a minimum
of three hydroxyl groups, while the most effective radical
scavengers carried two neighboring hydroxyl groups on at
least one phenyl ring [18]. It was shown that replacing the
hydroxyls with the carboxyl group yielded effective A-ring
carboxylated chalcones with higher aqueous solubility and
activities against the Gram-positive bacterium S. aureus
[25]. The database consisting of 4'-carboxylated chalcones
was used for virtual screening and biological evaluation of

new compounds with moderate to good CysLT1 antag-
onistic activities [26]. Chalcone derivatives with A-ring
modification by carboxylic and hydroxyl groups were
reported as a new class of HIV-1 integrase inhibitors [27].
The introduction of the carboxylic group on ring B sig-
nificantly increased the chalcones activity in antinociceptive
pain models [28]. Chalcones bearing 4-carboxy groups were
studied as allosteric inhibitors of YopH [29].

In the present paper, a series of new chalcone-4-
carboxylic acids were synthesized and studied in vitro as
inhibitors of XO. The inhibitory effects of the
4-carboxylated chalcones were compared with the inhibi-
tory properties of related carboxylic acids bearing flavone,
Δ3,9-homoisoflavonoid, Δ2,3-homoisoflavonoid, and dihy-
drochalcone scaffolds, as well as with the properties of
some oxa-analogues of these compounds.

Results and discussion

Chemistry

Chalcones 2a-2i were synthesized by Claisen–Schmidt
condensation of acetophenones 1a-1i with 4-formylbenzoic
acid in alcohol in the presence of KOH according to the
standard procedure [28, 29]. The two-step process which
includes the reaction of non-hydroxylated acetophenones
with methyl 4-formylbenzoate followed by saponification
affords the chalcones with comparable yields (Scheme 1).
In the case of 2-hydroxyacetophenones, this method gave
poor results due to the formation of flavanones as by-
products whose quantities depended on substituents in
acetophenones 1. The carboxylated chalcones 2a-2i were
identified as E-isomers due to the splitting of alkene protons
with a J value of 15.5–16.0 Hz.

The series of chalcone derivatives 2a-2i was also sup-
plemented by the synthesis of 4′-carboxy-7-methoxyflavone

Fig. 1 Basic structures of chalcones, dihydrochalcones, flavones, and homoisoflavonoids
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(3), obtained by I2-DMSO oxidative cyclization of car-
boxylated chalcone 2d (Scheme 2).

Sappanin-like Δ3,9-homoisoflavonoids 5a and 5b were
synthesized by condensation of chromane-4-ones 4a and
4b, respectively, in acetic acid in the presence of H2SO4

(Scheme 3). It should be mentioned that condensation of
chromanones 4 with 4-formylbenzoic acid was not possible
in the basic medium.

The stereochemical structure of homoisoflavonoid 5b, a
conformationally constrained analog of chalcone 2f, was
elucidated using COSY and 2D NOESY NMR spectra (Fig.
2). Cross-peaks between H-6 and H-5 protons as well CH2-
2 and H-9 were found in the COSY spectrum. In addition,
cross-peaks between H-6 and H-5 protons as well as H-2′
and CH2-2 protons were present in the 2D NOESY spec-
trum. Cross-peak between CH2-2 and H-9 protons has not
been observed. These data suggest that compound 5b exists
in the E-isomeric form assigned for similar homoiso-
flavonoids [30, 31].

4-Carboxydihydrochalcone and 4′-carboxyhomoiso-
flavonoids as well as their oxa-analogues that can be con-
sidered similar to 4-carboxychalcone compounds have also
been synthesized. Condensation of resorcinol (6a) or its
monomethyl ether (6b) with 3-[4-(methoxycarbonyl)phe-
nyl]propanoic acid in boron trifluoride etherate led to
methyl 4-[3-(2-hydroxyphenyl)-3-oxopropyl]benzoates 7a
and 7b. Subsequent saponification of compound 7b affords
target dihydrochalcone acid 8a. Related oxa-dihy-
drochalcone 7c was synthesized by the Hoesh procedure as
we reported early [32]. Further selective and exhaustive
alkylation of compound 7c led to esters 7d and 7e, which
saponification gave corresponding acids 8b and 8c. Under
Vilsmeier-Haack reaction conditions, compounds 7a and 7b
were converted to substituted Δ2,3-homoisoflavonoids 9a
and 9b which were further transformed into corresponding
acids 10a and 10b. 9-Oxa-homoisoflavonoid acid 10c was
synthesized by ring-closure reaction of acid 7c under the
Vilsmeier-Haack reaction (Scheme 4).

Scheme 2 Synthesis of flavone
3. Reagents and conditions: a)
I2, DMSO, 130–140 °С, 6 h

Scheme 3 Synthesis of
homoisoflavonoids 5a and 5b.
Reagents and conditions: a)
4-formylbenzoic acid,
CH3COOH, H2SO4, reflux, 8 h

Fig. 2 Main correlations in
COSY and 2D NOESY spectra
for compound 5b

Scheme 1 Synthesis of chalcones. Reagents and conditions: a) i, 4-formylbenzoic acid, EtOH, KOH, 60–70 °С, ii, HCl, H2O; b) i, methyl 4-
formylbenzoate, EtOH, KOH, r. t., ii, KOH, H2O, 60–70 °С, than HCl
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Xanthine oxidase inhibition and antioxidant
properties

The studies of XO inhibition by chalcone-4-carboxylic
acids 2a-2i as well as related to them flavonoids were
performed using the enzyme from bovine milk, which
shared 90% identity to human liver XO [33]. The dose-
dependent curves (Fig. 3) demonstrate differences in the
inhibitory properties of chalcone 2f, Δ3,9-homoisoflavonoid
5b, and Δ2,3-homoisoflavonoid 10b.

Control experiments showed that the carboxylic acid
group at the B-ring of the chalcone is necessary for the
inhibition of XO. As an example, 4-carboxy-4′-methox-
ychalcone (2b) has an IC50 value of 0.10 μM, while 4-
hydroxy-4′-methoxychalcone at a concentration of 10 µM
inhibited the XO activity by only ten percent. The car-
boxylated chalcone 2a containing hydroxy group at 4ʹ-
position of A-ring had an IC50 value of 0.26 µM. Replace-
ment of the hydroxyl by the ethoxy group increased the
inhibitory potential of compound 2c (IC50= 0.057 µM).
The presence of hydroxyl substituent at the 2ʹ-position of
the A-ring did not change significantly the IC50 value for
compound 2d. Chalcone 2f with two methoxy groups
showed a somewhat increased inhibition effect in compar-
ison with compound 2d. A further variation of substituents
at the A-ring of the chalcone scaffold gave derivatives 2g
and 2h, which have similar IC50 values as compared to

compound 2d. The introduction of halogen atoms at the
A-ring did not improve the inhibitory properties of com-
pounds 2e and 2i. It was interesting that the inhibitory
activity of 4′-carboxy-7-methoxyflavone (3) was the same
as that of chalcone 2d (Table 1). As compared to compound
2c, a similar binding affinity to XO was observed pre-
viously for 4′-carboxylated aurones [34].

At the same time, dihydrochalcone-4-carboxylic acid 8a
and oxa-dihydrochalcone-4-carboxylic acids 8b and 8c
exhibited much lower inhibitory effects than chalcones 2a-i,
probably indicating an important role of alkene fragment in

Scheme 4 Reagents and conditions: a) 4-MeOOCC6H4CH2CH2COOH
or 4-MeOOCC6H4CH2COOH, BF3·EtO2, 80–90 °C, 2 h; b) i,
4-MeOOCC6H4OCH2CN, BF3·EtO2, HCl, rt, 6 h, ii, H2SO4, H2O,

reflux, 2 h; c) Me2SO4, K2CO3, acetone, 50–60 °С, 4–8 h; d) KOH,
EtOH, 50 °С, 4 h; e) i, BF3·EtO2, POCl3, DMF, 55–60 °С, 2 h, ii, H2O,
80 °С, 0.5 h; f) H2SO4, AcOH, reflux, 8 h

Fig. 3 Dose-dependent curves of XO inhibition by compounds 2f (○),
5b (□), and 10b (Δ)
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the inhibitor structure. Taking this into account, the activ-
ities of carboxylated Δ3,9-homoisoflavonoids and Δ2,3-
homoisoflavonoids were compared. The conformationally
constrained Δ3,9-homoisoflavonoid-4′-carboxylic acids 5a
and 5b turned out to be micromolar inhibitors of XO.
However, the presence of an endocyclic double bond led to
a significant decrease in inhibition of XO by Δ2,3-

homoisoflavonoid-4′-carboxylic acids 10a and 10b, as well
as oxa-homoisoflavonoid-4′-carboxylic acid 10c.

It can be summarized that the most active inhibitors
among the compounds studied were derivatives of car-
boxylated chalcones. Carboxylated dihydrochalcones and
oxa-dihydrochalcones exhibited much lower inhibitory
effects than the chalcones. The activity of carboxylated Δ3,9-
homoisoflavonoids significantly exceeded the activity of
Δ2,3-homoisoflavonoids.

Antioxidant properties of carboxylated chalcones and
related flavonoids were determined by measuring the effect
of the compounds on the degradation of deoxyribose by
hydroxyl radicals generated by the Fenton reaction [35].
According to the data obtained, chalcone-4-carboxylic acids
2a, 2b, and 2g exhibited the best activity. Some lower
effects were observed in the case of carboxylated chalcones
2f, 2h, and 2i. Oxa-dihydrochalcone-4-carboxylic acid 8c,
Δ2,3-homoisoflavonoid-4′-carboxylic acid 10a, and 4′-car-
boxy-7-methoxyflavone 3 possessed antioxidant properties
similar to those of chalcone-4-carboxylic acids 2f, 2h, and
2i. The activities of all compounds were higher than that of
Trolox as a reference antioxidant. These data indicated that
carboxylated chalcones can combine the XO inhibition
effect with scavenging ability towards free hydroxyl
radicals.

Kinetic studies of xanthine oxidase inhibition

The double reciprocal Lineweaver-Burk plots (Fig. 4)
showed that inhibition of XO by compounds 2f and 5b is
characterized by increasing Km and decreasing Vmax values,
indicating a mixed-type mechanism. The inhibition con-
stants Ki and Ki’ were 21 ± 1 nM and 195 ± 16 nM for
chalcone-4-carboxylic acid 2f and 72 ± 13 nM and
822 ± 167 nM for Δ3,9-homoisoflavonoid-4′-carboxylic acid
5b. The values of Ki and Ki’ for both inhibitors indicate that
their affinity for the free enzyme is much higher than for the
enzyme-substrate complex.

Table 1 The chalcone-4-carboxylic acids and structurally related
flavonoid derivatives as inhibitors of xanthine oxidase and
antioxidants

Compound XO inhibition, IC50,
µMa

Deoxyribose degradation,
inhibition percentb

2a 0.26 ± 0.02 76.8 ± 2.9

2b 0.10 ± 0.02 71.7 ± 6.0

2c 0.057 ± 0.003 n.d.

2d 0.18 ± 0.04 n.d.

2e 0.52 ± 0.09 n.d.

2f 0.090 ± 0.02 58.0 ± 3.8

2g 0.18 ± 0.02 74.9 ± 2.4

2h 0.20 ± 0.02 60.9 ± 0.1

2i 0.78 ± 0.01 66.9 ± 7.6

3 0.19 ± 0.02 60.3 ± 0.7

5a 0.99 ± 0.32 n.d.

5b 0.31 ± 0.05 n.d.

8a 37.9 ± 9.8 n.d.

8b 32.5 ± 4.6 n.d.

8c 60.7 ± 17.4 56.9 ± 7.7

10a >100 63.1 ± 1.8

10b 54.8 ± 7.7 n.d.

10c >100 n.d.

aThe values are mean of 2–3 assays ± SD. IC50 for allopurinol was
3.5 ± 0.2 µM. IC50 for febuxostat was 0.010 ± 0.003 µM
bCompound concentration was 0.3 mM. Trolox as a reference showed
37.0 ± 5.1% of inhibition

n.d. – not determined due to poor solubility

Fig. 4 Lineweaver-Burk plots
for inhibition of XO by
compounds 2f (a) and 5b (b).
The concentrations were: a) 0
(○), 35 nM (□), 70 nM (Δ), and
140 nM (◊); b) 0 (○), 150 nM
(□), 300 nM (Δ), and 600 nM
(◊)
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Molecular docking

Molecular docking by AutoDock Vina [36] was performed
to predict the binding modes of the inhibitors to the active
site of XO. The docking results suggest that the carboxylated
B-ring of all compounds is located near residues Arg880,
Thr1010, and Phe914. The calculated docking energies for
compounds 2f and 5b were −9.6 kcal/mol and −9.2 kcal/
mol, respectively. The carboxyl groups of chalcone-4-
carboxylic acid 2f and Δ3,9-homoisoflavonoid-4′-carboxylic
acid 5b (E-isomers) form hydrogen bonds with amino acids
residues of Arg880 and Thr1010 (Fig. 5). Additional
hydrogen bonds were between these carboxyl groups and
Glu1261 through water molecule 1457, which is sufficient
for the catalysis [37]. The positions of B-rings of compounds
2f and 5b are stabilized by π-π stacking interactions with
amino acids residue of Phe914. The oxygen atoms of car-
bonyl groups of chalcone and Δ3,9-homoisoflavonoid have
similar orientations, but only compound 2f interacts with
Asn768. The carbonyl group of Δ2,3-homoisoflavonoid
derivatives is more distant from Asn768 as compared with
that of Δ3,9-homoisoflavonoids. The A-rings of chalcone 2f
and Δ3,9-homoisoflavonoid 5b are located in a hydrophobic
region which is formed by amino acid residues of Leu648,
Met770, Lys771, Leu873, Phe1013, and Leu1014. The data
obtained suggest that the differences between binding poses
of chalcones and other compounds studied can be related to
cycle A and carbonyl fragment of the inhibitors.

Conclusions

A series of carboxylated chalcones and related compounds
were synthesized and studied as inhibitors of XO. The
carboxylated chalcones bearing hydroxy, methoxy, and
ethoxy groups at ring A (compounds 2a-2i), Δ3,9-homo-
isoflavonoids (5a, 5b), and flavone (3) were found to be

submicromolar inhibitors of the enzyme, more potent than
carboxylated Δ2,3-homoisoflavonoids (10a, 10b), dihy-
drochalcone (7a), oxa-dihydrochalcones (8b, 8c), and oxa-
homoisoflavonoid (10c). These data indicate that the car-
boxylated ring B, linked to the alkene fragment, can be
crucial for activity of chalcone inhibitor against XO. The
results of the study showed also that the compounds can be
capable of scavenging free radicals. Kinetic data suggest the
mixed-type inhibition of XO by carboxylated chalcones and
Δ3,9-homoisoflavonoids. Docking studies revealed that the
B-ring of carboxylated inhibitor fits deep in the active site,
while A-ring is located at the periphery of the binding site.
The in vitro and in silico results demonstrate the potential of
carboxylated chalcones and some other carboxylated fla-
vonoids for designing XO inhibitors.

Experimental Section

Chemistry

1H and 13C, and 2D NMR spectra were recorded on Varian
500 (500/125MHz) or Varian 400 (400/100MHz) spec-
trometers in CDCl3 [residual CHCl3 (δH= 7.26 ppm) or
CDCl3 (δC= 77.16 ppm) as internal standard] or DMSO-d6
[residual SO(CD3)(CD2H) (δH= 2.50 ppm) or SO(CD3)2
(δC= 39.52 ppm) as internal standard]. The spectra are
represented in Supplementary data. Melting points were
determined in open capillary tubes using the Buchi B-535
apparatus and were uncorrected. Mass spectra were
obtained using an Agilent 1100 spectrometer using APCI
(atmospheric-pressure chemical ionization). Elemental
analysis was performed on a vario MICRO cube automated
CHNS analyser. Column chromatography was performed
using Macherey-Nagel Silica 60 0.04–0.063 mm silica gel.

4-Hydroxy-4′-methoxychalcone was synthesized as
described previously [38].

Fig. 5 Possible binding modes of compounds 2f (a) and 5b (b) at the active site of XO
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General procedure for the synthesis of chalcones 2a-
2i

To a solution of 2 mmol of acetophenone and 2 mmol of
4-formylbenzoic acid in 15 mL of EtOH was added 1 mL
of 50% aqueous KOH. The reaction mixture was stirred
for 5 h at 60–70 °C. It was poured into 70 mL of
water with vigorous stirring and neutralized with con-
centrated HCl to pH 3–4. After cooling, the precipitate
was filtered off, washed with water, and crystallized
from the appropriate solvent with a yield of chalcones
2a-2i.

4-[(1E)-3-(4-Hydroxyphenyl)-3-oxoprop-1-en-1-yl]benzoic
acid (2a)

Yellow solid (55% yield); mp 278–280 °C; 1H NMR
(400MHz, DMSO-d6): δ 6.91 (2H, d, J= 8.4 Hz), 7.71
(1H, d, J= 15.6 Hz), 7.92–8.05 (5H, m), 8.09 (2H, d,
J= 8.4 Hz), 10.48 (1H, s), 13.12 ppm (1H, s); 13C{1H}
NMR (125MHz, DMSO-d6): δ 115.5, 124.4, 128.7, 129.0,
129.8, 131.4, 131.9, 139.1, 141.3, 162.4, 166.9, 187.1
ppm; MS (ACPI) m/z (%): 269.1 (100) [M+H]+. Anal.
calcd. for C16H12O4: C, 71.64; H, 4.51. Found: C, 71.78;
H, 4.68.

4-[(1E)-3-(4-Methoxyphenyl)-3-oxoprop-1-en-1-yl]benzoic
acid (2b)

White solid (68% yield); mp 232–234 °C; 1H NMR
(400MHz, DMSO-d6): δ 3.83 (3H, s), 7.05 (2H, d,
J= 8.5 Hz), 7.72 (1H, d, J= 15.6 Hz), 7.91–8.06 (5H, m),
8.15 (2H, d, J= 8.5 Hz), 13.14 ppm (1H, s); 13C{1H} NMR
(125MHz, DMSO-d6): δ 55.6, 114.1, 124.2, 128.8, 129.8,
130.3, 131.1, 132.0, 139.0, 141.7, 163.4, 166.9, 187.3
ppm; MS (ACPI) m/z (%): 283.0 (100) [M+H]+. Anal.
calcd. for C17H14O4: C, 72.33; H, 5.00. Found: C, 72.24;
H, 5.14.

4-[(1E)-3-(4-Ethoxyphenyl)-3-oxoprop-1-en-1-yl]benzoic
acid (2c)

Yellow solid (59% yield); mp 257–259 °C; 1H NMR
(400MHz, DMSO-d6): δ 1.36 (3H, t, J= 6.9 Hz), 4.15
(2H, q, J= 6.9 Hz), 7.07 (2H, d, J= 8.8 Hz), 7.73 (1H, d,
J= 15.6 Hz), 7.96–8.02 (4H, m), 8.05 (1H, d, J= 15.6 Hz),
8.17 (2H, d, J= 8.8 Hz), 13.11 ppm (1H, s); 13C{1H} NMR
(125MHz, DMSO-d6): δ 14.5, 63.6, 114.4, 124.2, 128.8,
129.7, 130.1, 131.0, 131.9, 139.0, 141.6, 162.7, 166.9,
187.2 ppm; MS (ACPI) m/z (%): 297.0 (100) [M+H]+.
Anal. calcd. for C18H16O4: C, 72.96; H, 5.44. Found: C,
72.77; H, 5.32.

4-[(1E)-3-(2-Hydroxy-4-methoxyphenyl)-3-oxoprop-1-en-1-
yl]benzoic acid (2d)

Yellow solid (56% yield); mp 252–254 °C; 1H NMR
(400MHz, DMSO-d6): δ 3.85 (3H, s), 6.52 (1H, d,
J= 2.1 Hz), 6.57 (1H, dd, J= 9.0, 2.1 Hz), 7.84 (1H, d,
J= 15.5 Hz), 8.11 (1H, d, J= 15.5 Hz), 8.28 (1H, d,
J= 9.0 Hz), 13.13 (1H, s), 13.31 ppm (1H, s); 13C{1H}
NMR (125MHz, DMSO-d6): δ 55.8, 100.9, 107.5, 113.9,
123.5, 129.0, 129.7, 132.2, 132.8, 138.6, 142.5, 165.7,
166.2, 166.8, 191.6 ppm; MS (ACPI) m/z (%): 299.0 (100)
[M+H]+. Anal. calcd. for C17H14O5: C, 68.45; H, 4.73.
Found: C, 68.26; H, 4.85.

4-[(1E)-3-(3,5-Dichloro-2-hydroxyphenyl)-3-oxoprop-1-en-1-
yl]benzoic acid (2e)

Yellow solid (34% yield); mp 257–259 °C; 1H NMR
(400MHz, DMSO-d6): δ 7.87–7.95 (2H, m), 8.00 (2H, d,
J= 8.2 Hz), 8.07 (2H, d, J= 8.2 Hz), 8.14 (1H, d,
J= 15.5 Hz), 8.42 (1H, d, J= 2.2 Hz), 13.02 ppm (2H, s);
13C{1H} NMR (125MHz, DMSO-d6): δ 121.9, 122.5,
122.8, 122.9, 129.0, 129.5, 129.6, 132.7, 135.3, 138.1,
145.1, 156.6, 166.7, 192.7 ppm; MS (ACPI) m/z (%): 337.0
(100) [M+H]+. Anal. calcd. for C16H10Cl2O4: C, 57.00; H,
2.99. Found: C, 56.79; H, 3.12.

4-[(1E)-3-(2,4-Dimethoxyphenyl)-3-oxoprop-1-en-1-yl]
benzoic acid (2f)

Yellow solid (52% yield); mp 200–202 °C; 1H NMR
(400MHz, DMSO-d6): δ 3.83 (3H, s), 3.90 (3H, s),
6.58–6.72 (2H, m), 7.51–7.69 (3H, m), 7.80 (2H, d,
J= 7.3 Hz), 7.97 (2H, d, J= 7.3 Hz), 13.07 ppm (1H, s);
13C{1H} NMR (125MHz, DMSO-d6): δ 55.6, 56.0, 98.6,
106.1, 121.2, 128.3, 129.2, 129.9, 131.8, 132.3, 139.1,
139.6, 160.5, 164.3, 166.9, 189.0 ppm; MS (ACPI) m/z (%):
313.0 (100) [M+H]+. Anal. calcd. for C18H16O5: C, 69.22;
H, 5.16. Found: C, 69.39; H, 5.37.

4-[(1E)-3-(2,5-Dimethoxyphenyl)-3-oxoprop-1-en-1-yl]
benzoic acid (2 g)

Yellow solid (64% yield); mp 181–183 °C; 1H NMR
(400MHz, DMSO-d6): δ 3.74 (3H, s), 3.82 (3H, s), 7.03–7.16
(3H, m), 7.51 (1H, d, J= 16.0 Hz), 7.57 (1H, d, J= 16.0 Hz),
7.82 (2H, d, J= 8.0Hz), 7.97 (2H, d, J= 8.0 Hz), 13.12 ppm
(1H, s); 13C{1H} NMR (125MHz, DMSO-d6): δ 55.6, 56.4,
113.9, 114.0, 119.0, 128.6, 128.8, 129.0, 129.9, 132.0, 138.8,
141.0, 152.2, 153.1, 166.9, 191.4 ppm; MS (ACPI) m/z (%):
313.0 (100) [M+H]+. Anal. calcd. for C18H16O5: C, 69.22;
H, 5.16. Found: C, 69.12; H, 4.99.
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4-[(1E)-3-(2-Ethoxy-4-methoxyphenyl)-3-oxoprop-1-en-1-yl]
benzoic acid (2h)

Yellow solid (65 % yield); mp 224–226 °C; 1H NMR
(400MHz, DMSO-d6): δ 1.35 (3H, t, J= 6.8 Hz), 3.84 (3H,
s), 4.17 (2H, q, J= 6.8 Hz), 6.58–6.69 (2H, m), 7.56 (1H, d,
J= 15.8 Hz), 7.65 (1H, d, J= 8.4 Hz), 7.73 (1H, d,
J= 15.8 Hz), 7.81 (2H, d, J= 8.0 Hz), 7.98 (2H, d,
J= 8.0 Hz), 13.05 ppm (1H, s); 13C{1H} NMR (125MHz,
DMSO-d6): δ 14.5, 55.6, 64.1, 99.1, 106.2, 121.1, 128.1,
129.5, 129.9, 131.7, 132.3, 138.9, 139.2, 159.9, 164.3,
166.9, 188.8 ppm; MS (ACPI) m/z (%): 327.0 (100)
[M+H]+. Anal. calcd. for C19H18O5: C, 69.93; H, 5.56.
Found: C, 70.05; H, 5.73.

4-[(1E)-3-(2-Ethoxy-5-fluorophenyl)-3-oxoprop-1-en-1-yl]
benzoic acid (2i)

Yellow solid (46% yield); mp 202–204 °C; 1H NMR
(400MHz, DMSO-d6): δ 1.28 (3H, t, J= 6.7 Hz), 4.11 (2H,
d, J= 6.7 Hz), 7.13–7.22 (1H, m), 7.27–7.45 (2H, m),
7.53–7.63 (2H, m), 7.82 (2H, d, J= 8.0 Hz), 7.97 (2H, d,
J= 8.0 Hz), 13.11 ppm (1H, s); 13C{1H} NMR (125MHz,
DMSO-d6): δ 14.6, 64.7, 115.1 (d, JC-F= 7.6 Hz), 115.8 (d,
JC-F= 24.0 Hz), 119.8 (d, JC-F= 23.0 Hz), 128.5, 128.6,
129.3 (d, JC-F= 6.0 Hz), 129.9, 132.1, 138.7, 141.0, 153.8,
156.0 (d, JC-F= 238.0 Hz), 166.8, 190.4 ppm; 19F NMR
(470MHz, DMSO-d6): δ −123.3 ppm; MS (ACPI) m/z (%):
315.0 (100) [M+H]+. Anal. calcd. for C18H15FO4: C,
68.78; H, 4.81. Found: C, 68.98; H, 4.69.

4-(7-Methoxy-4-oxo-4H-chromen-2-yl)benzoic acid (3)

A solution of 596 mg (2 mmol) of chalcone 2d and 10 mg of
I2 in 5 mL of DMSO was heated at 130–140 °С for 6 h. The
reaction mixture was diluted with 10 mL of i-PrOH, formed
solid was filtered off and recrystallized from the DMF-
MeOH mixture. Beige solid (66% yield); mp 290–292 °C;
1H NMR (400MHz, DMSO-d6): δ 3.93 (3H, s), 7.01–7.12
(2H, m), 7.33 (1H, s), 7.95 (1H, d, J= 8.8 Hz), 8.09 (3H, d,
J= 8.2 Hz), 8.21 (3H, d, J= 8.2 Hz), 13.29 ppm (1H, s);
13C{1H} NMR (125MHz, DMSO-d6): δ 56.0, 100.8, 107.9,
114.8, 117.1, 126.1, 126.2, 129.7, 133.1, 134.9, 157.4,
160.9, 163.9, 166.6, 176.3 ppm; MS (ACPI) m/z (%): 297.0
(100) [M+H]+. Anal. calcd. for C17H12O5: C, 68.92; H,
4.08. Found: C, 69.07; H, 4.27.

General synthesis of homoisoflavonoids 5a, 5b

Concentrated sulfuric acid (0.1 mL) was added to a solution
of 2 mmol of chromane-4-ones 4a or 4b and 2 mmol of
4-formyl benzoic acid in 10 mL of acetic acid, and then the
mixture was refluxed for 8 h. The reaction mixture was

diluted with water; the precipitate was filtered and washed
with water. Recrystallization from ethanol affords Δ3,9-
homoisoflavonoids 5a, 5b.

4-[(E)-(4-Oxo-2H-chromen-3(4H)-ylidene)methyl]benzoic
acid (5a)

Beige solid (75% yield); mp 277–279 °C; 1H NMR
(400MHz, DMSO-d6): δ 5.42 (2H, s), 7.06 (1H, d,
J= 8.3 Hz), 7.14 (1H, t, J= 7.5 Hz), 7.51–7.65 (3H, m),
7.78 (1H, s), 7.89 (1H, d, J= 7.8 Hz), 8.03 (2H, d,
J= 7.9 Hz), 13.17 ppm (1H, s); 13C{1H} NMR (125MHz,
DMSO-d6): δ 67.3, 118.0, 121.4, 122.0, 127.3, 129.5,
130.3, 131.3, 132.3, 135.3, 136.4, 137.9, 160.7, 166.8,
181.0 ppm; MS (ACPI) m/z (%): 281.0 (100) [M+H]+.
Anal. calcd. for C17H12O4: C, 72.85; H, 4.32. Found: C,
72.72; H, 4.22.

4-[(E)-(7-Methoxy-4-oxo-2H-chromen-3(4H)-ylidene)methyl]
benzoic acid (5b)

Beige solid (59% yield); mp 308–310 °C; 1H NMR
(400MHz, DMSO-d6): δ 3.83 (3H, s), 5.30–5.51 (2H, m),
6.57 (1H, d, J= 2.1 Hz), 6.71 (1H, dd, J= 8.8, 2.1 Hz),
7.55 (2H, d, J= 8.2 Hz), 7.71–7.76 (1H, m), 7.82 (1H, d,
J= 8.8 Hz), 8.02 (2H, d, J= 8.2 Hz), 13.05 ppm (1H, s);
13C{1H} NMR (100MHz, DMSO-d6): δ 55.9, 67.5, 100.9,
110.7, 115.0, 129.1, 129.5, 130.3, 131.1, 132.4, 134.5,
138.1, 162.8, 165.9, 166.8, 179.6 ppm; MS (ACPI) m/z (%):
311.0 (100) [M+H]+. Anal. calcd. for C18H14O5: C, 69.67;
H, 4.55. Found: C, 69.84; H, 4.68.

Methyl 4-[3-(2-hydroxy-4-methoxyphenyl)-3-oxopropyl]
benzoate (7b)

A solution of 1.24 mg (10 mmol) of resorcinol monomethyl
ether (6b) and 2.08 g (10 mmol) of the 3-[4-(methox-
ycarbonyl)phenyl]propanoic acid in 10 mL of boron tri-
fluoride etherate was heated at 80–90 °C for 2 h. The
mixture was carefully poured into 100 mL of chilled water.
The resulting solid was filtered off, dried, and purified by
column chromatography using a CH2Cl2-MeOH mixture
(50:1) as eluent. Yellow solid (25% yield); mp
115–117 °C; 1H NMR (400MHz, DMSO-d6): δ 3.01 (2H,
d, J= 7.5 Hz), 3.38 (2H, t, J= 7.5 Hz), 3.80 (3H, s), 3.83
(3H, s), 6.46 (1H, d, J= 2.2 Hz), 6.50 (1H, dd, J= 9.0,
2.2 Hz), 7.43 (2H, d, J= 8.2 Hz), 7.83–7.93 (3H, m), 12.53
(1H, d, J= 2.1 Hz) ppm; 13C{1H} NMR (125MHz,
DMSO-d6): δ 29.4, 38.6, 52.0, 55.7, 100.8, 107.3, 113.4,
127.4, 128.8, 129.2, 132.5, 146.9, 164.0, 165.6, 166.1,
203.4 ppm; MS (ACPI) m/z (%): 315.1 (100) [M+H]+.
Anal. calcd. for C18H18O5: C, 68.78; H, 5.77. Found: C,
68.93; H, 5.60.
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Ethyl 4-[2-(2-hydroxy-4-methoxyphenyl)-2-oxoethoxy]
benzoate (7d)

To a stirred solution of 2 mmol of compound 7c in 30 mL
of acetone were added 272 mg (2 mmol) of K2CO3 and
0.20 mL (2.05 mmol) of Me2SO4. The reaction mixture
was stirred at 50–60 °C for 6 h, poured into 100 mL of
water, and acidified with HCl to pH 4–5. The precipitate
was filtered off, dried, and crystallized from methanol.
White solid (72% yield); mp 125–127 °C; 1H NMR
(400 MHz, DMSO-d6): δ 1.29 (3H, t, J= 7.1 Hz), 3.82
(3H, s), 4.27 (2H, q, J= 7.1 Hz), 5.55 (2H, s), 6.52 (1H,
d, J= 2.3 Hz), 6.57 (1H, dd, J= 8.9, 2.3 Hz), 7.03 (2H, d,
J= 8.8 Hz), 7.84 (1H, d, J= 8.9 Hz), 7.89 (2H, d,
J= 8.8 Hz), 11.70 ppm (1H, s); 13C{1H} NMR (125 MHz,
DMSO-d6): δ 14.2, 55.6, 60.3, 70.5, 101.0, 107.3, 112.9,
114.5, 122.4, 131.1, 131.7, 161.9, 162.8, 165.3, 165.6,
195.6 ppm; MS (ACPI) m/z (%): 331.2 (100) [M+H]+.
Anal. calcd. for C18H18O6: C, 65.45; H, 5.49. Found: C,
65.69; H, 5.63.

Ethyl 4-[2-(2,4-dimethoxyphenyl)-2-oxoethoxy]benzoate
(7e)

To a stirred solution of 2 mmol of compound 7c in 30 mL
of acetone were added 816 mg (6 mmol) of K2CO3 and
0.57 mL (6 mmol) of Me2SO4. The reaction mixture was
stirred at 50–60 °C for 6 h, poured into 100 mL of water,
and acidified with HCl to pH 4–5. The precipitate was
filtered off, dried, and crystallized from methanol. Beige
solid (85% yield); mp 110–112 °C; 1H NMR (400 MHz,
DMSO-d6): δ 1.29 (3H, t, J= 7.1 Hz), 3.87 (3H, s), 3.96
(3H, s), 4.27 (2H, q, J= 7.1 Hz), 5.34 (2H, s), 6.67 (2H,
dd, J= 8.8, 2.1 Hz), 6.71 (1H, d, J= 2.1 Hz), 6.96 (2H, d,
J= 8.8 Hz), 7.78 (1H, d, J= 8.8 Hz), 7.87 ppm (2H, d,
J= 8.8 Hz); 13C{1H} NMR (125 MHz, DMSO-d6): δ
14.2, 55.7, 56.0, 60.2, 73.2, 98.2, 106.7, 114.4, 117.2,
122.2, 131.0, 131.9, 161.5, 162.1, 165.2, 165.3, 191.9
ppm; MS (ACPI) m/z (%): 345.0 (100) [M+H]+. Anal.
calcd. for C19H20O6: C, 66.27; H, 5.85. Found: C, 66.45;
H, 5.73.

General procedures for the synthesis of compounds
8a-8c

To a solution of the corresponding ester 7b, 7d, or 7e
(2 mmol) in 10 mL of EtOH was added 2 ml of 50% aqu-
eous KOH. The reaction mixture was heated at 50 °C for
4 h, diluted with 50 mL of water, and acidified with 1 N HCl
solution to pH 4–5. The formed precipitate of acids 8a-8c
was filtered and re-crystallized from the MeOH-H2O
mixture (1:1).

4-[3-(2-Hydroxy-4-methoxyphenyl)-3-oxopropyl]benzoic
acid (8a)

Beige solid (77% yield); mp 175–177 °C; 1H NMR
(400MHz, DMSO-d6): δ 3.00 (2H, t, J= 7.2 Hz), 3.38 (2H,
t, J= 7.3 Hz), 3.81 (3H, s), 6.44–6.48 (1H, m), 6.48–6.54
(1H, m), 7.41 (2H, d, J= 8.0 Hz), 7.86 (2H, d, J= 8.0 Hz),
7.90 (1H, d, J= 9.0 Hz), 12.54 (1H, s), 12.79 ppm (1H, s);
13C{1H} NMR (125MHz, DMSO-d6): δ 29.4, 38.7, 55.7,
100.8, 107.3, 113.5, 128.5, 128.6, 129.3, 132.6, 146.4,
164.0, 165.6, 167.2, 203.5 ppm; MS (ACPI) m/z (%): 301.0
(100) [M+H]+. Anal. calcd. for C17H16O5: C, 67.99; H,
5.37. Found: C, 67.83; H, 5.25.

4-[2-(2-Hydroxy-4-methoxyphenyl)-2-oxoethoxy]benzoic
acid (8b)

Beige solid (65% yield); mp 260–262 °C; 1H NMR
(400MHz, DMSO-d6): δ 3.82 (3H, s), 5.54 (2H, s), 6.52
(1H, d, J= 2.2 Hz), 6.57 (2H, dd, J= 8.9, 2.2 Hz), 7.01
(2H, d, J= 8.8 Hz), 7.81–7.92 (3H, m), 11.71 (1H, s), 12.62
ppm (1H, s); 13C{1H} NMR (125MHz, DMSO-d6): δ 55.7,
70.5, 101.0, 107.4, 113.0, 114.4, 123.3, 131.3, 131.7,
161.7, 162.9, 165.6, 167.0, 195.7 ppm; MS (ACPI) m/z (%):
303.0 (100) [M+H]+. Anal. calcd. for C16H14O6: C, 63.57;
H, 4.67. Found: C, 63.46; H, 4.79.

4-[2-(2,4-Dimethoxyphenyl)-2-oxoethoxy]benzoic acid (8c)

Beige solid (90% yield); mp 208–210 °C; 1H NMR
(400MHz, DMSO-d6): δ 3.87 (3H, s), 3.96 (3H, s), 5.34
(2H, s), 6.64–6.70 (1H, m), 6.70–6.73 (1H, m), 6.93 (2H, d,
J= 8.7 Hz), 7.79 (1H, d, J= 8.7 Hz), 7.86 (2H, d,
J= 8.7 Hz), 12.61 ppm (1H, s); 13C{1H} NMR (125MHz,
DMSO-d6): δ 55.8, 56.1, 73.2, 98.3, 106.7, 114.3, 117.3,
123.0, 131.2, 131.9, 161.6, 161.8, 165.2, 167.0, 192.1 ppm;
MS (ACPI) m/z (%): 317.2 (100) [M+H]+. Anal. calcd. for
C17H16O6: C, 64.55; H, 5.10. Found: C, 64.72; H, 4.96.

Methyl 4-[(7-hydroxy-4-oxo-4H-chromen-3-yl)methyl]
benzoate (9a)

A solution of 1.1 g (10 mmol) of resorcinol and 2.08 g
(10 mmol) of 3-[4-(methoxycarbonyl)phenyl]propanoic
acid in 10 mL of boron trifluoride etherate was stirred at
90 °C for 2 h. The reaction mixture was cooled to room
temperature, and then DMF (10 mL) and POCl3 (1.86 mL,
20 mmol) were added. The mixture was heated at 55–60 °C
for 2 h and poured into 50 mL of hot water with vigorous
stirring and then cooled. A precipitate was collected and
washed with water. Recrystallization from MeOH gave
homoisoflavonoid 9a as a white powder with 46% yield; mp
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238–240 °C; 1H NMR (400MHz, DMSO-d6): δ 3.74 (2H,
s), 3.82 (3H, s), 6.83 (1H, d, J= 2.0 Hz), 6.89 (1H, dd,
J= 8.8, 2.0 Hz), 7.42 (2H, d, J= 8.1 Hz), 7.79–7.94 (3H,
m), 8.27 (1H, s), 10.77 ppm (1H, s); 13C{1H} NMR
(125MHz, DMSO-d6): δ 30.8, 52.0, 102.2, 115.1, 116.2,
122.1, 126.8, 127.5, 128.8, 129.1, 145.6, 153.7, 157.8,
162.5, 166.1, 175.4 ppm; MS (ACPI) m/z (%): 311.0 (100)
[M+H]+. Anal. calcd. for C18H14O5: C, 69.67; H, 4.55.
Found: C, 69.48; H, 4.42.

Methyl 4-[(7-methoxy-4-oxo-4H-chromen-3-yl)methyl]
benzoate (9b)

To a solution of 1.57 g (5 mmol) of dihydrochalcone 7b in
5 mL of N,N-dimethylformamide at 30–40 °C was added
boron trifluoride etherate (1.92 mL, 15 mmol). The mixture
was stirred for 0.5 h and POCl3 (0.93 mL, 10 mmol) was
added at the same temperature. The mixture was heated at
55–60 °C for 2 h and poured into 100 mL of hot water with
vigorous stirring and then cooled. A precipitate was col-
lected and washed with water. Recrystallization from
methanol gave homoisoflavonoid 9b as a white powder
with 67% yield; mp 172–174 °C; 1H NMR (400MHz,
CDCl3): δ 3.83 (2H, s), 3.88 (3H, s), 3.89 (3H, s),
6.75–6.83 (1H, m), 6.89–7.00 (1H, m), 7.36 (2H, d,
J= 7.9 Hz), 7.58 (1H, s), 7.96 (2H, d, J= 7.9 Hz), 8.11
ppm (1H, d, J= 8.9 Hz); 13C{1H} NMR (125MHz,
CDCl3): δ 31.8, 52.1, 55.9, 100.2, 114.7, 117.9, 123.8,
127.5, 128.6, 129.1, 130.0, 144.5, 152.7, 158.4, 164.1,
167.1, 176.7 ppm; MS (ACPI) m/z (%): 325.2 (100)
[M+H]+. Anal. calcd. for C19H16O5: C, 70.36; H, 4.97.
Found: C, 70.25; H, 5.15.

General procedures for the synthesis of compounds
10a, 10b

To a solution of the corresponding ester 9a and 9b (2 mmol)
in 10 mL of acetic acid was added concentrated sulfuric acid
(0.1 mL) and refluxed for 8 h. To the reaction mixture was
added water, and the precipitate was collected, washed with
water, and dissolved in 5% NaHCO3. The resulting solution
was added concentrated HCl to pH 7. The precipitates of
each of acids 10a and 10b were filtered and re-crystallized
from an appropriate solvent.

4-[(7-Hydroxy-4-oxo-4H-chromen-3-yl)methyl]benzoic acid
(10a)

Beige solid (90% yield); mp 313–315 °C; 1H NMR
(400MHz, DMSO-d6): δ 3.74 (2H, s), 6.83 (1H, d,
J= 2.0 Hz), 6.90 (1H, dd, J= 8.8, 2.0 Hz), 7.39 (2H, d,
J= 8.2 Hz), 7.78–7.89 (3H, m), 8.25 (1H, s), 10.74 (1H, s),
12.76 ppm (1H, s); 13C{1H} NMR (125MHz, DMSO-d6): δ

30.8, 102.2, 115.1, 116.2, 122.2, 126.8, 128.7, 129.3,
145.1, 153.7, 157.9, 162.5, 167.3, 175.4 ppm; MS (ACPI)
m/z (%): 297.0 (100) [M+H]+. Anal. calcd. for C17H12O5:
C, 68.92; H, 4.08. Found: C, 68.83; H, 4.23.

4-[(7-Methoxy-4-oxo-4H-chromen-3-yl)methyl]benzoic acid
(10b)

Beige solid (92% yield); mp 289–291 °C; 1H NMR
(400MHz, DMSO-d6): δ 3.74 (2H, s), 3.86 (3H, s),
6.95–7.04 (1H, m), 7.05–7.11 (1H, m), 7.40 (2H, d,
J= 8.0 Hz), 7.84 (2H, d, J= 8.0 Hz), 7.90 (1H, d,
J= 8.9 Hz), 8.30 (1H, s), 12.81 ppm (1H, s); 13C{1H}
NMR (125MHz, DMSO-d6): δ 30.8, 56.0, 100.6, 114.7,
117.2, 122.5, 126.4, 128.7, 129.3, 144.9, 153.9, 157.8,
163.7, 167.2, 175.4 ppm; MS (ACPI) m/z (%): 311.0 (100)
[M+H]+. Anal. calcd. for C18H14O5: C, 69.67; H, 4.55.
Found: C, 69.82; H, 4.72.

4-[(7-Methoxy-4-oxo-4H-chromen-3-yl)oxy]benzoic acid
(10c)

It was obtained similarly to the Vilsmeier-Haack procedure
from acid 8c and purified by recrystallization from a DMF-
MeOH mixture. Yellow solid (83% yield); mp 294–296 °C;
1H NMR (400MHz, DMSO-d6): δ 3.92 (3H, s), 7.04–7.14
(3H, m), 7.25 (1H, d, J= 2.2 Hz), 7.89 (2H, d, J= 8.8 Hz),
7.98 (1H, d, J= 8.9 Hz), 8.75 (1H, s), 12.78 ppm (1H, s);
13C{1H} NMR (125MHz, DMSO-d6): δ 56.2, 100.9, 115.0,
115.1, 117.9, 124.8, 126.6, 131.3, 138.5, 150.5, 157.6,
161.0, 164.1, 166.8, 171.1 ppm; MS (ACPI) m/z (%): 313.0
(100) [M+H]+. Anal. calcd. for C17H12O6: C, 65.39; H,
3.87. Found: C, 65.62; H, 4.02.

In vitro study of xanthine oxidase inhibition and
molecular docking calculation

Xanthine oxidase inhibition assay

XO from bovine milk and xanthine as substrate were
purchased from Sigma-Aldrich. The inhibitor activities
of compounds were studied in the system containing
sodium-phosphate buffer (50 mM, pH 7.4), xanthine
(50 µM), EDTA (0.1 mM), and DMSO (1%). After
incubation of the mixture at 25 °С for 5 min, the enzy-
matic reaction was started by the addition of XO. The
enzyme activity was detected spectrophotometrically at
293 nm. The IC50 values represented the inhibitor con-
centration required to reduce enzyme activity by 50%
and were calculated from a linear regression equation.
The values are the mean of 2–3 experiments. The Km

value obtained from Lineweaver-Burk plots (Fig. 4) was
2.7 ± 0.1 µM.
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Docking study

The docking was performed into the active site of the C
chain of the XO crystal structure with PDB code 1FIQ [33]
as described previously [34]. Before the calculation, the
chains A and B, cofactors, ligands, and water molecules
were removed from the file, which was downloaded from
RCSB Protein Data Bank (RCSB PDB, rcsb.org) [39].
However, the water molecule HOH1457, which plays a role
in the enzyme catalytic mechanism [33, 37], was not
removed. In addition, the catalytically important hydroxyl
group of the molybdopterin cofactor was replaced by a
water molecule. The structures of ligands (carboxylic group
in ionized form) were prepared by the MarvinSketch pro-
gram [40] and optimized using MMFF94s force field in
Avogadro software [41]. AutoDockTools 1.5.6 was used to
prepare the docking files [42]. Possible binding modes of
ligands at the active site of the C chain of XO were pre-
dicted by the AutoDock Vina program [36]. Discovery
Studio 3.5 visualizer (Accelrys, San Diego, USA) was used
for the analysis of the model complexes.

Antioxidant activity study

The ability of compounds to scavenge hydroxyl radicals
was estimated using the deoxyribose degradation method
[35]. The 2 mL system containing iron (II) chloride
(50 µM), EDTA (100 µM), phosphate buffer (50 mM, pH
7.4), 2-deoxyribose (2.8 mM), hydrogen peroxide
(2.8 mM), and compound (0.3 mM) was incubated during
1 h at 37 °С. After adding 1 mL of 2.8% aqueous solution of
trichloroacetic acid and 1 mL of 1% solution of thiobarbi-
turic acid in 50 mM of sodium hydroxide, the system was
incubated in a water bath for 20 min at 80–100 °С. The
activity of compounds was determined by measuring the
decrease in absorption at 532 nm.
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