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Abstract
Estrogen receptors (ERs) are significant protein targets that can alter normal homeostatic transcription and signaling
pathways. And the development of selective ER ligands is involved in the pharmacology of anticancer drugs, leading to the
synthesis of numerous ER selective ligands. In the present work, three dimensional quantitative structure–activity
relationship (3D-QSAR) models, including comparative molecular field analysis (CoMFA) and comparative molecular
similarity indices analysis (CoMSIA) in combination with molecular docking were performed on a series of ER ligands to
investigate the potential relationship between the structural features of the compounds and its activity and selectivity. Good
statistical significance was achieved for the CoMFA (ERα: R2

cv= 0.676, R2
pred= 0.631. ERβ: R2

cv= 0.578, R2
pred= 0.5341)

and CoMISA (ERα: R2
cv= 0.693, R2

pred= 0.5758. ERβ: R2
cv= 0.653, R2

pred= 0.615) models. In addition, molecular
docking results confirmed that the substituents at ring A, ring D and ring E were crucial for interacting with receptors ERα
and ERβ, respectively, which were in agreement with the QSAR results. The substituents in ring A and ring F for ERα and
residues Thr347/Ala302, Met388/Leu343, Leu391/Arg346, Met421/Ile376, Gly521/Leu476 for ERα and ERβ, respectively,
contribute the most to the subtype selectivity. These results obtained from this work provide valuable information for the
design of novel selective ER ligands with enhanced activity.
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Introduction

Estrogens are mainly involved in menstrual and estrous
reproductive cycles. The physiological function is modu-
lated largely by the estrogen receptors (ERs), which regulate
various endocrine mechanisms, including development,
homeostasis, and metabolism (Aranda and Pascual 2001).
ERs are expressed in a cell-type and tissue specific manner,
and the presence varies based on different disease state,

such as stroke and infertility (Weihua et al. 2003; Nilsson
and Gustafsson 2010; Powel et al. 2012).

There are two subtypes for ERs, ERα, and ERβ, which
share 53% sequence identity in the ligand binding domain,
and they are highly similar in the DNA binding domain
(Journé et al. 2008). However, the two subtypes exhibit
distinct cellular and tissue distribution patterns. ERα is
mainly expressed in the mammary gland, uterus, ovary,
bone, male reproductive organs, prostate, liver, and adipose
tissue. In contrast, ERβ is predominant in the prostate,
bladder, ovary, colon, adipose tissue, and immune system
(Kuiper et al. 1997; Fitzpatrick et al. 1999). Evidence has
certified that estradiol and hormone replacement therapies
would target ERα and ERβ, but the risk of breast and
endometrial cancers, and thromboembolism will be trig-
gered (Maximov et al. 2013). Many studies have proven
that the ligands binding selectively to ERβ may be
employed to cure certain cancers, endometriosis, inflam-
matory diseases, and cardiovascular (Minutolo et al. 2011).
In additional, these compounds have an effect on regulating
brain development and estrogen-induced promotion of
neurogenesis (Zhao and Brinton 2005). Effective efforts
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have also been made to develop subtype-selective com-
pounds which selectively antagonize undesirable side
effects for therapeutic purposes.

ERs possess conserved structurally and functionally
distinct domains. The DNA-binding domain, as the most
conserved domain, is involved in DNA recognition and
binding, whereas ligand binding occurs in the carboxyl
terminal ligand-binding domain, consisting of twelve α-
helices (H1-H12) and a β-hairpin. The H12 helix plays
important role in molecular switching (Dilis et al. 2007).
When ligands binds, the H12 rests across H3 and H11,
forming a groove to accommodate co-regulator and facil-
itate downstream activation process (Bruning et al. 2010).
In addition, the amino terminal domain is not conserved and
represents the most variable domain both in sequence and
length (Nilsson et al. 2001).

Based on the structural characteristics of ERs, many
studies have synthesized some potent compounds for ERs
(Farzaneh and Zarghi 2016). Naturally occurring phytoes-
trogens and several modified analogs have been reported to
possess about 40-fold selectivity for ERβ receptor (Miller
et al. 2003), for example, diarylpropylnitrile (Meyers et al.
2001; Jun et al. 2003) and bipenyl (Korach et al. 1988;
Kuiper et al. 1998) exhibited 70-fold selectivity for ERβ,
additionally, tetrahydrochrysenes (Meyers et al. 1999), aryl
benzothiophenes (Ulrich et al. 2002), and benzoxazenes
(Yang et al. 2004) have been reported possessing 10- to 40-
fold ERβ receptor selective binding. However, non-selective
or low binding affinity compounds will be synthesized
inevitably. Therefore, novel ER compounds with improved
binding activity and selectivity should be explored.

It has been reported that several experimental methods
making use of ER receptors or biological materials of
human, rat, mouse, and calf can be used for screening the
estrogenic chemicals (Pons et al. 1990; Soto et al. 1995;
Reel et al. 1996; Shelby et al. 1996; Fang et al. 2000).
However, it is time-consuming and material redundant for
screening of novel compounds in vitro. Therefore, compu-
tational models are preferred now for some reasons, such as
speed and low cost. For example, environmental estrogens
have been classified by physicochemical properties using
principal component analysis and hierarchical cluster ana-
lysis (Suzuki et al. 2001). Chafourian et al. have developed
partial least squares (PLS) model to identify significant
descriptors associated with ER binding affinity (Ghafourian
and Cronin 2005). Marini et al. (2005) and Ji et al. (2008)
have constructed the QSAR model to study the ER ligands
using artificial neural networks. In addition, consensus kNN
QSAR as a feasible method has been used for rapid
screening of organic compounds having estrogenic activity
(Asikainen et al. 2004). However, these classical approa-
ches ignore the three dimensional conformation, often fail
to elucidate molecular mechanism of ER ligands effectively.

Therefore, Tong et al. (1997) and Wolohan and Reichert
(2003) performed comparative molecular field analysis
(CoMFA) on a series of compounds binding to ERs,
resulting in predictive QSAR models.

In the present paper, a multistep work combing 3D-
QSAR and molecular docking was done to study the
structure–activity relationship of the employed inhibitors, to
elucidate the structural features required for binding affinity
of ERs and selectivity for ERα over ERβ receptor. The
results can be employed to guide the rational synthesis of
novel selective ligands of ERα possessing increased binding
affinity and higher selectivity.

Methods and materials

Datasets and biological activity

In this study, a total of 81 compounds were collected from
the literatures (Blizzard et al. 2004a, 2004b, 2005; Chen
et al. 2004; Kim et al. 2004) and employed for molecular
modeling. To facilitate the QSAR analysis, the IC50 values
were converted to the corresponding pIC50 (−logIC50)
values, which were further used as dependent variable for
model construction. The structure and inhibitory activity are
listed in Table 1. The whole dataset was divided into a
training set for model generation and a test set (compounds
marked with a in Table 1) for model validation. In splitting
the original dataset, the structural diversity and the range of
biological activity in the two sets were carefully considered
to ensure the representative ability of the training set
molecules.

Molecular modeling

3D-QSAR studies and all molecular modeling were per-
formed using the Sybyl-X 1.1 (Tripos Associates, St. Louis,
MO). Initially, the structures of all compounds used in the
model generation were sketched. Then the geometrical
conformations were optimized using the Tripos force field
with a distance-based dielectric and the Powell conjugate
gradient algorithm (Clark et al. 1989). Different types of
charges (Gasteiger and Marsili 1980) were calculated for
each compound. Repeated minimizations were performed
with the maximum iterations of 1000 to reach an energy
convergence gradient value of 0.05 kcal/mol Å. Further-
more, the minimized structures were employed as the initial
conformation for CoMFA and CoMSIA analyses.

Conformational sampling and alignment

In order to obtain reliable QSAR models, molecular align-
ment is considered as one of the most sensitive parameters
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Table 1 Molecular structures of ER ligands and the binding affinity pIC50 values

Comp
ound

R1 R2 R3 R4 R5 R6 pIC50/ERβ pIC50/ERα

1a H OH H H
7.37 9.05

2 H OH H H
7.19

8.59

3 H OH H H
7.06

8.80

4 a H OH H H
7.30

9.00

5 H OH H H
7.35

9.00

6 H OH H H
7.15

8.77

7 H OH H H
7.06

9.10

8 a H OH H H
7.05

9.22

9 H OH H H
7.35

8.60

10 H OH H H
7.28

8.89

11 F OH H H
8.28

9.10

12 H OH H H
7.16

8.92

13 F OH H H
8.04

9.15
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(Cho and Tropsha 1995; Thaimattam et al. 2005). In this
study, the most potent compound was selected as a tem-
plate, and the remaining compounds were aligned on the
template by common substructure alignment (as shown in

Figs. 1a and 2a). And three different alignment rules were
employed to build the most reliable QSAR models: tem-
plate ligand-based alignment, docking-based alignment, and
scaffold-based alignment.

14 H OH H H
7.22

8.13

15 H OH H H
6.51

8.57

16a H OH H H
5.09

6.31

17 H OH H H
5.08

6.27

18 H OH H H
6.79

8.06

19 H OH H H
6.44

7.46

20 H OH H H -CH(CH3)2 6.98
8.15

21a H OH H H -C(CH3)3 7.37
7.96

22 H OH H H -CH2CH(CH3)2 7.42
8.52

23a H OH H H
7.51

8.60

24 H OH H H
7.80

8.59

25 H OH H H
7.55

8.12

26 H OH H H
7.47

8.52

27 H OH H H
7.40

8.41

28 H H OH H
7.35

8.74

29 Me H OH H
7.34

8.70

30 Et H OH H
6.73

7.27

31a OH H OH H
6.10

7.60

32 F H OH H
7.89

9.30
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Template ligand-based alignment (Alignment 1): in this
method, the most potent compound (compound 11 for ERβ
and compound 78 for ERα) was selected as template to
align the remaining compounds. The aligned results are
shown in Figs. 1b and 2b.

Docking-based alignment (Alignment 2): all compounds
were docked in the binding site of the receptors, and the
conformation of each compound (possessing the highest
total score) was used for model generation (shown in Figs.
1c and 2c).

33a Cl H OH H
8.10 9.29

34 H Cl OH H
6.28 7.64

35 H Me OH H
6.23 7.46

36 H H OH Me
7.27 8.92

37 H H OH Et
7.60 8.33

38 F OH H H
7.88 9.10

39 Cl OH H H
7.85 8.62

40a H OH Cl H
7.14 8.27

41 H OH F H
6.38 7.87

42 H OH H Cl
6.98 8.28

43 H OH H Me
6.46 8.28

44a H OH H H
6.52 7.92

45 H OH H H
6.10 7.39

46a H OH H H
7.18 8.42

47a H OH H H
6.60 8.52

48a H OH H H
7.43 9.05

49 H OH H H
6.94 8.39

50 H OH H H
6.99 8.92
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Scaffold-based alignment (Alignment 3): the conforma-
tions of all compounds were generated from molecular
docking, then, the most active compound was used as

template for superimposition, which the procedure is
similar to Alignment 1. And the result is shown in Figs. 1d
and 2d.

51 H OH H H
6.50 8.42

52 H OH H H
6.96 9.10

53 H OH H H
6.46 8.47

54 H OH H H
6.89 8.85

55a H OH H H
7.14 8.82

56 H OH H H
6.61 8.70

57 H OH H H
6.94 8.60

58 H OH H H
6.56 7.80

59 H OH H H
6.57 8.70

60 H OH H H
6.48 8.74

61 H OH H H
6.36 8.66

62a H OH H H

5.95 8.14

63 H OH H H
6.44 8.66

64 H OH H H
7.23 9.30

65 H OH H H
7.09 8.77

66a H OH H H
6.87 8.70
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67 H OH H H
7.09 8.41

68 H OH H H
7.29 9.22

69 H OH H H
7.33 9.22

70 H OH H H
6.93 9.05

71a H OH H H
7.14 9.15

72 H OH H H
7.28 8.89

73a H OH H H
7.40 9.22

74a H OH H H
7.48 9.22

75 H OH H H
7.25 9.30

76 H OH H H
6.87 9.15

77a H OH H H
7.07 9.10

78 H OH H H
7.74 9.52

79a H OH H H
7.48 9.00

80 H OH H H
7.41 8.92

81 H OH H H
7.59 9.40
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3D-QSAR studies

In the present work, CoMFA and CoMSIA methods were
performed upon the alignments to correlate the structures
with the inhibitory activity. The algorithms for CoMFA and
CoMSIA techniques have been demonstrated in many lit-
eratures (Murumkar et al. 2010; Srivastava et al. 2010),
therefore, only the different parameters used in the present
work were introduced.

The steric field energies in the form of a Lennard–Jones
6-12 function and the electrostatic fields in form of Cou-
lomb function were calculated at each lattice intersection
point of a regularly spaced grid of 2.0 Å. An sp3 carbon
atom probe with a van der Waals radius of 1.52 Å and a
charge of +1.0 was served as the probe atom to compute
the CoMFA steric and electrostatic fields. And the energy
cutoff values were set to 30 kcal/mol (Ståhle and Wold
1988). The generated steric and electrostatic fields were

O

SHO

O

OH
F

N

Fig. 1 a Compound 11 used as
templates for template ligand-
based alignment. The common
substructure is shown in blue. b–
d Present the alignments for
ERβ from the Alignment 1, 2 and
3, respectively

O

SHO

O

OH

N

Fig. 2 a Compound 78 used as
templates for template ligand-
based alignment. The common
substructure is shown in blue. b–
d Present the alignments for
ERα from the Alignment 1, 2
and 3, respectively
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further scaled by CoMFA standard requirements given
in Sybyl.

CoMSIA exhibits greater robustness than CoMFA
because of its feature of avoiding singularities at the atomic
positions arising from the Lennard–Jones and dramatic
changes of Coulomb potentials (Pirhadi and Ghasemi
2010). For CoMSIA method, the five different fields: steric
(S), electrostatic (E), hydrophobic (H), hydrogen bond
donor (D) and hydrogen bond acceptor (A) were calculated
using the same probe atom as that used in CoMFA analysis.
The attenuation factor and the column filtering were set to
0.3 and 2.0 kJ/mol, respectively, to speed up the analysis
and reduce the noise.

PLS regression was adopted to derive linear relationship
between CoMFA/CoMSIA descriptors and inhibitory
activity values (Cramer et al. 1988; Goyal et al. 2014).
Initially, the leave-one-out method was used in the cross-
validation analysis to produce the cross-validated correla-
tion coefficient R0

cv, the lowest standard error of prediction
and the optimal number of principal components (Nc).
Then, non-cross-validation analysis was performed to cal-
culate conventional R2

ncv using the Nc obtained from the
cross-validation analysis.

However, the cross-validated correlation coefficient R2
cv

alone is insufficient to estimate the capability of the derived
QSAR models. Therefore, external validation should be
conducted. The predictive ability of the QSAR models was
evaluated with the test set. The predictive correlation
(R2

pred) was computed as follows:

R2
pred ¼ 1� PRESS

SD
; ð1Þ

where PRESS is the sum of squared deviation between the
actual activity and predicted activity values for the test
compounds; SD is the sum of squared deviations between
the inhibitory activities of the test set and the mean activities
of the training set compounds.

Finally, the CoMFA/CoMSIA results were also graphi-
cally interpreted by contour maps which were generated
varying the spacing in the box and the weight for the
standard deviation (StDev × Coeff) in relation to the para-
meters of the previous model. In addition, the most active
inhibitors were set as template to validate the contour maps.
The default value of contour by contribution, 80% for
favored region and 10% for disfavored region, was set
during contour map analysis.

Molecular docking

Molecular docking simulations were performed using
AutoDock (version 4) to explore the interaction mechanism
between inhibitors and receptors ERβ and ERα (Morris et al.
1998), the crystal structure 1NDE (Henke et al. 2002) and

1R5K (Wu et al. 2005), were extracted from the RSCB
Protein Data Bank (http://www.rscb.org/pdb). A grid-based
docking program was employed to analyze the binding
modes. The AutoDock scoring function is described by
Morris et al. (1998). The interaction energy was evaluated
using atom affinity potentials calculated on a grid similar to
that described by Goodford (1985). Prior to molecular
docking, the original compounds and water molecules were
removed from the crystal structure, then, polar hydrogen and
united atom Kollman charge were assigned for the receptor.

For molecular docking, the LGA search method was used
by randomizing initial position, orientation, and relative
dihedrals. The grid box defining the binding search space
was input as x center 107.542, −7.885, y center 6.849,
48.829, and z center−107.145, 332.15, respectively for ERβ
and ERα. In addition, the maximum number of 10,000
retries and 27,000 generations were set for docking. Finally,
the conformations with the lowest binding energy were
extracted and aligned together for further QSAR analysis.

Calculation and selection of Dragon descriptors

In the present work, Dragon Professional, version 5.0 soft-
ware (Todeschini et al. 2005) (http://www.talete.mi.it/index.
htm) was employed to enhance the robustness and gen-
eralization of the derived QSAR models. For each block of
descriptors, the constant variables were firstly removed. For
the remaining descriptors, pairwise correlation analysis was
conducted in R software (www.r-project.org) to exclude
those ones with the standard deviation >0.5 (Wang et al.
2008). The HOMA and MATS3m descriptors for ERβ, and
X1A and nPyridines descriptors for ERα showed important
influences with R2= 0.62 and R2= 0.68.

Results and discussion

In the present work, different charges (Gasteiger–Huckel,
Gasteiger–Marsili, MMFF944, and Huckel) were tried to
obtain optimal models. It is clear that the models based on
Gasteiger–Huckel charge exhibited better statistical results
(Tables S1 and S12).

In addition, the QSAR models based on Alignment 1 are
superior to those based on Alignment 2 and Alignment 3.
Obviously, some models based on Alignment 2 also have
high R2

cv, but the external predictive power is low. For
Alignment 3, the results indicate that the derived models are
not robust, and the points for the test set distribute unevenly
around the regression line. The reason for this phenomenon
is that inhibitors possessing different binding activities
would exhibit different orientations in the binding site
during molecular docking, especially the different sub-
stituents in the structure, leading to the results of alignment
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are worse than the template ligand-based alignment.
Therefore, the results obtained from Alignment 1 are better
than Alignment 2 and Alignment 3.

3D-QSAR statistical results for ERβ

The CoMFA results for ERβ are summarized in Table 2,
showing that the CoMFA model has high R2

cv (0.578), F
(63.417), and a small SEE (0.204), as well as non-cross-
validated correlation coefficient R2

ncv (0.878) with six opti-
mum number of components, proving a good correlation
between the experimental and the predicted activities (as
shown in Fig. 3a). The statistical indexes indicate that the
derived CoMFA model has strong predictive ability. The
corresponding steric and electrostatic fields explain 36.6%
and 39.5% of the total variance, respectively. In addition,
molecular descriptors MATS3m (Caballero et al. 2008) and
HOMA (Rodríguez-Fortea and Poblet 2014) also make 12.7
and 11.2% contribution to the model, which effectively
enhance the fitting degree of the model. MATS3m is the
Moran autocorrelation of lag 3 weighted by atomic masses
belonging to 2D autocorrelation descriptors, derived directly
from the molecular structure and the computation involves
the summations of the autocorrelation functions corre-
sponding to different fragment lengths. The geometrical
descriptor HOMA is sensitive to the C–C bond distance. The
definition of the descriptors is listed in Table 3.

The predictive capability of the CoMFA model is checked
using the test set. Examination of the residuals between the
actual and the predicted values suggests that compound 62
might be outlier. The outlier status is due to the large residual
value which is nearly up to 2.0 log unit. Moreover, the pre-
dicted correlation coefficient R2

pred (0.5341) represents that
the prediction ability of the model is good.

Different models were generated by different combina-
tion of the five fields, as shown in Table S1. Among them,
CoMSIA-SH model is superior to other models. The opti-
mum model is built on six components and the statistical
parameters are listed as follows: R2

cv= 0.653, R2
ncv=

0.866, SEE= 0.214, F= 56.983. It is also noted that the
hydrophobic field makes a higher contribution (47.8%) to
the inhibitory activity than that of the steric field (25.4%).
Furthermore, the dragon descriptor MATS3m and HOMA
also explain 12.6% and 14.2% of the total variance, which
play significant roles in predicting the inhibitory activity.

In addition, the test set is used to evaluate the predictive
accuracy of the CoMSIA model. The R2

pred (0.615) con-
firms that the CoMSIA model is highly predictive. Similar
to the CoMFA model, compound 62 is also considered to be
outlier due to its low inhibitory ability. Figure 3b depicts the
correlation between the observed and predicted pIC50 values
for the training set and the test set, and most of the points
are uniformly distributed around the line, indicating that the
built model has excellent predictive ability.

Table 2 Statistical data of optimal QSAR models based on different superimposition methods for ERβ

I II III

Parameters CoMFA CoMSIA CoMFA CoMSIA CoMFA CoMSIA

Superimposition methods

R2
cv 0.578 0.653 0.571 0.528 0.361 0.468

R2
ncv 0.878 0.866 0.918 0.773 0.496 0.669

SEE 0.204 0.214 0.163 0.273 0.399 0.324

F 63.417 56.983 154.948 46.835 28.050 57.531

R2
pred 0.5341 0.615 0.4629 0.5596 0.4545 0.5017

SEP 0.379 0.343 0.375 0.393 0.450 0.410

Nc 6 6 4 4 2 2

Field contribution

S 0.366 0.254 0.183 0.209 0.102 –

E 0.395 – 0.598 – 0.140 0.150

H – 0.478 – 0.436 – 0.082

D – – – – – 0.151

A – – – – – 0.135

MATS3m 0.127 0.126 0.094 0.168 0.416 0.283

HOMA 0.112 0.142 0.125 0.187 0.342 0.199

R2
cv=Cross-validated correlation coefficient using the leave-one-out methods, R2

ncv=Non-cross-validated correlation coefficient, F=Ratio of
R2

ncv explained to unexplained= R2
ncv/(1−R2

ncv), R
2
pred= Predicted correlation coefficient for the test set of compounds, NC=Optimal number of

principal components

SEE standard error of estimate, SEP standard error of prediction, S steric, E electrostatic, H hydrophobic, D H-bond donor, A H-bond acceptor

Medicinal Chemistry Research (2019) 28:1974–1994 1983



3D-QSAR statistical results for ERα

The same training and test set are used to derive CoMFA
and CoMSIA models. The statistical details are summarized
in Table 4. The results show that the optimal CoMFA model
provides a leave-one-out R2

cv of 0.676 (>0.5) with an opti-
mal number of principal components of six. A correlation
coefficient R2

ncv of 0.902 with a low SEE of 0.221, and an F
value of 81.692 are also obtained. In contribution, the steric
and electrostatic field contributes 34.0% and 44.2%,
respectively. The best CoMSIA model provides R2

cv of
0.693 with an NC of six, an R2

ncv of 0.913 with a low SEE of
0.209 and an F value of 92.264. In CoMSIA model, the
contribution of the electrostatic, hydrophobic, X1A, and
nPyridines are 43.3%, 30.5%, 7.6% and 14.2%, respectively.
Based on the field contribution, the electrostatic field is the
most significant field in the CoMSIA model. The X1A (Kier
and Hall 1986) property is calculated from the hydrogen-
depleted molecular graph, which describes the molecular
structure in topological terms. Functional group counts
nPyridines is the number of Pyridines (Durgapal et al. 2018).

External validation is also carried out to further assess
the reliability and the predictive ability of the developed
models. The R2

pred of 0.631, 0.5758 are achieved for
CoMFA and CoMSIA model, respectively. The graph of
predicted pIC50 versus experimental pIC50 is shown in Fig.
3c, d, further verifying the excellent external predictive
ability of the models.

3D-QSAR contour maps for ERβ

The visualization of the QSAR results as 3D coefficient
contour maps is one of the most absorbing feature for
CoMFA and CoMSIA models. The contour maps for ERβ
are shown in Figs. 3 and 4. And the most potent inhibitor 11
was selected as reference structure.

CoMFA contour maps

The CoMFA steric contour map is shown in Fig. 4a, where
the sterically favorable regions are represented in green and
the unfavorable regions in yellow. A small green contour

Table 3 Descriptors used in model construction

Symbol Class Meaning

MATS3m 2D autocorrelations Moran autocorrelation-lag3/weighted by atomic masses

HOMA Geometrical descriptors Harmonic Oscillator Model of Aromaticity index

X1A Connectivity indices Average connectivity index chi-1

nPyridines Functional group counts Number of Pyridines

Fig. 3 The correlation plots of
the actual versus the predicted
pIC50 values using the training
set based on the CoMFA and
CoMSIA models obtained from
the activity for ERβ/α. Graphs of
the predicted versus the
experimental pIC50 values of the
optimal models. a CoMFA
model for ERβ. b CoMSIA
model for ERβ. c CoMFA model
for ERα. d CoMSIA model for
ERα
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map located at the fluorine atom of ring A (Fig. 1a) indi-
cates that bulky substituent is favored at this position, as
illustrated by the fact that the inhibitory activity of com-
pound 11 (F) is stronger than that of compound 10 (H), the
same as compound 13 (F) and compound 12 (H). Another
green contour map is covered the para position of ring D,
indicating that this position is suitable for larger substituent.
The higher activity of compound 22 (–CH2CH(CH3)2) than
compound 20 (i-Pr) is an example. A large green contour is
mapped near ring E, illustrating that bulkier group at this
position may increase the activity, as illustrated by the fact
that the pIC50 value of compound 59 ( ) is higher than
that of compound 58 ( ). For compound 48 and 49, the
conformation of ring E is altered and extended to a series of
yellow contour maps, meaning that the activity would be
decreased when introducing large substituent. This can be
explained by the fact that compound 48 having pyrrolidine

group, favored the inhibitory activity whereas in compound
49 harboring piperidine.

For electrostatic contour map (Fig. 4b), the blue regions
indicate the favorable effect of positively charged groups,
whereas the red contours indicate the positions in which
electronegative groups may enhance the activity. A red
contour near the substituent of ring D indicates that groups
with negative charges may increase the activity. This can
explain why the activity of compound 46 (F) is higher than
compound 45 (OMe). In addition, compound 47 and 1
possessing electronegative substituents at this position
exhibit higher activity than compound 46 and 14. A small
blue contour map is present around ring A, suggesting that
electropositive potential would enhance the inhibitory
activity. Therefore, compound 31 holding –OH group
decrease the activity compared with compound 30 (Et) and
compound 29 (Me). In addition, the most potent compound

Table 4 Statistical data of optimal QSAR models based on different superimposition methods for ERα

I II III

Parameters CoMFA CoMSIA CoMFA CoMSIA CoMFA CoMSIA

Superimposition methods

R2
cv 0.676 0.693 0.561 0.557 0.557 0.559

R2
ncv 0.902 0.913 0.631 0.632 0.630 0.654

SEE 0.221 0.209 0.411 0.410 0.411 0.401

F 81.692 92.264 99.059 99.585 98.961 53.887

R2
pred 0.631 0.5758 0.2403 0.2614 0.2397 0.3246

SEP 0.403 0.392 0.448 0.450 0.450 0.453

Nc 6 6 1 1 1 2

Field contribution

S 0.340 – 0.030 – 0.044 0.069

E 0.442 0.433 0.083 0.089 0.062 –

H – 0.305 – 0.048 – –

D – – – – – –

A – – – – – 0.161

X1A 0.076 0.097 0.415 0.404 0.418 0.260

nPyridines 0.142 0.165 0.472 0.459 0.476 0.510

Fig. 4 CoMFA StDev × Coeff
contour plots for ERβ ligands in
combination of compound 11.(a
The steric contour map, where
the green and yellow contours
represent 80% and 20% level
contributions, respectively. b
The electrostatic contour map,
where the blue and red contours
represent 80% and 20% level
contributions, respectively
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11 possesses electronegative substituent at this position,
therefore, the activity can be further enhanced by modifying
the structure. A series of blue contour maps found near ring
E indicates that groups with positive charges may increase
the activity. This can explain why compound 1 shows
higher activity than compounds 55–67.

CoMSIA contour maps

The steric contour maps of CoMSIA (shown in Fig. 5a) are
similar to those of CoMFA steric fields (Fig. 4a), thus not
discussed here.

Hydrophobic contour maps are shown in Fig. 5b, where
the yellow region indicates the favorable region for
hydrophobic groups and the white region indicates an
unfavorable region for hydrophobic groups. A yellow
contour is present near ring D, illustrating a better ERβ
activity if with properly hydrophobic substituent, which
could be verified by compound 14 and 15, the former
activity ( ) is larger than the latter ( ). Around
ring A, a white contour map indicates that hydrophilic
groups are beneficial to the inhibitory activity. That is why
hydrophilic –OH is applied to the most potent compound.
Additionally, a white contour map is situated near ring E,
therefore, compound 50 with cycloheptylamine tends to be
higher than compound 49 with piperidine group. In addi-
tion, for compound 56 and 57, the orientation of the

substituent at ring E is changed, then extends into a yellow
contour map, exactly explicate the higher potency of com-
pound 55 with than compound 56 with .

3D-QSAR contour maps for ERα

Similar to ERβ models, the most potent compound 78,
which represents the general structure of the inhibitors was
selected to analyze the contour maps.

CoMFA contour maps

The steric contour plots are depicted in Fig. 6a. Green maps
refer to areas where bulky substituent would enhance the
activity while yellow areas represent the opposite. In the
electrostatic field maps (Fig. 6b), blue and red contour maps
indicate regions where electron-donating and electron-
withdrawing groups are favorable for the inhibitory activ-
ity, respectively.

As interpreted in Fig. 6a, there are some yellow contours
falling around ring A, indicating a greater influence on ERα
inhibitory activity. Accordingly, properly reducing the
group volume would favor the activity. Therefore, com-
pound 28 holding hydrogen atom in ring A possesses higher
inhibitory activity than compound 34 (–Cl) and compound
35 (–Me). A large green polyhedron mapping around ring D
is hypothesized that increased bulk of the substituent would

Fig. 5 CoMSIA StDev × Coeff
contour plots for ERβ ligands in
combination of compound 11. a
The steric contour map, where
the green and yellow contours
represent 80% and 20% level
contributions, respectively. b
The hydrophobic contour map,
where the yellow and white
contours represent 80% and 20%
level contributions, respectively

Fig. 6 CoMFA StDev × Coeff
contour plots for ERα ligands in
combination of compound 78. a
The steric contour map, where
the green and yellow contours
represent 80% and 20% level
contributions, respectively. b
The electrostatic contour map,
where the blue and red contours
represent 80% and 20% level
contributions, respectively
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be beneficial. This can be explained by the fact that com-
pound 22 having –CH2CH(CH3)2, favored the activity,
while in compound 20 having i-Pr at the substituent of ring
D. The same pattern is followed in the case of compounds
14 and 15 (compound 15= > compound 14
= ). A big yellow region surrounding ring E and ring
F means that the activity would be decreased when intro-
ducing large substituents. This can be explained by the fact
that compound 48 having pyrrolidine group, favor the
biological activity, whereas in inhibitor 49 harboring
piperidine group. Furthermore, the activity of compound 60
( ) is higher than compound 61 ( ). At the
linker between ring C and ring E, a green contour map
indicates that bulky group would increase the inhibitory
activity. This situation could be justified by comparing the
activity of compound 7 ( ) and compound 4 ( ).

For the electrostatic filed (Fig. 6b), some blue contour
maps (electropositive favorable) are observed around ring
A. Comparison between compound 28 and compound
31 suggests that the hydroxyl group is less favorable.
However, most of compounds applied in the present work
have electronegative substituents, thus modification can be
made at this position to improve the binding activity. One
region of blue contour near ring E and ring F indicates that
the presence of electropositive substituent is important for
the binding activity. For example, compound 1 exhibits
higher activity than compounds 55–67. In addition, a red
electronegative region flanking the para position of ring D
indicates that substitution of an electronegative group at this
position would enhance the activity. This is the reason why
compound 44 (H) and 46 (F) display difference in the
activity. In case of compound 14 and 15, the activity is
reduced from the to . Furthermore, electro-
positive blue contour suggest that the polar group is
favorable for the inhibitory potency. It can be seen that a
blue contour is located around the above red contours,
therefore, electropositive substituents with bulky volume

extending to this blue contour map are favorable for the
activity.

CoMSIA contour maps

As shown in Fig. 7a, the electropositive favorable regions
are represented in blue and electronegative regions in red. It
can be observed that the electrostatic contour map of
CoMSIA is similar to that of CoMFA (Fig. 6b), thus, only
hyrophobic field will be discussed below.

The hydrophobic field is shown in Fig. 7b, yellow and
white contours highlight areas where hydrophobic and
hydrophilic properties are favored. The white contour at
–OH of ring A indicates that this position is suitable for
hydrophilic group, which explains the higher activity of
compound 1 with hydrophilic –OH group than compound
34 (Cl) and compound 35 (Me). However, we also find a
yellow region located above ring A, meaning that
hydrophobic group can lead to high potency. At the same
time, another yellow part is found surrounding ring D,
indicating that hydrophobic groups are beneficial to the
inhibitory activity. Things can get much clearer when the
phenomenon is observed that compound 46 with hydro-
gen group is more potent than compound 47 (hydroxyl
group). Besides, a white region is located around ring E
and ring F, meaning that hydrophilic substituent is
favorable here, followed by the illustration that com-
pound 50 possesses higher potency than compound 49 for
the reason that compound 50 has cycloheptylamine
group, and compound 49 possesses piperidine sub-
stituent. Moreover, the result can also be applied to the
comparison of compounds 57 ( ) and 60 ( )
(compound 60 > compound 57).

In conclusion, according to the results of the 3D-QSAR
analyses undertaken in the present work, the structural
features of the inhibitors are quite compatible with the
contour maps.

Fig. 7 CoMSIA StDev × Coeff
contour plots for ERα ligands in
combination of compound 17. a
The electrostatic contour map,
where the blue and red contours
represent 80% and 20% level
contributions, respectively. b
The hydrophobic contour map,
where the yellow and white
contours represent 80% and 20%
level contributions, respectively
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Molecular docking studies

To explore the probable ligand binding mode at the binding
site, molecular docking study was carried out. In the present
work, the highest active compounds and the lowest active
compounds were selected for detailed analysis.

For ERβ

Compound 11 (the most potent) and compound 17 (the least
active) were docked in the binding pocket of ERβ. The
docked conformation of the inhibitors are shown in Figs. 8
and 9.

Docking results demonstrate that compound 11 is placed
deep into the ERβ cavity enclosed by hydrophobic residues
(Leu298, Leu301, Ala302, Leu306, Trp335, Met336,
Leu339, Met340, Leu343, Phe356, Ile373, Ile376, Met473,
Leu476, Pro486, and Val487) and hydrophilic residues
(Asp303, Glu305, Arg346, Gly472, His475, Cys481)
(shown in Fig. 8a). In addition, the hydroxyl group of ring
A resides against the active pocket, and forms two hydrogen
bonds with Glu305 and Arg346. The –OH of ring A
interacts with the O atom of Glu305 (–O···HO, 2.20 Å,
163.9°) (H-1). The –OH of ring A forms hydrogen bond
with Arg346 (–O···HN, 2.26 Å, 155.6°) (H-2) (Fig. 8b).

The substituent at ring A binds to a wide pocket (Fig.
8a), consisting of residues Leu339, Leu343, and Met340,
which is in consistence with the CoMFA steric contour
maps (Figs. 4a and 5a). Obviously, the group at ring D

extends into a large pocket bordered by residues Met336,
Ile373, Ile376, Met473, His475, and Leu476, whose inter-
action resembles with the steric contour maps. Molecular
docking studies also suggest that the substituents at ring E
are almost oriented outside the active pocket, illustrating
that bulky groups are accommodated, which is validated by
the two green contour maps at this position in the CoMFA
and CoMSIA models.

The hydroxyl group of ring D is faced with electro-
positive residue His475, indicating that electronegative
groups are beneficial to the inhibitory activity, this is evi-
dent from the presence of a red contour map at this position.
The hydroxyl group of ring A is involved in hydrogen bond
interactions with the electronegative residue Gul305. This
observation implies that electropositive substituents can
improve the inhibitor potency, which is consistent with the
blue contour map (Fig. 4b).

It is clear that the group at ring D is surrounded by
hydrophobic residues (Met336, Ile373, Ile376, Met473, and
Leu476), as indicated in Fig. 8a. The docked model reveals
that the hydroxyl group of ring A forms hydrogen bond
with the hydrophilic amino acid Glu305, where hydrophilc
groups would favor the interaction between inhibitors and
ERβ. These observations can be compared with the
hydrophobic contour maps listed in Fig. 5b.

As can be seen in Fig. 9, the lowest compound 17 is
accommodated in the active site composed of hydrophobic
residues Leu298, Leu301, Ala302, Trp335, Met336,
Leu339, Met340, Leu343, Phe356, Met473, Leu476,

Fig. 8 a The ERβ active site
amino acid residues around
compound 11. b The
enlargement for the ligand in the
binding site after molecular
docking, which is displayed in
stick, H-bonds are shown as
dotted red lines, and the
nonpolar hydrogens were
removed for clarity

Fig. 9 a The ERβ active site
amino acid residues around
compound 17. b The
enlargement for the ligand in the
binding site after molecular
docking, which is displayed in
stick, H-bonds are shown as
dotted red lines, and the
nonpolar hydrogens were
removed for clarity
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Pro486, Val487, and hydrophilic amino acids Asp303,
Glu305, Arg346, Gly472, His475, and Cys481. This com-
pound forms one hydrogen bond with the backbone of
Glu305 (–O···HO, 2.16 Å, 164.3°) (H-1).

To gain insight on interactional distinction of the two
complexes, the comparison was provided between com-
pound 11 and compound 17 (as shown in Fig. 10a). Firstly,
inhibitors 11 and 17 have the similar scaffold, and the
superimposition of the two compounds in the binding
pocket indicates that both compounds are well positioned in
the binding pocket in the same way and display a similar
binding mode. However, three structural differences are
also existed for inhibitor 11 and inhibitor 17, which is
described as follows: the fluorine atom (at ring A) of inhi-
bitor 11 is absent in inhibitor 17; the phenol group of
inhibitor 11 is substituted by the pyridine moiety of inhi-
bitor 17; the 4-methylpiperidine group at ring C of inhibitor
11 is substituted by the piperidine moiety of inhibitor 17.
These diversities make the hydroxyl group (at ring D) of
compound 11 forming more stable electrostatic interaction
with residue His475. As can be seen from Fig. 9, the altered
substituent makes it far away from His475, and the elec-
trostatic interactions are absent for compound 17. In addi-
tion, the orientation of ring E for compound 11 and
compound 17 is changed, therefore, the conformation of the
entire compound is shifted outward toward the binding
cavity as compared with compound 11, which is detrimental

to ligand–receptor interaction, thus the binding activity of
compound 17 is lower than compound 11.

For ERα

To study the detailed binding mode between inhibitor and
ERα, molecular docking was performed with the lead
inhibitor 78. As shown in Fig. 11a, the compound is posi-
tioned towards the hydrophobic amino acids (Leu346,
Leu349, Ala350, Trp383, Leu384, Leu387, Met388,
Leu391, Phe404, Met421, Ile424, Met522, Leu525,
Val533, Pro535, and Leu536) and hydrophilic residues
(Thr347, Asp351, Glu353, Arg394, Gly521, Lys529, and
Tyr537). The ligand is anchored in the binding site perhaps
via one hydrogen bond. The hydroxyl group of ring A acts
as a donor to form hydrogen bond with the oxygen atom of
Glu353 (–O···HO, 1.89 Å, 155.6°) (H-1).

Docking results show that substituent at ring A is buried
into a large cavity composed of residues Met421, Ile424,
Met522, and Leu525, indicating that the steric interaction
would be favorable for the activity, which is similar to the
above CoMFA contour map analysis (Fig. 6a). Meanwhile,
the group at ring D is also fitted into a large pocket, suggests
that bulky groups are favorable for the ligand–receptor
interactions, evidenced by the green contour map. The
substituents on the ring E and ring F are enclosed by resi-
dues Val533, Pro535, and Leu536, which is a small pocket,

Fig. 10 a The superposition of
ERβ-11 (green) and ERβ-17
(cyan). b The superposition of
ERα-87 (blue) and ERα-17
(purple)

H-1

Fig. 11 a The ERα active site
amino acid residues around
compound 78. b The
enlargement for the ligand in the
binding site after molecular
docking, which is displayed in
stick, H-bonds are shown as
dotted red lines, and the
nonpolar hydrogens were
removed for clarity
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suggests that large groups would cause steric hindrance
with surrounding amino acids.

The docking investigations also reveal that the neutral
environment (Met421, Ile424, Met522, and Leu525) would
contribute favorable electrostatic interaction with the elec-
tropositive groups at ring A, thereby helping them to
position into a stable conformation, proved by the blue
contour map (Figs. 6b and 7a). The groups in ring E and
ring F are oriented toward neutral amino acids Leu536,
Pro535, Val533, and electronegative residue Asp351, which
coincides with the blue contour map explained in CoMFA
and CoMSIA.

One yellow contour map is situated above the hydroxyl
group of ring D (Fig. 7b), which is close to the hydrophobic
residues Met421, Ile424, Met522, and Leu525, indicates
that hydrophobic groups would increase the inhibitory
activity.

Moreover, compound 17 exhibits lower potency when
binding to the receptor ERα, which is in agreement with the
docking score. Docking results reveal that this compound
binds to the same position of the receptor when compared
with compound 87 (shown in Fig. 10b), in which residues
Leu346, Thr347, Leu349, Ala350, Asp351, Glu353,
Trp383, Leu384, Leu387, Met388, Leu391, Arg394,
Phe404, Met421, Ile424, Phe425, Gly521, Leu525, Pro535,
Leu536, and Tyr537 construct the binding pocket and
interact with the inhibitor (Fig. 12).

The reasons for the activity discrepancy for compounds
78 and 17 are shown as follows: (1) for compound 17, ring
D moiety possesses no hydrogen bond donor group,
therefore, cannot form hydrogen bond interactions with the
receptor; (2) at the terminal position of ring C, the two
compounds undergo large conformation change, leading to

the unfavorable electrostatic interaction between compound
17 and the surrounding amino acids.

Selectivity for ERβ and ERα

Comparison of receptor binding activity

The correlation of the two subtype binding activity was
investigated to analyze the selectivity. A mathematical
model was constructed on the ERα and ERβ binding
activity, as shown in Fig. 13. The correlation coefficient R2

is 0.5312, suggesting that the activity for ERβ is in positive
correlation with the activity for ERα, illustrating that the
ERα binding compounds may also bind to the receptor ERβ.
However, the potency of the binding activity is different.
For compounds 11, 14, 21, 24, 25, 30, 37, and 39, the
discrepancy of binding activity is lower than 1 when
binding to ERα and ERβ. However, the other compounds
possess stronger binding affinity to ERα. The situation of
selectivity might originate from the receptor tissue dis-
tribution, which has been described in the section “Intro-
duction”. Therefore, a preferential interaction of related
ligands selective for ERβ/ERα may mediate the divergent
properties and reduce the occurrence of side effects.

Comparison of the proteins

In the present work, the selectivity was analyzed by com-
paring the sequence and structure. The docking complexes
1NDE-11 and 1R5K-78 were superimposed based on main-
chain atoms. The sequence identity for ERα and ERβ is
about 44.1%, the aligned RMSd is 0.747, with the Z-score
of 8.5 (Fig. 14).

The inhibitor binding sites are shown in Fig. 14a, the
superposition of the two complexes indicates that the inhi-
bitors are located in the same binding site with similar pose.
In addition, residue analysis of the two structures elucidates
that the key residues Leu346 and Leu384 in the ERα

Fig. 12 a The ERα active site amino acid residues around compound
17. b The enlargement for the ligand in the binding site after molecular
docking, which is displayed in stick, H-bonds are shown as dotted red
lines, and the nonpolar hydrogens were removed for clarity

Fig. 13 A correlation plot of binding activities for ERβ and ERα of all
compounds
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binding pocket is identical to ERβ. However, sequence
analysis and molecular docking also reveal that obvious
distinction is also existed for ERα and ERβ (Thr347/
Ala302, Met388/Leu343, Leu391/Arg346, Met421/Ile376,
Gly521/Leu476 for ERα, and ERβ, respectively), which
may lead to the inhibitor selectivity.

Comparison of the QSAR results

The derived QSAR models for ERα and ERβ were also
compared to understand the structural origin of the selec-
tivity deeply. The statistical results are listed in Tables 2 and
4. The ERβ model shows similar contribution in the steric
(36.6%) and electrostatic field (39.5%), while electrostatic
contribution (44.2%) is higher than steric field (34.0%) for
ERα, indicating that the electrostatic field is important for
ERα. For CoMSIA models, the optimal QSAR models have
been developed using different fields: steric and hydro-
phobic for ERβ, electrostatic and hydrophobic for ERα. In
addition, the contribution of hydrophobic (47.8%) is higher
than steric (25.4%) field, while the electrostatic (43.3%) is
above than hydrophobic (30.5%) field for ERβ and ERα,

respectively. This illustrates that the interaction fields
impacting the ligand binding might be different to ERβ and
ERα. And the electrostatic field and the hydrophobic field
are significant for ERα and ERβ, respectively.

Comparison of the contour maps

According to the QSAR and molecular docking results, the
key structural features influencing the selectivity can be
obtained. The structure–activity relationship is summarized
(Fig. 15) as follows: (1) electropositive and hydrophilic
groups at ring A, bulky, electronegative, and hydrophobic
groups at ring D, electropositive and hydrophilic groups at
ring E would be beneficial to the ERβ and ERα binding
activity. (2) In addition, the differences are also appeared in
the contour maps. ERβ has a green contour map around ring
A while ERα is yellow here, which means that the binding
activity of ERα can be improved by minifying the volume
of the substituent at ring A. Another difference existed at
the terminal position of ring F for ERα, the color is green
for ERβ but yellow for ERα, further indicating that steric
interaction is favorable for ERα, and unfavorable for ERβ.

Fig. 14 a The superposition of
1R5K-ERα (blue) and 1NDE-
ERβ (green). b Alignments of
the sequences of 1R5K and
1NDE for ERα and ERβ
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Comparison with the references

For this class of ER inhibitors, a series of computational
models have been developed. In 2007, Salum et al. (2007)
used both CoMFA and HQSAR models to describe the
structure–activity relationship of ERα modulators. The results
indicate the derived models are significant, which can be used
for the design of novel ligands possessing high affinity and
potency. The estrogen activity of 127 ERα modulators were
collected by Wang et al. (2008) to establish QSAR models
including the Bayesian-regularized neural network and mul-
tiple linear regression, which all had a better predictive power.
In recent researches for virtual screening of ER ligands,
pharmacophore and QSAR modeling as powerful tool have
been built for ERβ ligands. And the developed models were
used to screen the national center institute list of compounds
to find new ERβ ligands (Taha et al. 2010). More recently,
Huang et al. (2015) applied Discovery Studio sofware to build
three-dimensional pharmacophore model for the ERα lignds
and the ERβ ligands. Then the models were employed to
virtual screening, and two leads (AH and AG) with novel
scaffolds were discovered. However, these models are
developed only for ERα, but not for ERβ when compared
with the models constructed in our paper, and the selectivity
problem is not analyzed.

Conclusion

QSAR models were conducted with 3D molecular
descriptors for a series of ER inhibitors. Two types of

QSAR methods, CoMFA and CoMSIA, were used to
investigate the relationship between the structure and inhi-
bitory activity. In addition, molecular docking analysis was
employed to elucidate the interaction mechanism and
identify appropriate binding conformations interacting with
ERβ and ERα. The main research conclusions are described
as follows:

(1) CoMFA and CoMSIA models were developed based
on three different alignment methods. Template
ligand-based alignment derived QSAR models show
satisfactory fitting ability and acceptable predictive
ability. In addition, the effects of different charges
were also evaluated, and the Gasteiger–Huckel charge
was considered as the best in developing reliable
QSAR models. For ERβ, hydrophobic descriptor
plays a more significant role than steric and electro-
static descriptors. However, electrostatic interactions
are found to be important field on ERα inhibitory
activity. In addition, hydrogen bond interactions can
also enhance the ERβ and ERα binding activity.

(2) Furthermore, for better understanding of the binding
mode of inhibitors at the active pocket of ERβ and
ERα, we conducted molecular docking simulations.
As a result, some key residues Glu305, Met336,
Leu339, Met340, Leu343, Arg346, Ile373, Met473,
His475, and Leu476 are found to play critical role in
maintaining the stability of ERβ-inhibitor 11, while
amino acids Asp351, Glu353, Trp383, Met421,
Ile424, Met522, Leu525, Val533, Pro535, and
Leu536 are major factors for enhanced ERα binding
activity.

(3) The ligand selectivity has been validated by different
methods. Results indicate that substituents at ring A
and ring F for ERα (ring E for ERβ), Thr347/Ala302,
Met388/Leu343, Leu391/Arg346, Met421/Ile376,
Gly521/Leu476 for ERα and ERβ, respectively,
introduce selectivity. Therefore, the results of this
study would provide useful guidelines for developing
novel potent and selective inhibitors.
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