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Abstract
Pyrimidine ring and its fused derivatives including pyrazolo[3,4-d]pyrimidine, pyrido[2,3-d]pyrimidine, quinazoline, and
furo[2,3-d]pyrimidine compounds had received much interest due to their diverse biological potential, in addition fused
pyrimidine are considered as bioisosteres with purines and consequently many pyrimidine and fused pyrimidine derivatives
as pyrazolo[3,4-d]pyrimidine, pyrido[2,3-d]pyrimidine, quinazoline, and furo[2,3-d]pyrimidine possessed promising
anticancer activity. These pyrimidine derivatives exerted their anticancer potential through different action mechanisms;
one of these mechanisms is inhibiting protein kinases that are considered as essential enzymes for controlling cell growth,
differentiation, migration, and metabolism. The present review sheds the light on the anticancer significance of some
privileged pyrimidine and fused pyrimidine derivatives via selective inhibition of protein kinases, revealing structure-activity
relationships and some synthetic pathways used for constructing these scaffolds in an attempt to assist medicinal chemists to
construct novel pyrimidines with higher selectivity as anticancer agents.
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Introduction

Cancer is still one of the most fatal diseases, affecting nearly
7 million persons per year all over the world. It is char-
acterized by loss of cell growth control causing a cellular
mass called cancer [1–6]. However, death is most often
accompanies cancer because of metastasis which is
responsible for spreading cancer to another part in the body
to establish secondary cancerous growths [7–12]. It was
found that strategies for cancer treatment such as surgery
and radiation cannot control the spread of tumor; so many
scientific trials to treat cancer had been depending on con-
ventional chemotherapy [13–16]. Unfortunately, the con-
ventional chemotherapy did not differentiate between the
normal human cells and affected cells, causing many
drawbacks [17, 18]. Consequently, to circumvent these

drawbacks a new strategy for cancer treatment compro-
mising the use of selective tumor drugs called molecular
targeted therapies which inhibits certain receptors and sig-
naling pathways which stimulate tumor cell growth had
been developed [19–22]. Protein kinases (PKs) are enzymes
that stimulate phosphate transfer from ATP to amino acids
tyrosine, serine and/ or threonine residues in protein sub-
strates [23–26]. Also, PKs are important enzymes respon-
sible for cellular signaling processes such as cell growth
regulation, differentiation, migration, and metabolism [27–
29]. Mutation or overexpression of many PKs had been
reported in multiple human cancers [30–33]. Consequently,
inhibiting protein kinase has been used as a selective way
for targeting cancer cells [34–38]. The literature survey
explained that the binding site of kinase inhibitor consists of
five essential regions; adenine-binding site, sugar region,
phosphate-binding region (hydrophilic channel), hydro-
phobic region I and hydrophobic region II [39, 40]. Most
discovered kinase inhibitors should be small molecules and
ATP-competitive inhibitors that exhibited up to three
hydrogen bonding interactions with the amino acids present
in the target kinase [41–43].

Pyrimidine ring attracted much attention due to its
diverse array of biological and pharmacological activities
especially anticancer activity [44–49]. Many fused
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pyrimidine derivatives exerted their anticancer activity
through inhibiting many types of PKs as they are considered
as bioisosteres to purine scaffold from which ATP is formed
[12, 50–53]. Herein, this review reveals the new approaches
and medicinal chemistry efforts in search for new pyr-
imidine and fused pyrimidine scaffolds as PKs inhibitors.

Pyrimidine derivatives

At the beginning of the twenty-first century, scientist’s
efforts discovered more potent and selective tyrosine kinase
inhibitors, imatinib (GleevecTM) (1) [54, 55], nilotinib
(TasignaTM) (2) [56, 57], and dasatinib (SpryclTM) (3)
[58, 59] (Fig. 1). FDA approved these pyrimidine deriva-
tives for treating chronic myelogenous leukemia via inhi-
biting Bcr-Abl tyrosine kinases [60–62].

In 2013, a group of investigators designed and synthe-
sized a new series of pyrimidine derivatives as anaplastic
lymphoma kinase (ALK) inhibitors with antiproliferative
potential against H3122 [63]. From this series, compound 9
(IC50= 0.004 µM, IC50= 0.034 µM in cell based assay)
exhibited 2.5-fold better ALK inhibitory activity and anti-
proliferative potential than the reference compound crizo-
tinib (IC50= 0.01 µM in ALK assay, IC50= 0.092 µM in
cell based assay) (10). SAR study revealing the effect of
various substituents is illustrated in Fig. 2.

The target compound 9 was obtained in 75% yield by
reacting compound 4 with 4-(N-Boc-piperazin-1-yl)-2-
methoxyaniline 5 in the presence of diisopropylethylamine,
followed by separating the obtained regioisomers (6&7) and
reacting compound 6 with trimethoxy aniline (Scheme 1).

In 2020, Xu et al. [64] designed and constructed novel
2,4-disubstitutedpyrimidines as Aurora kinase inhibitors. In
addition, the prepared derivatives were evaluated for their
activity toward A549, HCT-116, and MCF-7 cell lines and
SAR of the designed derivatives are depicted in Fig. 3.

From these constructed derivatives, compound 11 demon-
strated similar antitumor potential (IC50 equal to 12.05,
1.31, and 20.53 µM toward A549, HCT-116, and MCF-7,
respectively) to that recorded by the standard VX680 (IC50

= 3.9, 1.49, and 17.39 µM, respectively). Regarding Aurora
suppression activity, this derivative demonstrated suppres-
sion potential toward Aurora A (IC50= 79.4 µM) and Aur-
ora B (IC50= 66.3 µM). SAR studies showed that
cyclohexyl moiety at the tail exhibited better anti-
proliferative than aromatic ring toward HCT-116 cell lines.
Replacing NH on the urea group with CH2 did not affect the
anticancer activity on the tested three cell lines.

Furthermore, the N-(4-(2-(4-(morpholinophenyl)amino)
pyrimidin-4-yl)phenyl)acrylamide derivative 12 (Fig. 4)
was newly synthesized and showed high JAK3 suppression
activity with IC50= 1.7 nM with higher selectivity than
JAK2 and JAK1 [65]. This selectivity was attributed to the
formation of hydrophobic interaction between the aromatic
amine moiety and Leu828 and Gly908 amino acids.
Moreover, this candidate 12 demonstrated better suppres-
sion of T-cell proliferation potential (IC50= 0.83 µM) than
exhibited by tofacitinib (IC50= 1.38 µM). SAR study
revealing the effect of various substituents is illustrated in
Fig. 4. In addition, the benzoxazolopyrimidine derivative 13
(Fig. 4) showed excellent anticancer potential toward leu-
kemia cell line (RPMI-8226), prostate cancer cell line (PC-
3), and renal cancer cell line (A498) with IC50= 0.72,
0.7932, and 0.8511 µM, respectively. The mechanism of
anticancer potential of this candidate was suggested to be
PTK inhibition on MDA-MB-468 cell lines with IC50=
0.07 µM [66].

VX680 (14) (Fig. 5) is a small pyrimidine heterocycle
reported to suppress Aurora kinases A, B, and C with ki
equal to 0.6, 18, and 4.6 nµ, sequentially [67]. This com-
pound 14 has the ability to inhibit many cancer types as
ovarian cancer, colon cancer, and leukemia [68]. While,
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ENMD-2076 (15) suppress Aurora A selectively with IC50

= 14 nM [69]. Luo et al. [70] designed and prepared new C-
2, C-4, C-6 trisubstitutedpyrimidines as Aurora A sup-
pressor. The design of these pyrimidine targets was based
upon some modifications of both VX680 and ENMD-2076.
These modifications include introducing N-substituted

aniline at C-2 instead of S-substituted moiety in VX680. In
addition, modification included replacement of styrene side
chain in ENMD-2076 with N-benzylamine. SAR explaining
effect of substituent at C-6 on the inhibitory potential on
Aurora A is appeared in Fig. 5. From the constructed pyr-
imidines compound 16 recorded potential inhibitory effect
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on aurora A with IC50= 25 nM through hydrophobic
interaction and three hydrogen bondings with K162, A213,
and L139. Moreover, the designed derivatives were assayed
for anticancer potential in vitro by the use of VX680 as a
standard toward breast cancer cell line as MCF-7, SK-BR-3,
MDA-MD-231, and leukemia cell lines as K-562, U937,
HL-60, MOLT-4. Results of compounds 16 and 17 are
explained in Fig. 5.

Long et al. [71] in 2018 revealed that the disubstituted
anilino moiety at C-2 of pyrimidine nucleus showed higher

Aurora A inhibitory potential than the monosubstituted ani-
lino fragment. This is obvious upon comparing compound 18
(IC50= 7.7 nM) with 4-aminobenzoate 17 (IC50= 46 nM).

Recently, in 2019, novel series of 4,6-diaryl-2-amine
derivatives were evaluated for their anticancer potential
toward colon cancer cell line (HCT-116) [72]. All the new
compounds showed anticancer activity with half maximal
cell growth inhibitory concentrations equal to
1.45–40.82 µM. The candidate 19—the most active antic-
ancer agent (GI50= 1.45)—was subjected to kinase assay
using 25 cancer-associated kinases applying EMDMillipore
Kinase Profiler service assay protocol. This tested com-
pound 19 recorded high selectivity toward Aurora A kinase
than other tested kinases. In silico docking of this derivative
demonstrated that this derivative performed two hydrogen
bondings with Ala213 and Pro214, in addition to seven
hydrophobic interactions (Leu263, Arg220, Gly216,
Tyr212, Glu211, Leu139, and Arg137) as seen in Fig. 6.

Pyrazolo[3,4-d]pyrimidine derivatives

Pyrazolopyrimidine derivatives 1NA-PP1 (20) and 1NM-
PP1 (21) (Fig. 7) were documented to inhibit Src kinase and
widely reported as standards for design of many pyrazolo
[3,4-d]pyrimidine derivatives [73–75].

Moreover, novel derivatives of 1,4,6-trisubstituted pyrazolo
[3,4-d]pyrimidines were designed based upon some chemical
modifications of olomoucine 26 and roscovitine 27. These
chemical modifications include replacing the imidazole ring in
olomoucine with a pyrazole ring in addition to introduction
different substituents at C-4, C-6, and N-1 of pyrazolopyr-
imidine. The newly synthesized derivatives were evaluated for
their inhibitory activity against CDK2 and for their anti-
proliferative potential against A431, SNU638, and HCT-116
cell lines. In general, structure–activity relationship (SAR)
recorded that compounds having anilino group at C-4 showed
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higher CDK2 and cell division than 4-benzyl derivatives.
Compounds 25a, b having a 3-fluoroaniline group at C-4 were
prepared and revealed comparable or superior cyclin-

dependent kinase 2 (CDK2) (IC50= 0.5 µM for 33a, 0.7 µM
for 33b), inhibitory activity to those of olomoucine 26 (IC50=
7 µM) and roscovitine 27 (IC50= 0.5 µM) as reference com-
pounds [76]. Moreover, unsubstitution at N-1 recorded higher
potency for CDK2 inhibitory effect than substituted analogs.
Regarding substitution at C-6, it was found that no difference
between monoethanolamine and diethanolamine toward
CDK2 activity (Fig. 8). The pyrazolopyrimidine derivatives
(25a,b) were prepared as illustrated in Scheme 2. Accordingly,
the reaction of 4-chloro-6-methylmercaptopyrazolo[3,4-d]pyr-
imidine (22) with 3-fluoroaniline in the presence of Hunig’s
base in n-butanol yielded compound 23 which upon oxidation
with m-CPBA followed by nucleophilic displacement of the
resulting activated methylsulfonyl groups with
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hydroxylamines gave the target 1,4,6-trisubstituted pyrazolo
[3,4-d]pyrimidines 25a,b.

Some 4-aminopyrazolo[3,4-d]pyrimidines substituted at
position 1 and 6 were prepared and exhibited anticancer
activity toward A431 cells, inhibited Src phosphorylation
and induced apoptotic cell death. SAR studies of these
derivatives are explained in Fig. 9. From the prepared
compounds, derivative 26 incorporating a methylthio moi-
ety at position 6 inhibited Src phosphorylation than the
reference compound 27 (Fig. 9), so, the size of the alkyl
group at position 6 was essential for activity [77].

Recently, novel derivatives of 4,6-disubstituted pyr-
azolopyrimidines incorporating various anilines at C-4 and
thiophenethyl or thiopentane moieties at C-6 had been syn-
thesized [78]. All the synthesized compounds were evaluated
for in vitro CDK2/cyclin E and Abl kinase inhibitory activity
as well as antiproliferative activity against K-562 (chronic
myelogeneous leukemia), and MCF-7 (breast adenocarci-
noma) cell lines. The SAR studies are explained in Fig. 10.

From SAR, it is clear that derivative with thiophenethyl at C-6
with monosubstituted aniline showed better CDK2 inhibitory
potential than thiopentane at C-6 and disubstituted anilines.
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From the prepared derivatives, compound 28 was the most
CDK inhibitor with IC50= 5.1 µM with antiproliferative
activity toward K-562 (chronic myelogeneous leukemia), and
MCF-7 (breast adenocarcinoma) cell lines with IC50= 24.6
and 24.3 µM, respectively.

In 2008, new derivatives of 4-aminosubstitutedpyrazolo
[3,4-d]pyrimidines were prepared and exhibited inhibitory
activity against Src and proto-oncogene tyrosine protein
kinase Ab1 kinases [79]. From this series, compound 29
was docked within adenine triphosphate (ATP)-binding
sites of the two target enzymes (Fig. 11). This study
recorded that in both enzymes compound 29 located pyr-
azolopyrimidine nucleus into the adenine region of the
ATP-binding site, introducing the side chains at C-4 and N-
1 toward two hydrophobic regions and the alkylthio sub-
stituent toward the external region of the binding pocket.
Furthermore, this target compound performed two hydrogen
bonding interactions with Src enzyme and one hydrogen
bonding interaction with Abl as shown below (Fig. 11).

Ducray et al. [80] reported the preparation and in vitro
evaluation of a new group containing anilinopyrazolo[3,4-
d]pyrimidine derivatives 30a–c (Fig. 12) as receptor tyr-
osine protein kinase erb-2 (erbB2) and EGFR kinase inhi-
bitors. Encouraging results with compound 30c provided
potent, orally active erbB2 kinase inhibitor in rats and dogs
with IC50= 0.001 µM toward erbB2. Furthermore, novel
derivatives of pyrazolo[3,4-d]pyrimdine-3,6-diamines (Fig.
12) were synthesized as potent and selective non-receptor
tyrosine kinase, activated Cdc42Hs-asociated Kinase1
(ACK1) inhibitors. Compounds 31a and 31b showed pro-
mising ACK1 suppression with IC50= 0.02 µM and
0.04 µM. A brief description SAR is illustrated in Fig. 12
[81].

Moreover, compound 32 (Fig. 13) was identified to
inhibit EGFR enzyme at low-micromolar concentration
with antiproliferative effect against cancer cells [82]. The in
silico docking study of compound 32 demonstrated that the
amino H and N-5 of pyrimidine ring make hydrogen bonds
with backbone atoms of M769. The interaction of the ligand
with T766 is mediated by a water molecule, and the 3-
methylphenyl moiety substituted at N(1) is buried within
the binding pocket (Fig. 13).

Recently in 2016, a new series of pyrazolo[3,4-d]pyr-
imidines hybridized with (4-substitutedbenzylidene)acetohy-
drazide derivatives (33a–g) and (Fig. 14) were synthesized
and evaluated for their inhibitory activity toward epidermal
growth factor receptor tyrosine kinase (EGFR-TK) [83].
Among these targets 33a–g, 33g was the most potent EGFR
inhibitor (IC50= 4.18 μM) followed by compound 33c (IC50

= 4.72 μM). Pyrazolo[3,4-d]pyrimidine combined with pyr-
azole moiety (35) revealed antiproliferative activity with IC50

= 5.00–32.52 μM on breast (MCF-7), colon (HCT-116), and
liver (HEPG2) cancer cell lines [84]. Furthermore, this studied
candidate inhibited fibroblast growth factor receptor (FGFR)
with IC50= 5.18 μM.

The [4-(1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-yla-
mino)phenyl]methanone derivative (35) was synthesized by
heating 4-(1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4-yla-
mino)benzohydrazide (34) with acetylacetone in acetic acid
for 10 h under reflux conditions, as shown in Scheme 3.

Pyrido[2,3-d]pyrimidine derivatives

Two decades ago, PD 089828 (36) was synthesized as a
novel 6-aryl-pyrido[2,3-d]pyrimidine derivative (Fig. 15),
which was discovered as inhibitor for many PKs as human
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full-length fibroblast growth factor receptor-1 (FGFR-1),
platelet-derived growth factor (PDGF) receptor b subunit
(PDGFR-b), Src nonreceptor tyrosine kinase (c-Src), and

epidermal growth factor receptor (EGFR) [85]. In addition,
another group of pyrido[2,3-d]pyrimidines (37a–d) (Fig.
15) had been prepared and assessed for their potential
antitumor agents. These compounds showed ATP-
competitive inhibition of c-Src kinase with IC50 values
10 nM and from 6 to 100-folds selectivity for c-Src tyrosine
kinase relative to the basic fibroblast growth factor receptor
(bFGFr) tyrosine kinase, platelet-derived growth factor
receptor (PDGFr) tyrosine kinase, and epidermal growth
factor receptor (EGFr) tyrosine kinase [86, 87]. Moreover,
the pyridopyrimidine derivative (PD 180970, 38) (Fig. 15)
was prepared by Kraker et al. [87] and subjected to biolo-
gical evaluation, which revealed that they inhibit Gab2
tyrosine phosphorylation in K-562 cells.

A group of coworkers [88] synthesized a novel series of
pyrido[2,3-d]pyrimidine derivatives 39a–l (Fig. 16) as tyr-
osine kinase inhibitors. From this series, PD 089828 (39b)
exhibited highly inhibitory activity against PDGFr, FGFr,
and c-Src tyrosine kinase with IC50 values of 1.25, 0.14, and
0.22 µM, respectively. A SAR study was performed to
reveal the effect of phenyl substitution at the 6-position on
the potency of these three kinases. This study ascertained
the importance of the presence of phenyl moieties in the 6-
position substituted with either halogen or methyl groups at
2- and/or 6-position of phenyl ring on the inhibitory activity
against PDGFr, FGFr, and c-Src tyrosine kinase as in the
target compounds (39c, 39d, and 39f) which showed inhi-
bitory activity than the unsubstituted parent compound 39a.
Moreover, this study recorded that the introduction of ethyl
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(39i), or methoxy (39j) in the 2-position of the phenyl ring
resulted in a decreased the inhibitory activity against both
PDGFr-TK and FGFr-TK but c-Src inhibitory activity is not
affected. In addition, this work explained that compounds
which substituted at 4-position of the phenyl ring such as
39e, 39k, and 39l exhibited marked decrease or loss in their
inhibitory activity against all tested kinases. Furthermore,
the 2,4,6-trimethyl derivative 39h exhibited the same inhi-
bitory activity as the 2,6-dimethyl derivative 39f, even
though it contained a methyl substituent in the 4-position.
Furthermore, the 3,5-dimethyl derivative 39g displayed
selectivity for the FGFr-TK relative to the PDGFr-TK and
the c-Src tyrosine kinase.

In an attempt to design potent kinase inhibitors, Reddy
et al. [89] tested more than 150 cyanopyrido[2,3- d]pyr-
imidine derivatives. They found pyrido[2,3-d]pyrimidine-6-
carbonitrile derivative (40) (Fig. 17) revealed the most
potent activity and the most apoptosis inducer in tumor cells
at a concentration of 30–100 nM. Moreover, this target
compound inhibited many kinases such as CDK4/CYCLIN
D1 and ARK5 kinases. Furthermore, Edupugantiet al. [90]

reported the design and synthesis of a novel series of pyrido
[2,3-d]pyrimidine-2,4-dione derivatives, which were eval-
uated for the eukaryotic elongation factor-2 kinase (eEF-
2K) inhibitory activity. This study reported that compounds
43 (IC50= 420 nM) and 44 (IC50= 930 nM) (Fig. 17) were
found to be the most active compounds among all the tested
compounds.

The in silico docking studies of derivatives 43 within
Eef-2k is shown in Fig. 18. The binding of inhibitor 6
involves hydrogen bonds to residues K170, I232, and G234.
The hydrophobic cyclopropyl and ethyl groups are buried
deep inside the adenine-binding pocket and underneath the
Gly-rich-loop, respectively.

Synthesis of pyrido[2,3-d]pyrimidine-2,4-dione deriva-
tives 43 and 44 were demonstrated in Scheme 4. The uracil
derivatives 41a,b was subjected to Vilsmeierreactionto give
the intermediate derivative 42, which then was treated with
triethylamine and cyanoacetamide in ethanol, to afford the
target compounds 43 and 44.

A novel 4-aminopyrido[2,3-d]pyrimidine derivative 45
(Fig. 19) was recorded to inhibit tyrosine kinases in the B-
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cell receptor and demonstrated antiproliferative activity
toward 20 non-Hodgkin’s lymphomas (NHLs) cell lines
with GI50 ranging from 1.3 to 6.9 μM at 24 h, and 1.4 to
7.2 μM at 48 h [83]. Also, a novel series of oxopyrido[2,3-
d]pyrimidines was prepared and it was found that they
inhibit gefitinib-resistant EGFRL858R, T790M with 100-
fold selectivity over wild type. From this group, compound
46 (Fig. 19) showed strong antiproliferative activity against
H1975 nonsmall cell lung cancer cell line, the first line
mutant HCC827 cell line, and showed also promising

antitumor activity in an EGFRL858R,T790M driven H1975
xenograft model sparing the side effects associated with the
inhibition of wild-type EGFR [84].

Quinazoline derivatives

A new series of quinazoline derivatives was synthesized as
EGFR kinase inhibitors and evaluated in cancer clinical
trials. The anilinoquinazoline-containing compounds, Erlo-
tinib (TarcevaTM) (47) [91, 92] and gefitinib (IressaTM) (48)
[93, 94], had been used for the treatment of patients with
advanced nonsmall lung cancer. In addition, lapatinib
(TykerbTM) (49) was used for the treatment of human epi-
dermal growth factor receptor 2 (HER2) positive advanced
or metastatic breast cancer [95–97] (Fig. 20).

Another series of 4-anilinoquinazoline derivatives was
prepared and tested for their inhibitory activity toward
EGFR tyrosine kinase. SAR performed on this series
recorded that substitution on the three position of aniline
moiety with small lipophilic electron withdrawing group led
to an increase in the potency of quinazoline derivative (50)
(Fig. 21), which showed EGFR inhibitory activity with
IC50= 0.029 nM [98]. Moreover, compound 51 (Fig. 21)
was synthesized and exhibited inhibitory activity toward
both c-Src and Abl kinases [99].

A new series of 5-aminopyrimidinylquinazolines 52a–e
(Fig. 22) had been designed as specific Aurora kinase
inhibitors by Heron et al. [100]. The SAR study showed that
the potency was dependent on the substitution on the phenyl
ring of the benzamido group. The activity was increased by
adding small hydrophobic groups such as 3-chloro (52a)

C.N R PDGFR (IC50) FGFR (IC50) C-SRC (IC50)
39a H 13.24 8
39b 2,6-(Cl)2 1.25 0.14 0.22
39c 2,6-(Br)2 1.42 0.21
39d 2-Br-6-Cl 0.62 0.12 0.21
39e 4-CH3 1.05 1.40 0.41
39f 2,6-(CH3)2 0.34 0.40 0.11
39g 3,5-(CH3)2 52.90 1.13 50
39h 2, 4, 6-(CH3)3 1.47 0.27 0.36
39i 2-C2H5 4.48 11.22 10.43
39j 2-OCH3 4.48 11.22 10.43

2.89 3.97 50
39l 3,4-(CH3)2 50 20.25 50

N

N NH2N NH

N
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O
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39k 4-OCH3
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0.29

Fig. 16 Chemical structures of
6-phenylpyrido[2,3-d]
pyrimidine derivatives (39a–l)
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and the 3-chloro, 4-fluoro (52b) analogs. On the other side a
drastic negative effect on potency was revealed on the
introduction of larger groups such as 3-bromo-4-
methylbenzamido derivative (52c). Furthermore, solubility
could be improved by adding heterocyclic group instead of
phenyl ring (52d) or an alkyl substituent (52e) but a drop in
the potency was observed. SAR of these derivatives 52a-e
is explained in Fig. 22.

In addition, compound 53 (GW2016) (Fig. 23) was
discovered to treat cancer cells selectively without affecting
normal cells. This compound exerted its effect by inhibiting
EGFR and ErbB-2 kinases and inducing apoptosis [101].

Furo[2,3-d]pyrimidine derivatives

Miyazaki et al. [102] recorded the synthesis and kinases
inhibitory activity of a new series of 5,6-diaryl-furo-4-
amino[2,3-d]pyrimidines. This work displayed that meth-
oxyphenylfuro[2,3-d]pyrimidine (54) (Fig. 24) was the
most active derivative with IC50 < 3 nM on both VEGFR2
and Tie-2 TK receptors. The activity of this compound was
explained based on the X-ray crystal structure, which
showed that the urea moiety formed two interactions with
amino acids Asp1044 and Glu883. In addition, the amino
group and nitrogen atom of the aminopyrimidine form
interactions with Glu915 and Cys917.

In 2008, the same group modified the chemical structure
of the previous furo[2,3-d]pyrimidine target compound 54

C.N R1 R2 R3 IC50 µM

43 Et CONH2 Cyclopropyl 0.42

44 n-Pro CONH2 Cyclopropyl 0.93
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Fig. 17 Chemical structures of pyrido[2,3-d]pyrimidine-7-one derivative (40) and pyrido[2,3-d]pyrimidine-2,4-dione derivatives (43 and 44)

Fig. 18 Binding of compound 43 within eEF-2K active site
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to change the activity of this compound away from Tie-2/
VEGFR2 to target GSK-3 [103]. The structure modifica-
tions included the incorporation of the 3-pyridinyl moiety at
the 6-position and different sulfonamides and amides at the
para position of the 5-phenyl ring. From this series of the
modified structure, compound 61 (Fig. 25) exhibited potent
GSK-3b inhibitory activity with IC50= 30 nM. The docking
study of compound 61 displayed the aryl ring of the sul-
fonamide at 5-position appeared to clash with residues

Met101, Leu112, and Leu130 of GSK-3. In addition, N3
nitrogen and NH2 of aminopyrimidine are anchored with the
carbonyl moiety and NH of Val135, respectively, via
hydrogen bond interactions (Fig. 26). Moreover, the 3-
pyridine moiety at 6-position is close to Lys85 of the con-
served salt bridge (Lys85/Glu97).

The target furopyrimidine derivative (61) was prepared
as illustrated in Scheme 5. Accordingly, sequential acet-
ylation, bromination, and hydroxylation of 4-
aminoacetophenone (55) resulted in the α-hydroxyketone
(56) which upon treatment with malononitrile in the pre-
sence of diethylamine provided 2-amino-3-cyano-furan 57.
Reaction of 57 with triethylorthoformate, followed by
amination and cyclization in the presence of sodium eth-
oxide yielded 4-amino-furo[2,3-d]pyrimidine 58. Bromina-
tion of 58 at 6-position with NBS followed by Suzuki
coupling with 3-pyridineboronic acid pinacol ester gave
furopyrimidine 60 which upon removal of the acetyl group
and reaction of the resulting amine with benzenesulfonyl
chloride provided the target compound (61).

In addition, a group of 2,4-diaminofuro[2,3-d]pyr-
imidines were prepared as a novel class of in an attempt to

C.N X Aur A IC50 (?M)
52a 3-Cl-ph 0.1
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inhibit both dihydrofolate reductase and receptor tyrosine
kinases [104]. Compound 62 (Fig. 27) serves as a template
for rationally designed VEGFR2 and PDGFR-b inhibitory
activity combined with DHFR inhibitory activity in one
molecule. Moreover, the candidate compound (63) (Fig. 27)
exhibited anticancer and anti-angiogenic activity in mouse
HT-29 xenograft model via inhibition of both VEGFR2 and
Tie-2 enzymes [105].

Furthermore, 3-pyridylfuro[2,3-d]pyrimidine derivative
64 (Fig. 28) was synthesized and evaluated for its inhibitory
activity against a panel of many kinases [106]. This study
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demonstrated that compound 64 exhibited selective and
potent inhibitory activity against GSK-3b over other tested
kinases. Moreover, the furo[2,3-d]pyrimidine derivative 65
(Fig. 28) was found to possess high inhibitory activity
against aurora kinase A with IC50= 159 nM [107].

Conclusion

Pyrimidine ring and its fused derivatives including pyrazolo
[3,4-d]pyrimidine, pyrido[2,3-d]pyrimidine, quinazoline,
and furo[2,3-d]pyrimidine derivatives have proved as great
target molecules in medicinal chemistry and drug develop-
ment. These scaffolds exerted their effect through inhibiting
PKs which are considered as essential enzymes to regulate
cell growth, differentiation, migration, and metabolism. This
review has highlighted the most promising compounds
among these scaffolds based on primary literature. It is
anticipated that information given in this review would give
rise to design of better molecules with better anticancer
activity and increased specificity, and finally will lead to the
development of novel synthetic strategies.
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