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Abstract
Microtubules are cytoskeletal polymers of tubulin and composed of α- and β-tubulin heterodimers, which are regarded as
one of the most important, promising and successful targets for chemotherapeutic agents to treat cancer. With more and more
tubulin-modulator co-crystal complex structures being solved, the mechanism of action (MOA) of microtubule targeting
agents (MTAs) are well understood, which in turn inspired the development of more efficient tubulin modulators. By
analyzing the reported tubulin modulators (most of them are inhibitors) that have been co-crystalized with tubulin and
deposited in protein data bank (PDB), two new discovered inhibitor binding sites (maytansine and pironetin binding sites) on
tubulin are elucidated, while the typical modulator binding sites (colchicine, taxanes, vinca alkaloids, and laulimalid binding
sites) are also characterized. Among all the reported tubulin modulators, several inhibitors that bind to taxanes or vinca
alkaloids binding sites have been approved by FDA to treat cancer. Thus, tubulin inhibitors discovery and design is still a
hotspot in anticancer drug development. In this review, all the reported tubulin modulators that have co-crystal structures
with tubulin in PDB are sorted out and classified according to their binding sites in tubulin. Besides, the ease or complexity
of developing tubulin inhibitor on different binding sites on tubulin is also discussed. This work could contribute to
discovering and designing new potent and specific modulators of tubulin.
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Introduction

Microtubules play an important role in various cellular
processes, including mitosis, cell migration, cell shape
maintenance, cell signaling and intracellular transport.
These diverse physiologic functions were achieved by the
dynamic transitions between the polymerization and depo-
lymerization of α, β-heterodimer. Microtubules in tumor
cells promote the frequency of cell mitosis process, result-
ing in uncontrolled growth of cancer cells. Thus tubulin is
made to be an attractive target for antitumor therapy and

several microtubule inhibitors have been developed to
clinically effective anti-cancer drugs.

Microtubule-targeted drugs were previously thought to
work through increasing or decreasing the cellular micro-
tubule mass. Although these effects might play a role in
their chemotherapeutic actions, microtubule-targeted drugs
can suppress microtubule dynamics without changing
microtubule mass, resulting in mitotic block and apoptosis.
Microtubule inhibitors induced cell apoptosis by disrupting
microtubule dynamic and arresting cancer cells in G2/M
phase. According to their MOA, microtubule targeting
agents (MTAs) are classified into two major types: (i)
microtubule destabilizing agents (MDAs); (ii) microtubule
stabilizing agents, both of them inhibit the dynamic
instability of tubulin polymerization (Negi et al. 2015). As
shown in Fig. 1, based on their different binding sites on
microtubule protein, MTAs are further classified into six
types: (i) colchicine, (ii) vinca alkaloids, (iii) taxanes, (iv)
laulimalid, (v) maytansine, and (vi) pironetin site-binding
agents. Colchicine, vinca alkaloids, maytansine, and pir-
onetin are MDAs, while taxanes and laulimalid are micro-
tubule stabilizing agents. Both maytansine and pironetin
could potently inhibit tubulin assembly into microtubules
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by binding to the sites that are distinct from the typical
tubulin inhibitor binding domain (Fig. 1).

In this review, we will systematically summarize the
reported tubulin modulators deposited in PDB according to
their unique binding sites on microtubule. Besides, by
summarizing the reported relative binding sites modulators,
the ease or complexity of developing tubulin inhibitor on
different binding sites is also discussed. This work further
offers a convenient way for the rational design of potent
MDAs for the development of more efficient cancer
therapies.

Material and methods

The binding sites of tubulin inhibitors were analyzed by
PyMOL (The PyMOL Molecular Graphics System, Version
2.0 Schrödinger, LLC.).

Results and discussion

Microtubule destabilizing agents (MDAs)

According to the MOA, colchicine, vinca alkaloids, may-
tansine, and pironetin site- binding agents belong MDAs.
Although they represent a successful class of anticancer
drugs, the molecular MOA of several important MDAs on
tubulin and microtubules has so far remained elusive. With
more and more crystal structures of tubulin in complex with
MTAs solved, the molecular MOA of MTAs were
delineated.

Colchicine site-binding agents

Although there are no FDA approved drugs that specifically
target this site for the treatment of cancer currently, MTAs
that bind to colchicine site have received widely attention

and are of particular interest in antitumor therapy own to
their dual mechanism of action as anti-mitotics and vascular
disrupting agents during the last 10 years. Based on
numerous tubulin-colchicine complex structures, the MOA
was determined. The crystal structure of tubulin in complex
with colchicine (see Fig. 2 for colchicine structure) was first
reported in 2004 (Ravelli et al. 2004), this crystal structure
(PDB code: 1SA0) sheds light on the mechanism of col-
chicine’s activity: colchicine binds at a location where it
prevents curved tubulin from adopting a straight structure,
which inhibits assembly. The detailed interactions between
colchicine and tubulin were shown in Fig. 3. Clearly,
hydrophobic interaction was observed and contributed most
to their binding, which indicated that colchicine binding site
was a hydrophobic pocket. The mainly hydrophobic resi-
dues were Cys241, Leu242, Leu248, Ala250, Leu255,
Met259, Val315, Ala316, Ile318, and Ile378 from α tubulin,
and Ala180, Val181 from β tubulin. Therefore, in the dis-
covery of tubulin inhibitors targeting on colchicine binding
site, researcher should focus on the hydrophobicity of the
candidate compound.

BAL27862 (Fig. 2) is a novel microtubule-destabilizing
drug that is currently undergoing phase I clinical trial eva-
luation. Prota et al. (2014c) determined the crystal structure
of tubulin-BAL27862 (PDB code: 4O2A) by X-ray crys-
tallography thus demonstrated that BAL27862 binds to the
same site as colchicine. This compound displayed potent
tubulin assembly inhibition activity with an IC50 of 1.4 μM
as well as a dissociation constant of 244 ± 30 nM to unas-
sembled tubulin (Prota et al. 2014c).

A novel class of chalcones, represented by TUB091
(Fig. 2), was shown to bind to the colchicine site of tubulin
via X-ray crystallography (PDB code: 5JVD) (Canela et al.
2017). As at low nanomolar concentrations, TUB091
exhibited vascular disrupting effects in vitro and in the
chicken chorioallantoic membrane (CAM) assay, it was
identified as an interesting lead compound for vascular
disrupting agents. Besides, this inhibitor could inhibit

Fig. 1 Presently reported tubulin
binding sites of microtubule
targeting agents. Six different
binding sites are deposited in
the PDB
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cancer and endothelial cell growth, induce G2/M phase
arrest and apoptosis at low nanomolar concentrations
(1–10 nM). TUB099 (Fig. 2), a derivative of TUB091,
exhibited potent antitumor activity in melanoma and breast
cancer xenograft models, as well as anti-metastatic activity
(Canela et al. 2017).

Cyclohexanediones derivatives (TUB015 and TUB075,
Fig. 2) have been identified as a new class of colchicine-
domain binders with a similar MOA to that of colchicine.
Bueno et al. (2018) solved the crystal structures of tubulin-
TUB015 (PDB code: 6FKL) and tubulin-TUB075 (PDB
code: 6FKJ) by X-ray crystallography. Then structure-
guided design was performed based on these complex
structures, finally a new series of cyclohexanediones with a
distal 2-substituted benzofurane as high-affinity ligands of
the colchicine binding site were identified. As expected,
these new compounds displayed potent antiproliferative
activity against three human cancer cell lines [breast car-
cinoma (MDA-MB-231), lymphoblastic leukemia (CEM)
and cervical carcinoma (HeLa) cells] and one endothelial
cell [human microvascular endothelial cells (HMEC-1)]
with IC50 values in the nM range (Bueno et al. 2018). MOA
results on MDA-MB-231 cells suggested that these com-
pounds arrested cell cycle progression at the G2/M phase

and induced apoptosis at sub-micro concentrations, which
indicated that they are still colchicine site-binding agents.

Rigosertib (Fig. 2), a drug in phase III clinical trials for
high-risk myelodysplastic syndrome with molecular target
had not been elucidated. The combined CRISPRi/a-based
chemical genetic screens was performed by Jost et al.
(2017) to reveal that rigosertib is a MDA. Co-crystal
structure (PDB code: 5OV7) were determined to give the
direct binding of rigosertib with microtubule (Jost et al.
2017). Mutation assays further validated that rigosertib kills
cancer cells by destabilizing microtubules. With rigosertib’s
molecular target identified, the rational and structure-guided
development and selection of targeted patient groups and
treatment applications will be facilitated.

Compound 7j (Fig. 2) was afforded by a preliminary
structure-activity relationship on quinazolinone sulfamates.
This compound showed inhibition activity on tubulin
assembly (IC50= 2.5 μM) in vitro and colchicine binding
(61% inhibition), as well as displayed potent antiproliferative
activity against DU-145 human prostate and MDA-MB-231
human breast cancer cells with GI50 of 50 nM (Dohle et al.
2018). After co-crystallized with the αβ-tubulin heterodimer
(PDB code: 5OSK), its sulfamate group was found interacting
positively at the colchicine binding site (Dohle et al. 2018).

Fig. 2 Colchicine site-binding agents that have been co-crystalized with tubulin
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BKM120 (Buparlisib, Fig. 2) is a phosphoinositide 3-
kinase (PI3K) inhibitor, which has been enlisted in
numerous clinical studies. However, the off-target effect
with microtubule polymerization inhibition was also
reported. Therefore, its dominant antitumorigenic
mechanism needs to be cautiously evaluated to avoid
misconception of preclinical and clinical data. Bohnacker
et al. (2017) separated the dual activity of BKM120 into
discrete PI3K and tubulin inhibitor via their developed two
BKM120 derivatives (MTD147 and PQR309, Fig. 2) that
with only one atom different from BKM120. They con-
firmed that the antiproliferative activity of BKM120 is
mainly result from microtubule-dependent cytotoxicity
rather than through inhibition of PI3K by further analysis
of the cellular growth arrest phenotypes and microtubule
dynamics after compounds treatment (Bohnacker et al.
2017). Co-crystal structures of tubulin-BKM120 (PDB
code: 5M7E), tubulin-MTD147 (PDB code: 5M7G),
tubulin-MTD265 (PDB code: 5M8G), and tubulin-
MTD265-R1 (PDB code: 5M8D) provided insights into
the binding mode of action of this series of drugs (Boh-
nacker et al. 2017), thus confirmed these compounds are
colchicine site-binding agents.

Podophyllotoxin derivatives are important colchicine
binding site tubulin inhibitors, Niu et al. (2017) reported the
first high-resolution (2.8 Å) structure of tubulin complexed
with 4’-demethylepipodophyllotoxin (PDB code: 5XLT,
see Fig. 2 for the structure of DMEP,) and revealed the
detailed interactions between tubulin and DMEP. This work
provides insights into the development of new podo-
phyllotoxin derivatives as tubulin inhibitors targeting the
colchicine site.

Quinolin-6-yloxyacetamides (QAs, represented by QA1
and QA2, Fig. 2) constitute a chemical class that have
fungal tubulin polymerize inhibition activity that were
previously reported as fungicides (Lamberth et al. 2014).
Sharma et al. (2017) found that QAs showed potent anti-
proliferative effect on human cancer cells (Table 1), espe-
cially in inhibiting the proliferation of multidrug-resistant
ovarian cancer cells (A2780AD) that overexpress P-
glycoproteins. The crystal structure of the tubulin-QA
complex (PDB code: 5O7A) showed that QAs bind to the
colchicine site on tubulin (Sharma et al. 2017), which
indicated that QAs are microtubule destabilization agents.

Combretastatin A4 (CA-4, Fig. 2) and its derivatives are
microtubule-destabilizing agents which have attracted great
attention due to their high potency, vascular disrupting and
antiangiogenic activities (Tron et al. 2006). Although the cis
conformation of CA-4 is more active than that of the trans
conformation, it isomerize into trans form easily under
natural light (Jiang et al. 2015). CA-4 was suggested to bind
to the colchicine site of tubulin, but the exact binding mode
of CA-4 on tubulin remain unclear because of the high-
resolution structural information is lacking. Gaspari et al.

Table 1 Anti-proliferative effect of QAs in A549, A2780,
A2780AD cells

Compound A549 A2780 A2780AD

QA1 60 ± 2 71 ± 14 141 ± 42

QA2 44.3 ± 11 104 ± 8 262 ± 85

Colchicine 55 ± 4 13.6 ± 2 663 ± 23

IC50 (nM, mean ± standard error) values of QAs determined in lung
carcinoma A549, in ovarian carcinoma A2780 and A2780AD

Fig. 3 The detailed interactions
between colchicine and tubulin.
Tubulin and colchicine were
shown as cartoon (white) and
sticks (magenta), respectively.
All the interactive residues were
labeled and rendered as sticks
(green). The yellow dashed lines
indicated the H bond interaction
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(2017) reported the high-resolution crystal structure of
tubulin-cis-CA-4 (PDB code: 5LYJ). This structural data
lay a unique basis for the design of combretastatin deriva-
tives with improved activities for both medical and basic
research applications.

Due to the less stable property of CA-4, structural opti-
mization was performed to improve its thermodynamically
stability. Zhou et al. (2018; 2016) synthesized a series of
chiral β-lactam bridged analogs (3-substituted 1,4-diaryl-2-
azetidinones) CA-4, and evaluated their antitumor activities
in vitro and in vivo. Among them, compound 9 (Fig. 2), 14b
(Fig. 2), and 14c (Fig. 2) displayed potent tubulin poly-
merization inhibition with IC50 values of 3.5, 3.5 and
1.7 μM, respectively (Zhou et al. 2018; 2016). Besides,
these three compounds also exhibited potent anti-
proliferative activity against four human cancer cell lines
(A2780, Hela, SKOV-3 and MDA-MB-231) with IC50

values of 0.001–0.021 μM (Zhou et al. 2018; 2016). Finally,
the cocrystal structures of tubulin in complex with represent
compound 9, 14b, and 14c were determined by X-ray
crystallography, which showed that all of these three com-
pounds bind to the colchicine binding site (PDB code:
5GON, 5XAG, and 5XAF) (Zhou et al. 2018; 2016).

Wang et al. (2016b) determined the crystal structures of
tubulin complexed with diverse colchicine binding site
inhibitors [lexibulin (Fig. 2), nocodazole (Fig. 2), plinabulin
(Fig. 2) and tivantinib (Fig. 2)]. High resolution structures
revealed the detailed interactions between these inhibitors
and tubulin (5CA0, 5CA1, 5C8Y and 5CB4, respectively)
(Wang et al. 2016b). This co-crystal structures provide a
solid structural basis and paid the way for developing new
anti-cancer agents targeting the colchicine binding site.

Vinca alkaloids site-binding agents

Vinca alkaloids are potent anti-tumor drugs that bind to
tubulin at its inter-heterodimeric interface and have been
widely used in chemotherapy. Vinblastine (Fig. 4) is one of
vinca alkaloids and the crystal structure of vinblastine
bound to tubulin was first resolved in 2005 with a resolution
of 4.1 Å (PDB code: 1Z2B) by X-ray crystallography
(Gigant et al. 2005). After that, three groups also succes-
sively determined the vinblastine-tubulin complex structure,
with PDB code: 4EB6 (Ranaivoson et al. 2012), 5BMV
(Wang et al. 2016a), and 5J2T (Waight et al. 2016),
respectively.

Fig. 4 Vinca alkaloids site-
binding agents that have been
co-crystalized with tubulin
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Ustiloxins are vinblastine site-binding agents with a well
established total synthesis. A 2.7 Å resolution structure of
ustiloxin D bound to vinblastine binding site has been
determined (PDB code: 3UT5, see Fig. 4 for the structure of
ustiloxin D) (Ranaivoson et al. 2012). This finding precisely
defines the interactions of ustiloxins with tubulin allows
structure-based suggestions to be made for improved
activity of tubulin vinblastine site-binding agents.

Antibody-drug conjugates (ADCs) have been success-
fully used in cancer therapy in recent years. Monomethyl
auristatin E (MMAE, Fig. 4) and F (MMAF, Fig. 4) pep-
tidyl microtubule inhibitors consisting of natural and
unnatural amino acids, are extremely cytotoxic and have
been widely used as a warhead in ADCs. Wang et al.
(2016a) determined the high resolution crystal structures of
tubulin in complex with three peptidyl microtubule inhibi-
tors, which can be accessed under PDB codes 4ZHQ, 4ZI7,
and 4ZOL, respectively [MMAE, taltobulin (HTI-286,
Fig. 4), and tubulysin M (Fig. 4)]. Besides, Waight et al.
(2016) also determined the crystal structures of tubulin in
complex with MMAE (PDB code: 5IYZ) and MMAF (PDB
code: 5J2U).

Eribulin (also known as E7389 and ER-086526, Fig. 4)
is a marketed anticancer drug under the trade name Halaven
for the treatment of certain patients with breast cancer and
liposarcoma. It is a fully synthetic macrocyclic ketone
analog of the natural product halichondrin B, derived from
the marine sponge Halichondria okadai. Hickford et al.
(2009); Doodhi et al. (2016) first revealed that eribulin
binds to a site on β-tubulin that is required for protofilament
plus-end elongation using X-ray crystallography (PDB
code: 5JH7) and demonstrated Eribulin binds pre-
dominantly to half of the vinca domain on β-tubulin.

DZ-2384 (Fig. 4) is a preclinical compound that dis-
played potent antitumor activity in models of multiple
cancer types without neurotoxicity in rats at effective
plasma concentrations. By analyzing the crystal structure of
tubulin-DZ-2384 (PDB code: 5LOV), Wieczorek et al.
(2016) demonstrated that DZ-2384 causes straightening of
curved protofilaments, an effect proposed to favor poly-
merization of tubulin. Although DZ-2384 has a similar
influence on microtubule growth rate with vinorelbine, they
have different modulation, that is, DZ-2384 could increase
the rescue frequency and preserve the microtubule network
in nonmitotic cells and in primary neurons.

The tubulysins class of natural products have become
popular payloads in the development of ADCs and small
molecule drug conjugates (SMDCs) due to their potent
cytotoxicity against many human cancer cells. Microtubule
was the probable target of tubulysins. A series of novel
tubulysin analogs were design and synthesized, among
them, compound 11 (Fig. 4) exhibited much better

multidrug-resistant profile than the clinically used MMAE
(Leverett et al. 2016). The co-crystal structure of 11 bound
to tubulin (PDB code: 5KX5) (Leverett et al. 2016) was
determined and utilized to design more analogs with
improved activity.

[1,2,4]Triazolo[1,5-a]pyrimidines (TPs, Fig. 4) are a
class of MTAs that belong to microtubule-stabilizing
agents. Inexplicably, TPs were found to bind to vinblas-
tine binding site on tubulin (PDB code: 5NJH) (Saez-Calvo
et al. 2017), which was typically occupied by microtubule-
destabilizing agents. This apparent discrepancy was
addressed by Saez-Calvo et al. (2017) with combination of
structural biology, cellular, and biochemical approaches.
They demonstrated that TPs could promote longitudinal
tubulin contacts in microtubules, different to typical
microtubule-stabilizing agents that principally promote lat-
eral contacts (Saez-Calvo et al. 2017). Besides, p-
glycoprotein overexpression has no effect on TPs, which
indicated they are promising MTAs against multidrug-
resistant cancer cells.

Microtubule stabilizing agents (MSAs)

Through promoting polymerization of tubulin and stabiliz-
ing the polymer, as well as preventing depolymerization,
MSAs continued to be the efficacious anticancer che-
motherapeutic agents that have been widely used for the
treatment of cancer. With more and more tubulin-MSAs
complex crystal structures determined, the molecular
mechanisms by which MSAs stabilize microtubules and the
interactions of MSAs with tubulin and microtubules at the
molecular level are revealed.

Taxanes site-binding agents

Paclitaxel (Taxol, Fig. 5) and its semisynthetic analog
docetaxel (Fig. 5) were among the most popular antic-
ancer drugs in the late 21th century. Paclitaxel was
approved for clinical use in 1995, and has been widely
used as anticancer chemotherapeutic agents for treatment
of breast and ovarian cancer, non-small-cell lung cancer.
Although the binding site of paclitaxel on tubulin was
known with precision as the tubulin-paclitaxel complex
electron crystal structure was determined (Nogales et al.
1995), the high-resolution (3.5 Å) cryo-electron micro-
scopy (cryo-EM) reconstructions of microtubule stabi-
lized by taxol were reported in 2017 with PDB code 5SYF
(Kellogg et al. 2017). The clinical success of the taxanes,
together with the poor solubility problems and develop-
ment of drug resistance have stimulated the search for
other drugs with similar MOA but with improved phar-
macological profiles. As shown in Fig. 6, the interactions
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between paclitaxel and tubulin were hydrophobic, π-π
stacking, and charged.

The marine natural product zampanolide (Fig. 5) and its
analogs are covalent inhibitors targeting paclitaxel binding
site. Zampanolide-ligated tubulin (PDB code: 5NG1)
represented an assembly activated state of tubulin and the
effect of zampanolide on tubulin association and the bind-
ing of tubulin ligands at other binding sites were well stu-
died (Field et al. 2018). It was demonstrated that covalent
binding of zampanolide to β-tubulin affects both the col-
chicine site and the exchangeable nucleotide binding site
(Field et al. 2018).

Dictyostatin (Fig. 5) is a potent anticancer macrolide that
target tubulin, little is known about the details of its inter-
action with tubulin. Until the crystal structure of tubulin in
complex with dictyostatin was available, the rational
structure-based design of dictyostatin analogs with
improved activity was able to carry out. Trigili et al. (2016)

solved the tubulin-dictyostatin complex structure (PDB
code: 5MF4) using X-ray crystallography.

Taccalonolides AJ (Fig. 5) exhibited a paclitaxel com-
parable potent tubulin inhibition (IC50= 4.2 nM) and
demonstrated a direct interaction with purified tubulin (Li
et al. 2011). Although it has been demonstrated to cova-
lently bind to microtubules (Risinger et al. 2013), the exact
residue involved in taccalonolides AJ covalent binding has
not been determined. Using X-ray crystallography, Wang
et al. (2017) determined a 2.05 Å crystal structure of the
tubulin-taccalonolides AJ complex (PDB code: 5EZY). The
structure reveals that taccalonolides AJ covalently binds to
β-tubulin D226 at the taxane-site.

Epothilone A (Fig. 5) was a new group of compound
obtained from the myxobacterium Sorangium cellulosum
with a similar action mechanism to paclitaxel. Prota et al.
(2013) determined a high-resolution crystal structure of
αβ-tubulin in complex with epothilone A (PDB code: 4I50),

Fig. 6 The detailed interactions
between paclitaxel and tubulin.
Tubulin and paclitaxel were
shown as cartoon (white) and
sticks (magenta), respectively.
All the interactive residues were
labeled and rendered as sticks
(cyan). The yellow dashed lines
indicated the H bond interaction

Fig. 5 Taxanes site-binding
agents that have been co-
crystalized with tubulin
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epothilone A was found to bind to the taxane pocket of
β-tubulin and use its side chains to induce structuring of the
M-loop into a short helix.

Discodermolide (Fig. 5), a potent antitumor polyketide
from the marine sponge Discoderma dissolute (Gunasekera
et al. 1990), binds to the taxane site of β-tubulin (Hung et al.
1996). Compared to paclitaxel, discodermolide exhibited
more potent binding affinity with tubulin, more efficient in
promoting tubulin polymerization and has potent cytotoxic
activity against a number of human tumor cell lines,
including paclitaxel-resistant ovarian and colon carcinoma
cells (Huang et al. 2006; Kowalski et al. 1997). Prota et al.
(2017) successfully crystallized and solved the high reso-
lution structure of DDM and KS-1-199-32 in complex with
tubulin (PDB code: 5LXT).

Laulimalide site-binding agents

Laulimalide (Mooberry et al. 1999) (Fig. 7) and peloruside
A (Hood et al. 2002; West et al. 2000) (peloruside, Fig. 7)
are marine sponge products and are promising non-taxane-
site MSAs for their desirable properties, such as they pos-
sess potent inhibition activity against the growth of
multidrug-resistant cancer cells (Gaitanos et al. 2004; Pryor
et al. 2002), and have synergistically effect with paclitaxel
or epothilones on promoting the microtubule stability
(Gapud et al. 2004; Hamel et al. 2006). To address how
laulimalide and peloruside A promote tubulin assembly and
microtubule stability, and how they synergize with taxane-
site drugs, Prota et al. (2014b) determined crystal complex
structures of tubulin-laulimalide (PDB code: 4O4H) and
tubulin-peloruside A (PDB code: 4O4J) using X-ray crys-
tallography. These two complex structures showed that
laulimalide and peloruside A bind to non-taxane site on
β-tubulin and use their respective macrolide core structures
to interact with a second tubulin dimer across protofila-
ments. Meanwhile, they allosterically stabilize the taxane-
site M-loop. Besides, ternary complexes structures of
tubulin-laulimalide-epothilone A (PDB code: 4O4I) and
tubulin-peloruside A-epothilone A (PDB code: 4O4L) are
also solved, and a crosstalk between the laulimalide/
peloruside and taxane sites via the M-loop of β-tubulin is
found (Prota et al. 2014b).

New binding sites on tubulin

Pironetin site-binding agents

Pironetin (Fig. 7) was originally isolated from fermentation
broths of Streptomyces strains and was subsequently found
potent inhibitory activity on microtubule formation. Yang
et al. (2016) and Prota et al. (2016) successively solved the
crystal structure of the tubulin-pironetin complex (PDB
code: 5FNV, 5LA6) and found that this compound cova-
lently binds to Cys316 of α-tubulin and acted as destabi-
lized microtubule agent.

Maytansine site-binding agents

Maytansine (Fig. 8) is part of an ADC and is approved for the
treatment of advanced breast cancer (Kupchan et al. 1972;
Verma et al. 2012). Prota et al. (2014a) determined the crystal
complex structure of tubulin-maytansine (PDB code: 4TV8)
by X-ray crystallography, established the exact tubulin-
binding site of maytansine and clarified the specific interac-
tions. The binding site of maytansine was a new tubulin-
binding site and pharmacophore which can be used for the
development of microtubule-destabilizing anticancer drugs.
Besides, both the phase I drug PM060184 (Fig. 8) and the
phase II drug rhizoxin (Fig. 8) were demonstrated to bind to
the same site as maytansine by X-ray crystallography (PDB
code: 4TV9 and 4TUY) (Prota et al. 2014a). This site is
associated with a distinct molecular mechanism for the inhi-
bition of microtubule formation, thus provide a structural
basis for the structure-based design of more potent
microtubule-destabilizing agents.

A quantitative fluorescence anisotropy displacement
assay based on a fluorescein-labeled maytansine derivative
was developed by Menchon et al. (2018) with the aim to
identify and characterize more maytansine-site microtubule
inhibitors. Using this assay, they discovered that the two
natural products spongistatin-1 (Fig. 8) and disorazole Z
(Fig. 8) bind to the maytansine site on β-tubulin. They
confirmed their findings by determining the high-resolution
crystal complex structures of tubulin-spongistatin-1 (PDB
code: 6FII) and tubulin-disorazole Z (PDB code: 6FJM)
using X-ray crystallography.

Fig. 7 Laulimalide and Pironetin
site-binding agents that have
been co-crystalized with tubulin
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Conclusions

In this review, all the reported microtubule inhibitors that
have co-crystal structures with tubulin are summarized. From
the insights of developing tubulin inhibitors, we proposed that
it is very difficult to develop pironetin site tubulin inhibitor as
there is only one inhibitor targeting this site reported. As for
the other newly discovered maytansine binding site, it is also
intractable to target though it is a fascinating site with distinct
molecular mechanism for the inhibition of microtubule for-
mation. Laulimalid binding site is on the β tubulin surface
while this binding pocket is not large enough for accom-
modating of commonly natural products, therefore, except for
molecules that possess potent affinity could be developed
targeting this site. Vinca alkaloids and paclitaxel binding sites
are typical tubulin inhibitor binding sites that have been
successfully used to develop anti-cancer agents. Although
there are no colchicine-binding site inhibitors approved by
FDA to treat cancer, developing inhibitors targeting this site
(the intradimer interface) enjoyed great success in the past few
years, which can be indicated by the diverse inhibitors
reported. Thus, it is relatively easy to develop tubulin inhi-
bitors targeting this site. However, all drugs in clinical use
employ the maytansine, the vinca and the paclitaxel site
tubulin inhibitors. We think the reason for this observation is
these three binding sites are druggable target sites. Besides, all
of these three sites are located or mainly located on β tubulin
subunit, which may be the reason for their druggability sites.

As can be indicated by this review, almost all the tubulin
inhibitors belong to natural product, so with the develop-
ment of total synthesis, more and more potent tubulin
inhibitors is expected. In addition, with the more and more

tubulin inhibitors deposited in PDB, unique binding sites on
microtubule will be revealed, which could further promote
tubulin inhibitors development.

Although vinblastine and paclitaxel is widely used to
treat various cancers, the broad clinical application of
MDAs, is hampered by their severe neurotoxicity and
myelosuppression adverse effects and the development of
resistance. Therefore, we believe that the direction of the
future tubulin inhibitors development is to discover micro-
tubules targeted drugs with distinct mechanism. Besides,
use ADC approaches is also a feasible choice which have
revived interest in the development of highly potent MDAs
for therapeutic use.
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