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Abstract
Valosine containing protein (VCP/p97), which involves in several important cellular functions and plays an important role in
ubiquitin-mediated misfolding protein degradation, has been found to be a novel target for the treatment of a range of
cancers, such as lung cancer and breast cancer. In this study, the atom-based three-dimensional quantitative
structure–activity relationship (3D-QSAR) and docking models were developed using PHASE and GLIDE modules of
Schrödinger software, respectively. The theoretical models were generated from 38 N-benzylpyrimidin-4-amine inhibitors of
p97. An AADRRR model consisting of two hydrogen bond acceptors (A), one hydrogen bond donor (D), and three aromatic
rings (R) was obtained. Thirty eight derivatives were divided into a training set with 27 molecules to generate 3D-QSAR
models and a test set with 11 molecules to validate 3D-QSAR model. A robust QSAR model with good prediction in internal
and external verification was constructed, where R2, Q2, and Pearson-R were 0.924, 0.701, and 0.8783, respectively. QSAR
model showed the hydrogen bond donor, electron-withdrawing group, and hydrophobic characteristics affecting the p97
activity. Molecular docking studies indicated that the H-bond and hydrophobic interactions existed between the inhibitors
and p97, which was consistent with the results of 3D-QSAR. These results provided some useful information for designing
new and effective p97 inhibitors.
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Introduction

Valosine containing protein (VCP, also called p97 or
Cdc48 in yeast), a member of the AAA ATPase family,

plays a crucial part in the processes of cellular activities,
including proteostasis, endoplasmic reticulum-associated
degradation (ERAD), golgi reassembly, and autophago-
some maturation (Ding et al. 2019; Bursavich et al. 2010;
Alverez et al. 2015; Song et al. 2003; Wang et al. 2004;
Smith et al. 2011). The cellular activities of p97 protein
mainly depend on its binding to different protein cofac-
tors. For example, the ubiquitin–proteasome system was
regulated as p97 binds to Npl4/Ufd1, whereas the lyso-
somal function was affected when p97 binds to UBXD1
(Qiu et al. 2007). As a homehexamer, p97 is composed of
three major regions: one N-terminal domain and two
AAA ATPs enzyme domains (D1 and D2; Ding et al.
2019; Zhang et al. 2017; Alverez et al. 2015; Meyer,
Weihl 2014). The flexible N-terminal domain is respon-
sible for various cofactors that interact with various
substrate proteins (Zhou et al. 2015). The D1 domain is
the basal ATPase activity, partly due to ADP’s low dis-
sociation rate (Meyer et al. 2012), while the D2 domain is
believed to the major ATPase activity of p97 under
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physiological conditions due to its higher ATP Km and
faster ATP hydrolysis to ADP (Wang et al. 2019; Song
et al. 2003). Numerous studies reported that VCP/p97
ATPase played a key role in the degradation of misfolded
membranes and secreted proteins by removing misfolded
poly-ubiquitinated proteins from the ER into the cyto-
plasm and then transporting them to the proteasome for
degradation (Segura-Cabrera et al. 2017; Chou et al.
2011). Therefore, p97 is an attractive target for diseases
involving excessive ERAD, such as cancer and cystic
fibrosis (Chapman et al. 2011; Cabrera et al. 2017).

Related studies have shown that the high expression of
p97 in lung cancer, prostate cancer, pancreatic cancer, and
breast cancer was associated with poor prognosis of the
tumor (Ding et al. 2019). In many physiological and patho-
logical processes, p97 mainly controls the protein quality by
eliminating abnormal proteins in cells and maintains the
survival of normal cells and tumor cells (Smith et al. 2011;
Chou et al. 2011). VCP/p97 has been an attractive target for
cancer due to VCP/p97-induced protein cytotoxic ER stress
and cell death in cancer cells (Cabrera et al. 2017), thus
several papers about p97 inhibitors have been published in
recent years (Chapman et al. 2011; Chou and Deshaies 2011;
Chapman et al. 2015). The most famous reversible p97
inhibitor is CB-5083, which selectively acts on the D2
domain, competitively inhibits ATPase activity and has good
oral bioavailability (Le Moigne et al. 2017; Wang et al. 2019;
Tang et al. 2019). Although CB-5083 is of excellent anti-
tumor activity and has entered phase I clinical trials, the
toxicity of CB-5083 impeded further clinical study (Zhou
et al. 2015; Chapman et al. 2015). Therefore, it is necessary
to develop new methods to illustrate the mechanism between
molecules and p97, and provide inspiration for designing and
discovering novel p97 inhibitors.

The computer-aided drug design technology can predict
the biological activity of a compound by its association with
its structural properties, and can also be used to design new
active molecules (van Vlijmen et al. 2017). Especially
quantitative structure–activity relationship (QSAR) studies
have been successfully applied to the bioactivity modeling of
natural and synthetic chemicals. In this manuscript, we
construct atom-based three-dimensional (3D)-QSAR models
studies using 38 N-benzylpyrimidin-4-amine derivatives to
obtain key groups of p97 inhibitors, which was performed in
the PHASE (PHASE 2015) module of Schrödinger suite.
3D-QSAR model suggested that the hydrogen bond donor,
electron-withdrawing group, and hydrophobic characteristics
of inhibitors affected the p97 activity. To verify the conclu-
sion of 3D-QSAR model, the molecular docking was carried
out by Glide (GLIDE 2015) module of Schrödinger suite,
which was consistent with the results of 3D-QSAR.

Materials and methods

Data set

Thirty eight N-benzylpyrimidin-4-amine derivatives of p97
inhibitors (Table 1) were selected from the published work
and used in our study (Zhou et al. 2015; Wang et al. 2019).
Inhibitory potencies of the compounds were reported as
IC50 values varying from 0.015 to 21.865 μM and then were
converted to pIC50 using the formula pIC50=−lg IC50

(Evans et al. 2007). The original data set was randomly
divided into training and test set comprising 27 and 11
molecules, respectively. The training set was used to gen-
erate pharmacophore models and the test set was used to
validate the expected models.

Pharmacophore modeling

Based on a set of active molecules, the development of
pharmacophore model is the primary mean of generating a
hypothetical phase of the pharmacophore, which is then
used to construct the 3D-QSAR model. In this 3D-QSAR
study, PHASE version 4.3 implemented in the Schrödinger
software package (Maestro 2015) was used.

Ligand preparation

The two-dimensional (2D) structure of 38 molecules were
drawn using Maestro version 10.2 (Maestro 2015). These
2D structures were converted into the 3D structures using
LigPrep module (LigPrep 2015) incorporated in PHASE,
and then these compounds were subjected to energy
minimization and geometry optimization using OPLS-
2005 as force field, with distance-dependent dielectric
model (Dixon et al. 2006). The rapid twist angle method
“ConfGen” was used to generate their conformers for
each ligand and to eliminate structures with high esti-
mated energies. For each structure, a maximum of 1000
conformers were generated using preprocess minimiza-
tion of 100 steps and postprocess minimization of
50 steps. Each minimized conformer was filtered through
a relative energy window of 10 Kcal/mol and a minimum
atom deviation of 1.00 Å. This value (10 Kcal/mol) sets
the energy threshold relative to the lowest energy con-
former. Conformers having higher energy than the
threshold were discarded. The root mean square deviation
(RMSD) of all pairs of corresponding heavy atoms must
be below this cutoff for two conformers to be considered
identical. This criterion is applied only after the energy
difference threshold and only if two conformers are within
1 Kcal/mol.
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Table 1 Structures and inhibition data of p97 inhibitors

Compd n X Y R1 R2 R3 IC50 (μM)
Experimental 

pIC50

Predicted 

pIC50

Pharm set
Fitness 

score

1* 3 CH2 CH2 -CH3 -H 0.120 6.922 7.43 active 2.90

2 2 CH2 CH2 -CH3 -H 0.083 7.082 7.11 active 2.77

3 1 CH2 CH2 -CH3 -CONH2 -H 0.015 7.832 7.68 active 2.81

4 1 CH2 CH2 -CH3 -H -H 0.115 6.939 6.66 active 2.89

5 1 CH2 CH2 -OCH3 -H -H 0.106 6.977 7.03 active 2.87

6* 1 CH2 CH2 -C2H5 -H -H 1.092 5.962 6.60 inactive 2.89

7 1 CH2 CH2 -CF3 -H -H 1.598 5.796 6.00 inactive 2.81

8 1 CH2 CH2 -CH2OH -H -H 0.167 6.777 6.73 active 2.80

9 1 CH2 CH2 -CH2OCH3 -H -H 1.951 5.710 5.69 inactive 2.76

10 1 CH2 CH2 -CH2NH2 -H -H 0.376 6.425 6.65 2.69

11 1 NH CH2 -CH3 -CONH2 -H 0.174 6.759 7.01 active 2.82

12 1 O CH2 -CH3 -CONH2 -H 0.057 7.248 7.63 active 2.94

13* 1 CH2 O -CH3 -H 0.193 6.715 6.77 active 3.00

14 1 CH2 O -H -H 0.922 6.035 6.09 2.89

15* 1 CH2 O -CH3 -H 0.027 7.569 7.43 active 2.81

16* 1 CH2 O -CH3 -H 0.129 6.888 6.78 active 2.92

17* 1 CH2 O -CH3 -H 0.308 6.511 6.78 active 2.91

18 1 CH2 O -CH3 -H 0.058 7.234 6.81 active 2.91

19 1 CH2 O -CH3 -H 0.447 6.349 6.27 2.78

20 1 CH2 O -CH3 -H 0.387 6.412 6.76 2.82
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Creation of pharmacophoric sites

During the creation of pharmacophoric sites, the pharmaco-
phore features were used to define the model or add new
features, and then pharmacophore sites were created for the
features in each conformer of ligand. The six built-in

pharmacophore features, hydrogen bond acceptor (A),
hydrogen bond donor (D), hydrophobic group (H), aromatic
ring (R), positively charged group (P), and negatively charged
group (N) were used to create pharmacophore sites. The
compounds were defined as active (pIC50 > 6.5) and inactive
(pIC50 < 6.0) ligands by setting the activity thresholds.

Table 1 (continued)

23 1 CH2 O -CH3 -H 0.135 6.870 6.79 active 2.65

24 1 CH2 O -CH3 -H 0.035 7.461 7.20 active 2.72

25* 1 CH2 O -CH3 -H 0.101 6.996 7.02 active 2.70

26 1 CH2 NH -CH3 -H
-CH

3

9.475 5.023 5.20 inactive 2.86

27 1 CH2 NH -CH3 -H -CN 21.865 4.660 4.71 inactive 2.16

28* 1 CH2 NH -CH3 -CH3 -H 1.591 5.798 5.74 inactive 2.92

29* 1 CH2 NH -CH3 -OCH3 -H 5.093 5.293 6.02 inactive 2.80

30 1 CH2 NH -CH3 -CN -H 0.354 6.452 6.30 1.88

31 1 CH2 NH -CH3 -F -H 0.840 6.076 5.75 2.92

32 1 CH2 NH -CH3 -Cl -H 1.551 5.809 5.99 inactive 2.79

33 1 CH2 NH -CH3 -CF3 -H 9.602 5.018 5.15 inactive 2.95

34 1 CH2 NH -CH3 -COOH -H 0.233 6.632 6.66 active 2.94

35 1 CH2 NH -CH3 -CONH2 -H 0.098 7.009 6.52 active 2.82

36* 1 CH2 NH -CH3 -H 0.528 6.278 6.44 2.94

37 1 CH2 NH -CH3 -H 11.860 4.926 4.80 inactive 2.78

38 0.161 6.793 6.91 active 2.87

21 1 CH2 O -CH3 -H 0.449 6.348 6.57 2.81

22* 1 CH2 O -CH3 -H 0.036 7.439 7.08 active 2.76

*Test set compound for 3D-QSAR model validation
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Finding common pharmacophore and scoring
hypotheses

The pharmacophore features were produced by a set of
variants that were tree-based partitioning technique to
define pharmacophore characteristics. The final box size is
1.0 Å and its size determines the size of the matching tol-
erance. The smaller the box is, the tighter it matches. The
appropriate pharmacophore hypothesis was generated by
setting the number of sites and matched active molecules. In
this study, the number of sites was varied from six to four
until at least one hypothesis was identified, and all active
molecules must be matched to the pharmacophore model.
The scoring function was used to score the common phar-
macophore hypotheses, with RMSD values <1.2 Å, vector
scores values at 0.5 and the weight of the term to the default
value. After analyzing the scores and alignments of the
active ligands, the optimal pharmacophore hypothesis was
selected for further study.

Construction of 3D-QSAR model

The QSAR model divides the space occupied by the ligand
into cubic grids. Regression was completed by constructing a
model of partial least squares (PLS) factor. The actual and
predicted activity values of 27 training set molecules were
analyzed and compared, and an atom-based 3D-QSAR model
was constructed. In the process of constructing 3D-QSAR, the
PLS factor was no >1/5 of the number of molecules in the
training set and the grid spacing is 1 Å. All models were
validated by predicting the activity values of the test set.

Validation of pharmacophore model

External verification is a very important step in the design
of 3D-QSAR models, which is the basis for judging whe-
ther the constructed model has strong stability and excellent
prediction. Validation was performed by fitting statistics of
training sets and test sets, including R regression values
(R2), regression standard deviations (SD), variance ratios
(F), significance level of variance ratio (P), root mean
square error of the test set (RMSE), value of Q2 for the
predicted activities of the test set (Q2) and Pearson-R. In this
study, the model was validated by the ability of the model
generated by the training set molecules to predict the
molecular activity of the test set, and the correlation
between the experimental values of the test set and the
predicted values was compared.

Molecular docking

To investigate the interaction between N-benzylpyrimidin-
4-amine derivatives and key parts of the VCP/P97,

molecular docking study was performed with the Glide.
The p97 X-ray crystal structure (PDB ID: 6MCK) com-
plexed with CB-5083 at the resolution of 3.77 Å was
obtained from the RCSB protein data bank (Tang et al.
2019). Before molecular docking, the Protein Preparation
Wizard in the Maestro 2015 program of Schrödinger
software was successively used to add hydrogens, remove
water molecules, and minimize energy at the force field of
OPLS-2005. Then the receptor grid was generated in the
Receptor Grid Generation panel of Glide and a 20 × 20 ×
20 Å cube box was set to define the docking sites for the
ligand. Subsequently, the ligands were docked into the
receptor based on the grid using extra-precision (XP)
mode, and the most active compound and the least active
compound were used for further analysis. Finally, the
ligands were scored primarily based on the Glide score,
the H-bond length, and the number of hydrogen bonds
formed.

Results and discussion

Pharmacophore and 3D-QSAR models

Pharmacophore model and 3D-QSAR studies were per-
formed successfully on a series of N-benzylpyrimidin-4-
amine derivatives to understand the important pharmaco-
phoric characteristics for p97 inhibitors. The activity values
of these 38 molecules ranged from 4.66 to 7.83, spanning
three orders of magnitude. The activity threshold was
divided into active and inactive molecules by >6.5 (con-
taining 20 active molecules) and <6.0 (containing ten
inactive molecules). The pharmacophore model was gen-
erated using active molecules. The 20 active molecules
were matched using a tree-based partitioning algorithm,
while four hypotheses based on six-pharmacophore char-
acteristics were generated in the variant list. Screening a
common pharmacophore from these four variants, we
finally determined that there were six-pharmacophore fea-
tures (AADRRR) consisting of hydrogen bond acceptor
(A), hydrogen bond donor (D), and aromatic rings (R). The
pharmacophore hypothesis AADRRR was aligned with all
active molecules, as shown in Fig. 1. Twenty molecules in
the active group matched the hypothetical AADRRR. The
hypothesis of the group feature (Fig. 2a) was followed by a
scoring function and 3D-QSAR study. The summary of the
result was shown in Supplementary Table 1.

The results of the six-pharmacophore feature hypotheses
with PLS of 3, labeled AADRRR.576, AADRRR.551, and
AADRRR.552, were presented in Table 2. These hypoth-
eses were aligned with the training set and finally the test set
were used to verify the predictive activity of these three
hypotheses.
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Analysis of PHASE 3D-QSAR validation

The pharmacophore models were evaluated by statistical
parameters R2, Q2, SD, F, P, RMSD, and Pearson-R, an
optimal model is the one with higher R2 and F, and lower
SD, P, and RMSD (Suryanarayanan et al. 2012). From
Table 2, we can conclude that the hypothesis
AADDHR.576 yielded a statistically significant 3D-QSAR
model with PLS factors (R2= 0.9238, SD= 0.2389, F=
92.8, and P= 5.402e−0.13) for training set of 27 com-
pounds and PLS factors (Q2= 0.7012, RMSE= 0.3635,
and Pearson-R= 0.8783) for test set of 11 compounds. In
addition, another way to verify the optimal model is com-
paring the magnitude of the value of Q2. Compared with
other two hypotheses, AADRRR.576 showed good external
prediction ability for its high Q2 value (0.7012). Therefore,
as the best model among these three hypotheses,
AADRRR.576 would be explored for further 3D-QSAR

study. The hypothesis matched the ligand fitness scoring 3,
as shown in Fig. 2b. In terms of hypothesis AADRRR.576,
the distance and angle data between different pharmaco-
phore feature points were shown in Supplementary Tables 2
and 3, respectively.

In the validated 3D-QSAR model, the test set was used to
evaluate the validity and predictability of the hypothesis
AADRRR.576. In this study, the activity of the 11 mole-
cules in test set were predicted using hypothesis
AADRRR.576, then the values of predicted and actual
activity were listed in Table 1. According to Alexander
Torpsha’s research (Tropsha 2010), when the value of R2 is
>0.6 and Q2 is >0.5, the model could be considered to have
strong robustness and excellent predictive ability. The cor-
relation value Q2 between the predicting activity and actual
activity of test set is 0.701 (Fig. 3), indicating that
AADRRR.576 could rationally predict p97 inhibitory
activity.

Analysis of atom-based PHASE 3D-QSAR model

According to the characteristics of the model, the relevance
of the activity in the hypothesis are explained and the
QSAR visual analysis of the model is described. The QSAR
visualization is performed in the form of a 3D contour map
associated with the model of the atom and structural fea-
tures, and the spatial distribution contributed to the model
can be viewed. Figure 4 shows the effect of electron with-
drawing, hydrogen bond donor and hydrophobicity of the
most active compound 3 and the least active compound 27
on the inhibitory activity, respectively. For the selected
pharmacophore, the blue cubes indicated favorable regions,
whereas red cubes indicated unfavorable regions for p97
inhibitory activity. Increasing the number of blue cubes
certainly would enhance the inhibition of p97, while the
inhibition of p97 alleviates as the number of red cubes
increases.

Figure 4a shows the hydrogen bond donor characteristics
for the selected hypothesis. The blue region seen at the NH2

of amide group on the most active compound 3 was
favorable for inhibitory activity, and the addition of a
hydrogen bond donor at the amino site would result in an
increase in the activity of the p97 inhibitor. Adding a
hydrogen bond donor to the nitrogen atom on the six-
membered ring of molecule 27 would result in a decrease in
inhibitor activity. Figure 4b illustrates the electron-
withdrawing characteristics of the selected hypothesis.
The visual analysis of Fig. 4b shows that the blue cubic
cluster at the amide bond of the indole ring represents the
positive potential of the electron-withdrawing feature of the
molecule and is essential for inhibition activity. Therefore,
it can be considered that adding a suitable electron-
withdrawing group to the amino group and the imino

Fig. 2 a Optimal hypothesis AADRRR.576. b The alignment of
optimal fit ligand with the pharmacophore sites. Red ball represents
hydrogen bond acceptor, light blue represents hydrogen bond donor,
while the brown ring represents the R (ring) feature pharmacophore

Fig. 1 Common pharmacophore hypothesis-based alignment
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group would increase the inhibitory effect of compound 3.
However, the electron-withdrawing group at C2 position of
the indole ring resulted in a decrease in receptor binding,
which decrease the inhibitory activity of the compound. It
was also found by visual analysis that the electron-
withdrawing group at the C4 position increased the activ-
ity of 3, while the electron-withdrawing group at the C6
position decreased the activity. For example, compound 30
(IC50= 0.354 μM) with a cyano group at the C4 is more
active than compound 27 (IC50= 21.865 μM) with a cyano
group at C6. Similarly, Fig. 4c illustrates the significant
favorable regions and unfavorable hydrophobic interactions
that arise when the QSAR model is applied to the most
active compound 3 and most inactive compound 27. The
red region on the six-membered ring indicates that a
hydrophobic group on this position reduces the inhibitory
activity. Although there are few blue cubes in six-

membered ring, the inhibition of p97 still slightly increa-
ses. The blue regions around C4 and C6 on the anthracene
ring indicate that hydrophobic group at these positions can
enhance the inhibition of p97.

Molecular docking analysis

Docking studies are performed on Glide module to explore the
interaction mechanism between inhibitors and the receptor.
GLIDE conducts a complete systematic search of the con-
formation, orientation, and positional space of the docking
ligand, and then uses a series of graded filters to search for
possible positions of the ligand in the active site of the receptor
(Gao et al. 2011). Firstly, in order to verify the reliability of the
docking algorithm, the co-crystallized ligand CB-5083 has
been redocked into the active site of p97. Figure 5 showed that
the redocking conformation of CB-5083 overlapped with the

Fig. 3 Scatter plot for the predicted and actual pIC50 values for AADRRR.576 hypothesis applied to a the training set (R2= 0.924) and b the test
set (Q2= 0.701)

Table 2 PLS statistical results of PHASE

S. no. Hypothesis Survival score SDa R2b Fc Pd RMSEe Q2f Pearson-Rg

1 AADRRR.576 3.615 0.2389 0.9238 92.8 5.402e−0.13 0.3635 0.7012 0.8783

2 AADRRR.551 3.531 0.282 0.8936 64.4 2.417e−0.11 0.4433 0.5556 0.7754

3 AADRRR.552 3.857 0.3003 0.8794 55.2 1.018e−0.10 0.6006 0.1846 0.5493

aStandard deviation of the regression
bCorrelation coefficient
cVariance ratio
dSignificance level of variance ratio
eRoot mean square error
fPredictive coefficient of the test set
gCorrelation between the predicted and observed activity for the test set
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conformation in the crystal structure and the RMSD value is
0.897Å. The result demonstrates that the docking methods are
reliable, as well as can restore the conformation in the crystal
structure. Then, all ligands were docked into the active sites of
p97 to investigate the interaction between p97 inhibitors and
the key amino acid residues of p97. The docking scores ranged
from −2.043 to −10.311 Kcal/mol of all ligands have been

presented in Supplementary Table 4. Hydrogen bond interac-
tion between the backbone carbonyl group of Asp478 and the
NH of all inhibitors was conserved. Some inhibitors have also
shown the additional hydrogen bond interactions with Thr688,
Arg662, and Ala685. Hence, after analyzing all the collected
molecules, it is evident that hydrogen bonding with negatively
charged amino acid (Asp478) and polar amino acid (Thr688)

Fig. 4 3D-QSAR model based on the most active compound 3 and the
most inactive compound 27 illustrating a hydrogen bond donor fea-
ture, b electron-withdrawing feature, and c hydrophobicity feature,

respectively. Blue cubes, favorable regions for activity, and red cubes,
unfavorable regions for activity
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play an essential role in the binding of ligands. For further
understanding the effect of different scaffolds on their activity,
the most active ligand 3 and least active ligand 27 were stu-
died. Figure 6a illustrated the binding mode of compound 3
(most active) with p97 with a docking score of −7.82Kcal/
mol. The benzylamino moiety of compound 3 penetrates deep
into the pocket, occupying a hydrophobic niche, in direct
contact with the enzyme residues of Asp 478 and Thr688.

Moreover, the benzylamino moiety groups trigger hydro-
phobic interactions with some residues in the pocket (Val 474,
ILE 479, TRP 476, VAL 485, and LEU 482). The carbonyl
group of Asp478 forms a hydrogen bond with the NH of
compound 3 with a length of 2.52 Å and the -OH of Thr688
forms a hydrogen bond interaction with the O atom in the
amide group of the molecule with a length of 2.13 Å. The
docking score of compound 27 (least active) is −6.15Kcal/
mol (Fig. 6b) and it binds with amino acids Asp478 and
Gly523 with the docking energy of −43.894 Kcal/mol. The
difference lied in H-bond lengths that was more in compound
27 between polar hydrogen of nitrogen and carbonyl oxygen
of Asp478 (2.73 Å), and polar hydrogen of -NH2 on Gly523
with cyano nitrogen (2.21 Å). This, in turn, resulted into low
binding affinity of compound 27 toward p97. This observation
complemented the results obtained from the 3D-QSAR model.

Conclusion

In this manuscript, we carried out a molecular modeling
study on 38 N-benzylpyrimidin-4-amine derivatives as p97

Fig. 6 a 3D and 2D ligand interaction diagram with the most active ligand 3. b 3D and 2D ligand interaction diagram with the most inactive
ligand 27

Fig. 5 The alignment of docking poses of CB-5083 with the co-crystal
conformations. The nitrogen atom is represented by blue, the oxygen
atom is represented by red, and the carbon atoms in the butt con-
formation and crystal structure are represented by yellow and green,
respectively
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inhibitors using 3D-QSAR and molecular docking. Gen-
eration of a reliable pharmacophore model AADRRR.576,
3D-QSAR model (PLS= 3) and molecular docking analy-
sis demonstrated the involvement of H-bond donor,
hydrophobic, and charged regions as crucial factors for
ligand–receptor interaction. The hypothesis demonstrates
pharmacophoric or functional groups and their spatial
arrangement were suitable for the development of specific
p97 inhibitors. With the 3D-QSAR model visualization,
presence of hydrogen donor groups in the amino will favor
the inhibitory activity. Substitution of electron-withdrawing
groups around C4′ which is more active than the group at
the C6′ favors p97 inhibitory activity. Hydrophobic inter-
action of the molecule with the p97 can be enhanced by
incorporating hydrophobic amino acid into benzyl groups.
Molecular docking not only demonstrates the way ligands
interact with p97, but also further validates the contour plots
generated by the 3D-QSAR model. The study about
potential binding mode of the compounds from a data set of
38 p97 inhibitors with its receptor is also conducted. Ana-
lysis of the most active compound 3 and the least active
compound 27, the inhibitors form a strong hydrogen bond
with the key amino acid residues THR688, ASP478, and
ARG662 in the protein. The hydrophobic group on the
benzyl group corresponds to the hydrophobic interaction of
the group in the active pocket, shown by the docking result.
The results obtained from the 3D-QSAR studies and
docking simulation could be used for designing new and
potent p97 inhibitors.
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