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Abstract
Belonging to the terpenes family, sesquiterpenes represent a group of natural compounds with diverse skeletal types. Given
their unique structural features and various functional groups, these compounds possess numerous biological activities and
have received increasing interest in recent years. Guaiane-type sesquiterpenes are a special category of sesquiterpenes with
various biological activities, such as antitumor, anti-inflammatory, and antibacterial. Mipsagargin, a prodrug of thapsigargin,
could be used in the treatment of glioblastoma multiforme and hepatocellular carcinoma, and has completed the phase II
clinical trials. Guaiane-type sesquiterpenes are not only abundant but also diverse, widely distributed, and complex, and have
variable structures. To our knowledge, there is no review of guaiane-type sesquiterpenes in extant literature. This review
summarizes the distribution of guaiane-type sesquiterpenes in plants, the possible biogenic pathways and chemical structures
as well as the research progress on their biological activities from 1990 to 2018. Guaiane-type sesquiterpenes are present in
approximately 70 genera of 30 plant families (e.g., Asteraceae, Lamiaceae, Thymelaeaceae, and Zingiberaceae); they can be
classified into 12,6-guaianolides, 12,8-guaianolides, pseudoguaianolides, tricycle guaiane-type sesquiterpenes, dimers or
trimers containing guaiane-type sesquiterpenes mother nuclei, variant guaiane-type sesquiterpenes, and other guaiane-type
sesquiterpenes. Among them, 12,8-guaianolides exerted the broadest biological activity.
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Introduction

Sesquiterpenes are a class of terpenes that consist of three
isoprene units and often have the molecular formula C15H24.
Like monoterpenes, sesquiterpenes may be acyclic or con-
tains rings, with many unique combinations. Sesquiterpenes
are the most distinct group in terms of the structure of the
terpenoids, most of which exert biological activities (Hou
et al. 2014). Guaiane-type sesquiterpenes belong to a spe-
cial group of natural products with a wide range of phar-

macological functions. Its basic skeletal structure contains a
five-membered ring, a seven-membered ring, two methyl,
and one isopropyl groups. Thapsigargin, a major ingredient
in Thapsia garganica, could inhibit the sarco-endoplasmic
reticulum Ca2+-ATPase (SERCA) to deplete the intracel-
lular Ca2+ pool and induce apoptosis in human hepatoma
cells. An X-ray structure of the thapsigargin-SERCA com-
plex provided the foundation for understanding the struc-
tural conformation of the complex, as well as the
surroundings of the binding site. This additionally provided
detailed information for the design of a targeted prodrug
with thapsigargin as the active component (Andersen et al.
2015), such as mipsagargin (G202). G202 has completed
the phase II clinical trials in the treatment of glioblastoma
multiforme and hepatocellular carcinoma, and is expected to
enter the market in the near future. (Brennen et al. 2012;
Denmeade et al. 2012; Jakobsen et al. 2001; Simonsen et al.
2013). But, to our knowledge, the related review of
guaiane-type sesquiterpenes are insufficient since 1990s.
Therefore, in this review, we summarize the current
understanding of the chemical studies of guaiane-type
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sesquiterpenes in plants and the progress that has been made
in uncovering their pharmacological activities from 1990
to 2018.

Biogenesis and sources

Plant species reported to contain guaiane-type sesqui-
terpenes are listed in Table 1 in alphabetical order. Guaiane-
type sesquiterpenes are distributed in approximately 70
genera of 30 families, such as Asteraceae, Lamiaceae,
Thymelaeaceae, Umbelliferae, and Zingiberaceae. Further-
more, they are the most widely present in ~26 genera of
Asteraceae, especially in Saussurea, Artemisia, and Inula.
As we all know, mevalonic acid (MVA) pathway is the
main biosynthesis pathway of terpenoids, and farnesyl
pyrophosphate (FPP) is the precursor of most sesqui-
terpenes. Through further literature research, it was found
that guaiane-type sesquiterpenes were transformed from
FPP by two possible mechanisms, the first was free radical
mechanism, the second was ionic mechanism. The bio-
synthetic pathway of the two mechanisms is shown in Fig. 1
(Adekenov 2017; Zurich 1953). More than 50% of guaiane-
type sesquiterpenes contains lactone fragments, and the
previous studies showed that most of them possessed the
better biological activities than guaiane-type sesquiterpenes
without lactone ring. There were two possible pathways for
the biotransformation of lactones: one is that guaiane-type
sesquiterpenes might be oxidized directly to alcohols and
acids, then dehydrated to form lactones. The other was
germacranolides intermediates, through which guaianolides
were mainly converted in Compositae and Umbelliferae,
and their biosynthesis was related to cytochrome P450
enzymes (such as CYP71BL1 and CYP71BL2), adequate
oxygen and nicotinamide adenine dinucleotide phosphate
(NADPH). Their biosynthetic pathway is proposed in Fig. 2
(Adekenov 2017; Barquera-Lozada and Cuevas 2009;
Fischer 1990; Simonsen et al. 2013).

Classifications

This section summarizes the more than 300 guaiane-type
sesquiterpenes reported since the 1990s. Their classification
and structures are depicted in Figs. 3–10. Guaiane-type
sesquiterpenes can be divided into five categories on
the basis of their skeleton: guaianolides, tricycle guaiane-
type sesquiterpenes, dimers or trimers containing guaiane-
type sesquiterpenes mother nuclei, variant guaiane-type
sesquiterpenes, other guaiane-type sesquiterpenes. Guaiane-
type sesquiterpenes often occurs in oxygenated forms, such
as guaiane alcohol, guaiane acid, guaiane ketone, and

guaianolide. Of these, guaianolide is the most abundant
guaiane-type sesquiterpene, and it can be further classified
as 12,6-guaianolide, 12,8-guaianolide, and pseudoguaiano-
lide. The only difference is that the linkage position of Me-
15 on C-4 in 12,8-guaianolides whereas on C-5 in pseu-
doguaianolides. According to C-11 bonding sites, tricycle
guaiane-type sesquiterpenes could be divided into 11,1,
11,6, and 11,10-guaiane. they can also be occasionally
oxidized to alcohols, ketones, and acids. Several special
structures, such as dimers or trimers containing guaiane-
type sesquiterpenes mother nuclei and variant guaiane-type
sesquiterpenes, have also been reported. These compounds
are of interest because several of them possess biological or
therapeutic activities, including antitumor, anti-inflamma-
tory, and antibacterial effects.

Biological activities

Experimental data have shown that guaiane-type sesqui-
terpenes possess a wide range of biological activities,
including cytotoxic, antitumor, anti-inflammatory, anti-
bacterial, and antiviral.

Cytotoxic and antitumor activities

Several recent studies have reported that guaiane-type ses-
quiterpenes possess potential anticancer activity through the
inhibition of the proliferation of various cancer cells
in vitro. Table 2 presents the plant origins of this bioactive
guaiane-type sesquiterpenes and their cytotoxic activities.
These in vitro data suggest that guaiane-type sesquiterpenes
may not only have a broad spectrum but also strong cyto-
toxic activity, especially in breast cancer, liver cancer, lung
cancer, and leukemia cells. Structures with antitumor
activities are distributed in 11,10-guaiane, 12,6-guaianolide,
12,8-guaianolide, pseudoguaianolide, dimers or trimers
containing guaiane-type sesquiterpenes mother nuclei, and
other guaiane-type sesquiterpenes. Most compounds with
antineoplastic activity belong to guaianolides, and the acyl
diversity at C-8 is the only dissimilarity in compounds 10–
14, which is a good opportunity to evaluate the effect of
acyl groups on the antiproliferative activity of sesquiterpene
derivatives because of the significant difference in their
activity. Therefore, the lowest active compounds were iso-
butanol derivative 12 and acetyl derivative 14, while com-
pounds 10, 11 and 13 are the most active guaianolides in
this series. The above compounds either have oxygen
functional groups, such as 13, or contain Michael receptors,
such as 10. Compound 11 has both these two particular
structures, so its biological activity is the supreme, at least
on CCRF-CEM (Formisano et al. 2017).
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Table 1 Plant species including guaiane-type sesquiterpenes in the references from 1990 to 2018

Family Genus Species Reference

Alismataceae Alisma Alisma orientale (Feng et al. 2014; Masullo et al. 2015; Matsuda et al. 1999; Tian
et al. 2014; Yoshikawa et al. 1993)

Annonaceae Oxandra Oxandra sessiliflora (De Sousa et al. 2014)

Artabotrys Artabotrys stenopetalus (Fleischer et al. 1997)

Xylopia Xylopia aromatica (Maktins et al. 1998)

Xylopia vielana (Xie et al. 2018a; Xie et al. 2018b; Xie et al. 2018c)

Araliaceae Schefflera Schefflera venulosa (Peng et al. 2015)

Asclepiadaceae Secamone Secamone lanceolata (Yang et al. 2018)

Asteraceae Saussurea Saussurea deltoidea (Xu et al. 2012b)

Saussurea laniceps (Wang et al. 2010a)

Saussurea lappa (Yang et al. 2016c)

Saussurea jxponica (Jia et al. 1991)

Saussurea involucrata (Xiao et al. 2011)

Ligularia Ligularia virgaurea (Saito et al. 2013)

Ligularia duciformis (Gao and Jia 1999)

Lactuca Lactuca sativa var. anagustata (Guarrera and Savo 2016; Han et al. 2010; Zidorn 2008)

Lactuca tatarica (Wang et al. 2010b)

Lactuca serriola (Marco et al. 1992)

Asteraceae Lactuca virosa (Stojakowska et al. 1994)

Ajania Ajania przewalskii (Zhu et al. 2010)

Senecio Senecio scandens (Zhao et al. 2015)

Eupatorium Eupatorium fortunei (Adekenov 2017; Chen et al. 2013)

Artemisia Artemisia alba (Todorova et al. 2015)

Artemisia roxbughiana (Phan et al. 2012)

Artemisia austro-yunnanensis (Chi et al. 2016)

Artemisia anomala (Zan et al. 2012)

Artemisia absinthium (Safarova and Serkerov 1997)

Artemisia caruifolia (Ma et al. 2000)

Artemisia glabella (Lone et al. 2015)

Centaurea Centaurea drabifolia (Formisano et al. 2017)

Centaurea scoparia (Bruno et al. 2013; Youssef 1998)

Moscharia Moscharia pinnatifida (Singh and Suri 1990)

Scorzonera Scorzonera divaricata (Wu et al. 2018; Yang et al. 2016d)

Atractylodes Atractylodes lancea (Kamauchi et al. 2015; Wang et al. 2008)

Inula Inula japonica (Wu et al. 2016; Zhu et al. 2013)

Inula sericophylla (Cheng et al. 2012)

Inula lineariifolia (Qin et al. 2013)

Inula falconeri (Cheng et al. 2011)

Tanacetum Tanacetum oshanahanii (Triana et al. 2013)

Helianthus Helianthus annuus (Joel et al. 2011)

Perezia Perezia recurvata (Gallardo et al. 2011)

Launaea Launaea arborescens (Bitam et al. 2008)

Tithonia Tithonia diversifolia (Pantoja Pulido et al. 2017)

Cichorium Cichorium intybus (Deng et al. 2001)

Mulgedium Mulgedium tatarica (Ren et al. 2005)

Asteraceae Carpesium Carpesium abrotanoides (Wang et al. 2018b; Zhang et al. 2015)

Achillea A. clypeolata (Mohammadhosseini et al. 2017)
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Table 1 (continued)

Family Genus Species Reference

Arctotis Arctotis arctotoides (Saleh-E-In and Staden 2018)
Tragopogon T. porrifolius (Asadi-Samani et al. 2015)

Taraxacum Taraxacum officinale (Kisiel and Barszcz 2000)

Haplopappus Haplopappus foliosus (Labbb et al. 1998)

Ixeris Ixeris sonchifolia (Warashin et al. 1990)

Burseraceae Commiphora Commiphora opobalsamum (Yang and Shi 2012)

Commiphora quidotti (Fraga 1999)

Commiphora myrrha (Shen et al. 2012; Xu et al. 2012a)

Caprifoliaceae Viburnum Viburnum awabuki (Fukuyam et al. 1996)

Chloranthaceae Chloranthus Chloranthus japonicus (Zhuo et al. 2017)

Chloranthus multistachys (Liu et al. 2013)

Hedyosmum Hedyosmum brasiliense (Amoah et al. 2015)

Cupressaceae Callitris Callitris sulcata (Hnawia et al. 2008)

Callitris pancheri (Raharivelomanan et al. 1996)

Cyperaceae Cyperus Cyperus rotundus (Xu et al. 2015)

Frullaniaceae Frullania Frullania tamarisci (Asakawa et al. 2013)

Geraniaceae Pelargonium Pelargonium graveolens (Zhang et al. 1996)

Lamiaceae Pogostemon Pogostemon cablin (Du et al. 1998; Guan et al. 1992; Li et al. 2013a; Liu et al. 2015;
Luo et al. 1999; Rakotonirainy et al. 1997; Swamy and Sinniah
2015; Zhu et al. 2017)

Scutellaria Scutellaria baicalensis (Yang and Zhang 1999)

Salvia Salvia mirzayanii (Ziaei et al. 2015)

Salvia plebeia (Zou et al. 2018)

Teucrium Teucrium viscidum (Hao et al. 2013)

Teucrium leucockidum (Ahmed et al. 1996)

Thapsia Thapsia villosa (Lemmich et al. 1991)

Lauraceae Laurus Laurus nobilis (Pacifico et al. 2013)

Lauraceae Litsea Litsea resinosa (Wang et al. 2016)

Leguminosae Caesalpinia Caesalpinia spinosa (Mu et al. 2016)

Meliaceae Aglaia Aglaia odorata var. microphyllina (Liu et al. 2014b)

Myrtaceae Eugenia Eugenia candolleana (Nakamura et al. 2010)

Oleaceae Syringa Syringa pinnatifolia (Ao et al. 2012)

Pittosporaceae Pittosporum Pittosporum undulatum (Mendes et al. 2013)

Plexauridae Echinogorgia Echinogorgia sassapo reticulata (Xue et al. 2014)

Porellaceae Porella Porella acutifolia subsp. tosana (Li et al. 2013b)

Porella swartziana (Tori et al. 1996)

Rubiaceae Gardenia Gardenia jasminoides (Li and Wang 2016)

Gardenia sootepensis (Rukachaisiriku et al. 1998)

Rutaceae Dictamnus Dictamnus dasycarpus (Takeuchi et al. 1993)

Thymelaeaceae Daphne Daphne aurantiaca (Huang et al. 2017)

Daphne tangutica (Yin et al. 2018)

Stellera Stellera chamaejasme (Liu et al. 2014a)

Gyrinops Gyrinops salicifolia (Shao et al. 2016)

Aquilaria Aquilaria agallocha (Ishihara et al. 1991)

Aquilaria sinensis (Hashim et al. 2016; Ishihara et al. 1993; Yang et al. 2016a; Yang
et al. 2016b)

Ulvaceae Ulva Ulva fasciata (Chakraborty et al. 2010; Gutierrez-Rodriguez et al. 2018)
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Table 1 (continued)

Family Genus Species Reference

Umbelliferae Ferula Ferula diversivittata (Iranshahi et al. 2008)

Torilis Torilis japonica (Chen et al. 2011; Endale et al. 2013; Kitajima et al. 1998)

Daucus Daucus carota (Fu et al. 2010a; Fu et al. 2010b)

Notopterygium Notopterygium incisum (Azietaku et al. 2017)

Peucedanum Peucedanum cervariifolium (Sarkhail 2014)

Ulmaceae Ulmus Ulmus davidiana (Kim et al. 2007)

Urticaceae Oreocnide Oreocnide frutescens (Zhang et al. 2010)

Valerianaceae Nurdostuchys Nurdostuchys chinensis (Takaya et al. 1998; Takaya et al. 2000)

Xeniidae Xenia Xenia stellifera (Phan et al. 2018)

Zingiberaceae Curcuma Curcuma aeruginosa (Balaji and Chempakam 2010; Suphrom et al. 2012)

Curcuma aromatica (An et al. 2016; Chen et al. 2014b; Lu et al. 2012)

Curcuma kwangsiensis (Wang et al. 2018a; Xiang et al. 2018)

Curcuma wenyujin (Dong et al. 2013; Xia et al. 2015; Zhou et al. 2017)

Curcuma heyneana (Cho et al. 2009)

Curcuma phaeocaulis (Chen et al. 2014a)

Curcuma longa (Li et al. 2010)

OPP

H

germacryl cation
e.g. pathenolide

guaiyl cation
e.g. matricin, thapsigargain

Farnesene

FPP

OH

Guaiol

HO OH

O
OH

3ATP,-CO2,-H2O

O
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O
PPIsomerase

Isopentenyl pyro-
phosphate(IPP)

γ,γ-dimethyl allyl 
pyrophosphate(DMAPP)

×2

Farnesyl pyrophosphate(FPP)

Fig. 1 On the left is the MVA pathway of FPP, and the right one are two mechanisms of transformation of guaiane-type sesquiterpenes. Pathway
one (left): radical mechanisms in the biogenesis of sesquiterpenes, pathway two (right): ionic mechanisms in the biogenesis of sesquiterpenes
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Fig. 4 (Continued)
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Anti-inflammatory activity

Inflammation is a cell’s response to injury caused by nox-
ious physical or chemical stimuli; it is a key component of
multiple pathologies, such as arthritis, asthma, multiple
sclerosis, inflammatory bowel disease, and atherosclerosis
(Cho et al. 2009). Nitric oxide (NO) is a well-known
proinflammatory mediator in the pathogenesis of inflam-
mation. Numerous studies have reported the inhibitory
effects of NO on guaiane sesquiterpenes. Compounds 311,
321, 327, 340, 7–9, 150, 164–173, 204–212, 393, 134,
366–368, 248, and 256–261 all had their NO production
inhibited in lipopolysaccharide (LPS)-activated mouse
macrophages; their IC50 data are listed in Table 3; com-
pound 204 separated from Inula falconeri exhibited the
highest potency (IC50= 0.07 μM; Cheng et al. 2011).
Likewise, compounds 186, 247–249, and 264 isolated from
A. macrocephala, Ainsliaea fulvioides, Eupatorium perfo-
liatum, and Helenium microcephalum effectively regulated
the expression of tumor necrosis factor (TNF) - α, inter-
leukin (IL) −1β, IL-6, inducible nitric oxide synthase
(iNOS), and cyclooxygenase-2 (COX-2) mRNAs in LPS-
induced RAW264.7 cells (Qin et al. 2017).

A structural activity analysis revealed that compounds
with anti-inflammatory activity were mainly distributed in

12,8-guaianolides, pseudoguaianolides, and guaiane
polymers, most of which contained 12,8-lactone rings.
Therefore, we speculated that their lactone rings are key to
their activity, further research is necessary to reach a
definite conclusion. Among them, compounds 164, 165,
170, 204, 206, and 210 showed better NO inhibitory
activity and their IC50 values were <1 μM. The compared
chemical structure between 207 and 204, between 208 and
205, between 209 and 206, respectively, it was found that
the deletion of an α,β-unsaturated carbonyl group reduced
the inhibitory activities. Through comparing pseudo-
guaiacolide 204–205 and 207–208, it showed that the
acetylation of the hydroxyl groups usually enhanced the
lipophilicity of the compounds, which was conducive to
better penetrating the cell membrane and enhancing the
inhibition of NO production. On the contrary, the inhibi-
tory activity of 205 was 5 times weaker than 206 lacking
the hydroxyl in C-6, similarily 208 was two times weaker
than 209. The above results demonstrated that the intro-
duced hydroxyl might reduce the permeability of the cell
membrane and its anti-inflammatory activity. Besides, the
position of hydroxyl groups may play a more important
role than the number of hydroxyl groups, because com-
pounds 164 and 165 each contain two hydroxyl groups
with IC50 values of 0.29 and 0.13 μM, respectively.
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Moreover, the cyclic olefinic bond between C-9 and C-10
might be an important group for inhibiting NO production
activity, because the inhibitory effects between 164 and
165 were significantly different.(Cheng et al. 2011).

Antibacterial activity and antiviral activity

Antibacterial and antiviral activities are common in these
compounds. Compound 7 isolated from Scorzonera divar-
icata exerted antibacterial activity against C. Perfringens
and E. coli with minimal inhibitory concentrations (MICs)
of 25 and 50 μM, respectively (Wu et al. 2018). Compounds
328, 329, and 284 isolated from Ulva fasciata exerted
antibacterial activity against Vibrio parahaemolyticus
American Type Culture Collection (ATCC) 17809, V.
harveyi Microbial Type Culture Collection (MTCC) 3438,
and V. vulnificus MTCC 1146, respectively. Of these,
compound 284 exerted the most antibacterial activity, with
MICs of 25, 30, and 25 μg/mL on these bacteria, respec-
tively (Chakraborty et al. 2010). Compounds 104, 107, 109,
and 110 separated from Ferula diversivittata similarly
showed antimicrobial activity against E. coli (ATCC8739),
Staphylococcus aureus (ATCC29737), and Aspergillus
niger (ATCC1624), and compound 109 exhibited the
strongest antibacterial activity about these bacteria (MIC:
80, 80, 80 μM; Iranshahi et al. 2008). In addition, com-
pounds 325 and 297 separated from Syringa pinnatifolia
exhibited antimicrobial activity (Ao et al. 2012). Observing
the structure is of interest as these compounds are not as
anti-inflammatory as they appear: 12,6-guaianolide had the
strongest antimicrobial activity, whereas 12,8-type lactones
had nearly no reported antimicrobial activity.

Compound 317, a natural product from Curcuma aro-
matica, showed anti-influenza virus activities, with esti-
mated IC50 values of 11.08 ± 1.74 μM (An et al. 2016; Chen
et al. 2014b; Lu et al. 2012). Similarly, compounds 322,
187, 364, 365, 369, and 275 isolated from Curcuma
wenyujin had anti-influenza virus activities (IC50: 9.18 ±
0.46, 6.80 ± 0.13, 22.21 ± 2.01, 13.27 ± 1.46, 15.95 ± 0.69,
and 12.84 ± 0.73 μM; Dong et al. 2013; Xia et al. 2015;
Zhou et al. 2017). Compounds 216–226 isolated from
Cyperus rotundus had anti- hepatitis B virus (HBV) activ-
ities, and compound 217 had the strongest activity, with
IC50 values as follows: hepatitis B surface antigen (HBsAg):
77.2 ± 13.0 μM, hepatitis B e antigen (HBeAg): 1210.2 ±
101.1 μM, HBV DNA: 74.7 ± 7.2 μM (Xu et al. 2015). The
11,1-guaiane exert some anti-HBV activities, but some
modifications are necessary to enhance its activity.

Other biological activities

Per several reports, compounds 220, 238, 239, and 361
produced from Pogostemon cablin have reduced the

Fig. 10 The chemical structures of other guaiane-type sesquiterpenes
(303–394) from natural material
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Table 2 Cytotoxic activities of guaiane-type sesquiterpenes from natural material

Compounds Plant origin Cancer cell lines IC50/μM Ref.

4 Saussurea deltoidea SMMC-7721 24.49 (Xu et al. 2012b)

A549 18.83

Hela 5.28

5 SMMC-7721 36.10

Hela 17.99

145 SMMC-7721 3.55

A549 15.46

Hela 2.69

305 Aglaia odorata var.
microphyllina

SGC-7901 40 (Liu et al. 2014b)

308 SGC-7901 38

296 SGC-7901 38.8

10 Centaurea drabifolia CCRF-CEM 0.83 ± 0.20 (Formisano et al. 2017)

CEM/ADR5000 1.26 ± 0.179

11 CCRF-CEM 0.47 ± 0.07

CEM/ADR5000 1.77 ± 0.654

12 CCRF-CEM 4.73 ± 0.04

CEM/ADR5000 7.08 ± 1.18

13 CCRF-CEM 1.65 ± 0.06

CEM/ADR5000 3.45 ± 0.36

14 CCRF-CEM 25.3 ± 2.59

CEM/ADR5000 37.23 ± 4.63

15 CCRF-CEM 5.94 ± 0.80

16 CCRF-CEM 24.7 ± 0.44

CEM/ADR5000 58.18 ± 6.16

HepG2 4.21 ± 0.56

18 Scorzonera divaricata K562 6.53 ± 0.80 (Wu et al. 2018)

HeLa 8.15 ± 0.36

19 Saussurea lappa HeLa 12.00 (Yang et al. 2016c)

158 Inula lineariifolia MCF-7 13.7 ± 0.6 (Qin et al. 2013)

MDA-MB-231 21.1 ± 1.7

162 MCF-7 15.5 ± 0.9

MDA-MB-231 25.8 ± 2.1

163 MCF-7 6.2 ± 0.3

MDA-MB-231 11.4 ± 0.5

202 MCF-7 6.7 ± 0.5

MDA-MB-231 12.9 ± 0.9

203 MCF-7 2.1 ± 0.3

MDA-MB-231 2.3 ± 0.1

MCF-10A 26.0 ± 1.2

242 MCF-7 1.6 ± 0.1

MDA-MB-231 2.8 ± 0.2

MCF-10A 27.9 ± 2.3

243 MCF-7 3.4 ± 0.2

MDA-MB-231 10.7 ± 0.7

244 MCF-7 7.8 ± 0.5

MDA-MB-231 16.5 ± 1.3

323 Commiphora opobalsamum HeLa 15.4 (Yang and Shi 2012)
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damage induced by D-galactosamine (D-GalN) on human
liver (HL) −7702 cells by 33.0% ± 0.026, 40.5% ± 0.043,
32.4% ± 0.036, 32.3% ± 0.016 at 10 μM (Li et al. 2013a;
Zhu et al. 2017). Compound 314 isolated from Chloranthus
japonicus had inhibitory effects on memory impairment
(Amoah et al. 2015; Mu et al. 2016). At 50 μg/mL, com-
pounds 146–149 separated from Gyrinops salicifolia
exhibited acetylcholinesterase (AChE) inhibitory activity
and the inhibition rates were 35.3 ± 1.2, 21.1 ± 1.9, 46.2 ±
0.9, and 54.2 ± 1.4%, respectively (Shao et al. 2016).
Likewise, compounds 318, 319, and 328–331 isolated from
Aquilaria sinensis also had AChE inhibitory activity
(Hashim et al. 2016; Yang et al. 2016a; Yang et al. 2016b).
Zidorn observed that 125 isolated from Lactuca tatarica
had free radical-scavenging activity and that its IC50 was
5.52 μg/mL (Wang et al. 2010b). Compound 363 produced
from Daucus carota had hepatoprotective activity (Fu et al.
2010a). In addition, compound 375 isolated from Commi-
phora myrrha had neuroprotective effects (Xu et al. 2012a).

Moreover, compounds 287–288 isolated from Daphne
aurantiaca had anti-insect activity (Huang et al. 2017).

Conclusion

Sesquiterpenes are a focus of current research given their
unique structural characteristics and various biological
activities in natural products. This review summarized the
extant literature on the distribution, chemical classification,
and pharmacological effects of guaiane-type sesquiterpenes.
Guaiane-type sesquiterpenes mainly exist in the form of
inner esters, with the 12,6- guaianolide being the most
common. They are distributed in approximately 70 genera
of 30 families, and most belong to the Asteraceae, Lamia-
ceae, Thymelaeaceae, and Zingiberaceae families. These
families have attracted considerable attention in the research
field due to a large number of sesquiterpenes with major
bioactive antitumor, antibacterial, and anti-inflammatory

Table 2 (continued)

Compounds Plant origin Cancer cell lines IC50/μM Ref.

HepG2 8.7
213 Inula japonica HL-60 3.67 (Wu et al. 2016)

SMMC-7721 2.48

A-549 3.15

MCF-7 2.44

SW-480 1.75

214 HL-60 10.25

SMMC-7721 3.42

A-549 3.82

MCF-7 4.15

SW-480 2.43

215 HL-60 4.28

SMMC-7721 1.75

A-549 1.57

MCF-7 3.32

SW-480 0.97

35 Scorzonera divaricata HeLa 220.2 ± 11.8 (Yang et al. 2016d)

HL-60 127.2 ± 6.1

SMMC-7721 250.3 ± 18.6

36 HeLa 144.2 ± 10.1

HL60 91.9 ± 6.8

HepG2 212.7 ± 11.8

SMMC-7721 249.2 ± 20.0

240 Stellera chamaejasme A549 cells 1.951 (Liu et al. 2014a)

103 Saussurea involucrata A549 cells 0.01 ± 0.12 (Xiao et al. 2011)

114 A549 cells 2.89 ± 0.11

115 Mulgedium tatarica KB cells 20 (Ren et al. 2005)

Bel 7402 cells 17
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effects. However, the bioactivity of these compounds is
largely limited to in vitro studies. Guaianolides and guaiane
polymers exerted various biological activities. Compounds
with the 12,8-lactone ring structure (including 12,8-guaia-
nolide, pseudoguaianolides and guaiane polymers which
have anti-inflammation activities) have stronger biological

activity than do those without this ring. Acetylation of
hydroxyl groups tended to be more lipophilic, which leads
to better penetration of cell membranes and enhanced
inhibition of NO production, such as IC50 of 204 reaching
0.07 μM for this reason. Compounds containing a peculiar
structural trait of an oxygenated functionality exhibited
more prominent effects, and their inhibitory effects were all
less than 5 μM, just like 10, 11, and 13. An extended dis-
cussion on the structure–activity relationship would require
additional contributions to the literature.
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