ORIGINAL RESEARCH

Synthesis, characterization, and in vitro anticancer evaluation of 2substituted 5-arylsulfonyl-1,3-oxazole-4-carbonitriles

Maryna V. Kachaeva¹ · Stepan G. Pilyo¹ · Victor V. Zhirnov¹ · Volodymyr S. Brovarets¹

Received: 23 August 2018 / Accepted: 15 November 2018 / Published online: 23 November 2018 © Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

In this series, six new 2-substituted 5-arylsulfonyl-1,3-oxazole-4-carbonitriles were synthesized and characterized by IR, ¹H NMR, ¹³C NMR spectroscopy, elemental analysis and chromato-mass-spectrometry. The anticancer activities of the compounds were evaluated via single high dose $(10^{-5}M)$ against 60 cancer cell lines by the National Cancer Institute according to its own screening protocol. In the next phase, the compounds have been selected for five-dose assay. All synthesized compounds displayed growth inhibitory (GI50) and cytostatic activities (TGI) against the most sensitive cell lines at submicromolar (0.2–0.6 µM) and micromolar concentrations (1–3 µM), respectively. Cytotoxic activity (LC₅₀) of these compounds, with the exception of **4d**, against the most sensitive cell lines was also high (5–6 µM). All compounds exhibit high selectivity towards leukemia cell lines, and among them, **4e** and **4f** showed the best antiproliferative and cytostatic selectivity. Compounds **4c** and **4f** displayed considerable cytotoxic selectivity towards the renal and breast cancer subpanels. Our results provided evidence for anticancer activities of novel 2-substituted 5-arylsulfonyl-1,3-oxazole-4-carbonitriles which could be useful for developing new anticancer drugs. These substances could also be used as an excellent framework in anticancer research that may lead to discovery of potent antitumor agents.

Keywords 2-Substituted 5-arylsulfonyl-1,3-oxazole-4-carbonitriles · Synthesis · Anticancer activity · Selectivity

Introduction

Cancer is a general term for malignant diseases characterized by uncontrolled and abnormal cell growth. The development of new anticancer therapeutic agents is one of the fundamental goals in medicinal chemistry. Despite the crucial role of cancer chemotherapy, the lack of antitumor selectivity has become one of the main barriers for developing effective anticancer drugs. There are still significant challenges with resistance to existing therapies, a need for new targets, and a deeper understanding over molecular mechanisms. Therefore, it is great interest for the search of newer and safer anticancer agents (Narang and Desai 2009; Semenyuta et al. 2013; Semenyuta et al. 2014). Oxazole derivatives together with naturally occurring oxazoles have a wide range of pharmacological applications as antipathogenic (Suh et al. 2015; Jin 2016; Joshi et al. 2017; Pouramiri et al. 2017) and anticancer agents (Liu et al. 2010; El-All et al. 2015; Zhou et al. 2016). Some 1,3oxazoles can interact with the colchicine site of β -tubulin resulting in microtubule polymerization stopping and inhibition of cell proliferation (Semenyuta et al. 2013, 2014, 2016; Romagnoli et al. 2017). In addition, some aryloxazoles are effective against cancerous cells resistant to other anticancer drugs (Schobert et al. 2010). Since a mechanism action of these compounds has not been reported completely, further studies on biological activity of different 1,3-oxazole derivatives are essential to find more potent anticancer compounds.

In this paper, we described the synthesis and anticancer activity of a novel class of 1,3-oxazole derivatives such as 2-substituted 5-arylsulfonyl-1,3-oxazole-4-carbonitriles. The synthesized compounds were screened for their anticancer activities against full NCI 60 cell line panel.

Volodymyr S. Brovarets brovarets@bpci.kiev.ua

¹ Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Bases, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, 1, Murmanskaya str, Kyiv 02094, Ukraine

Scheme 1 Synthesis of target compounds 4a–f. Reaction conditions and reagents: (i) arenethiol, Et_3N , MeCN, rt, 8 h; (ii) Ag_2CO_3 , MeCN, reflux, 8 h; (iii) H_2O_2 , HAc, reflux, 2 h

Material and Methods

Chemistry

The methodology of synthesis of compound **4** (Scheme 1) was described previously (Pil'o et al. 2002). The three-stage reaction sequence involves treatment of 2-acylamino-3,3-dichloroacrylonitriles **1** with arenethiols in the presence of triethylamine to obtain 2-acylamino-3,3-bis(arylsulphanyl) acrylonitriles **2** followed by cyclization in presence of silver carbonate to form 5-arylsulphanyl-1,3-oxazole-4-carbonitriles **3**. Compounds **3** were converted into the corresponding sulfonyl derivatives **4** by oxidation with hydrogen peroxide.

Data of synthesized novel 1,3-oxazole derivatives **4a–f** are presented in Experimental part. NMR (¹H NMR and ¹³C NMR), chromato-mass and elemental analysis confirm reliably the structure of the obtained compounds. The intensive absorption bands of SO₂-group appeared at 1154–1164 and 1327–1357 cm⁻¹ in the IR spectra as well as intensive band at 2246–2252 cm⁻¹ corresponded to CN group were observed.

The synthesized compounds were submitted for in-vitro anticancer assay at National Cancer Institute (NCI), USA against full NCI 60 cell lines panel and granted NCS codes shown in Table 1.

General chemistry methods

¹H (300 or 400 MHz) and ¹³C (100 or 125 MHz) NMR spectra were recorded on a Varian Mercury and Bruker Avance DRX 500 spectrometer in DMSO- d_6 solution. IR spectra were recorded on a Vertex 70 spectrometer from KBr pellets. The melting points were estimated on a Fisher-Johns instrument. The chromatomass spectra were recorded on an Agilent 1100 Series high performance liquid

chromatograph equipped with a diode matrix with an Agilent LC/MS mass selective detector allowing a fast switching the positive/negative ionization modes. The reaction progress was monitored by the TLC method on Silica gel 60 F_{254} Merck.

General procedure for the synthesis of compounds 2a-f

To a solution of appropriate 2-acylamino-3,3-dichloroacrylonitriles (**1a**, **b**, **d**, **e**) (0.01 mol) in 30 ml of acetonitrile, triethylamine (0.02 mol) and an appropriate arenethiol (0.02 mol) were added, and the mixture was stirred at room temperature for 8 h. The precipitate was filtered off and all volatiles were removed in vacuo. The residue was treated with water, separated, dried and used in the next step without purification.

General procedure for the synthesis of compounds 3a-f

Suspension of 2-acylamino-3,3-bis(arylsulfanyl)acrylonitriles (0.01 mol) **2a–f** and dry silver carbonate (0.03 mol) in 40 ml of acetonitrile was stirred at reflux for 8-10 h, then kept at room temperature for 8 h. The precipitate was filtered off. All volatiles were removed in vacuo and water was added to residue. The precipitate formed was filtered, dried and used in the next step without purification.

General procedure for the synthesis of compounds 4a-f

Solution of appropriate 5-arylsulfanyl-1,3-oxazole-4-carbonitrile (0.005 mol) **3a–f** in glacial acetic acid (10 ml) was heated to reflux. Three portions of 30 % H_2O_2 of 1 ml each were added during 2 h. The mixture was kept at room temperature for 8 h. The precipitate was filtered and purified by recrystallization. Table 1 Chemical structures of compounds 4a-f

Compound	NCI code NSC	Molecular weight	Chemical structure	Chemical name
4a	762315	389.23	CN N O S O O O O	5-[(4- bromophenyl)sulfonyl]- 2-phenyl-1,3-oxazole- 4-carbonitrile
4b	762267	328.32	F O O O	2-(4-fluorophenyl)-5- (phenylsulfonyl)-1,3- oxazole-4-carbonitrile
4c	762311	342.35	F O O O O CN	2-(4-fluorophenyl)-5- (toluene-4-sulfonyl)- 1,3-oxazole-4- carbonitrile
4d	762317	316.36		5-benzenesulfonyl-2- thiophen-2-yl-1,3- oxazole-4-carbonitrile
4 e	762314	290.34	$H_{3}C$ $H_{3}C$ $H_{3}C$ O O O O	2-(<i>tert</i> -butyl)-5- (phenylsulfonyl)-1,3- oxazole-4-carbonitrile
4f	765447	369.24	$H_{3}C$ $H_{3}C$ $H_{3}C$ $H_{3}C$ O O O O O O	5-((4- bromophenyl)sulfonyl)- 2-(<i>tert</i> -butyl)-1,3- oxazole-4-carbonitrile

2-(4-Bromophenyl)-5-(phenylsulfonyl)-1,3-oxazole-4-carbo-nitrile (4a) White solid (66%); mp (glacial acetic acid)

163–165 °C; IR (KBr) ν_{max} /cm⁻¹ 1070, 1154 (SO₂), 1272, 1332 (SO₂), 1353, 1448, 1477, 1548, 1570, 1604, 2246

(CN). ¹H NMR (400 MHz, (CD₃)₂SO) δ 7.58–7.71 (3H, m, ArH), 7.97–8.06 (6H, m, ArH). ¹³C NMR (125 MHz, (CD₃) ₂SO) δ 110.84 (CN), 119.01 (C⁴_{oxazol}), 124.45 (C_{Ph}), 128.00 (2C_{Ph}), 130.01 (2C_{Ph}), 130.80 (2C_{Ph}), 130.98 (C_{Ph}), 133.89 (C_{Ph}), 133.97 (2C_{Ph}), 136.69 (C_{Ph}), 152.45 (C⁵_{oxazol}), 164.74 (C²_{oxazol}). LCMS, *m*/*z*: 389 [M+1]⁺. Anal.calcd for C₁₆H₉BrN₂O₃S: C, 49.37; H, 2.33; N, 7.20; S, 8.24. Found: C, 49.35; H, 2.31; N, 7.12; S, 8.13.

2-(4-Fluorophenyl)-5-(phenylsulfonyl)-1,3-oxazole-4-carbo-

nitrile (4b) White solid (73%); mp (ethanol) 155–160 °C; IR (KBr) ν_{max}/cm^{-1} 1076, 1157 (SO₂), 1273, 1328 (SO₂), 1354, 1448, 1493, 1554, 1605, 2252 (CN). ¹H NMR (400 MHz, (CD₃)₂SO) & 7.40–7.58 (7H, m, ArH), 8.03–8.05 (2H, m, ArH). ¹³C NMR (125 MHz, (CD₃)₂SO) & 112.39 (CN), 117.08 (C⁴_{oxazol}), 119.64(C⁴_{oxazol}), 122.08 (C_{Ph}), 129.50 (2C_{Ph}), 129.95 (2C_{Ph}), 130.02 (2C_{Ph}), 130.57 (2C_{Ph}), 131.11 (2C_{Ph}), 152.92 (C⁵_{oxazol}), 163.56 (C²_{oxazol}). LCMS, *m/z*: 329 [M+1]⁺. Anal.calcd for C₁₆H₉FN₂O₃S: C, 58.53; H, 2.76; N, 8.53; S, 9.77. Found: C, 58.50; H, 2.74; N, 8.45; S, 9.69.

2-(4-Fluorophenyl)-5-(toluene-4-sulfonyl)-1,3-oxazole-4-carbonitrile (4c) White solid (74%); mp (ethanol) 185–188 ° C; IR (KBr) ν_{max}/cm^{-1} 1076, 1156 (SO₂), 1271, 1327 (SO₂), 1347, 1415, 1493, 1554, 1601, 2251 (CN). ¹H NMR (400 MHz, (CD₃)₂SO) δ 2.43 (3H, s, CH₃), 7.42–7.46 (2H, m, ArH), 7.57 (2H, d, J = 8 Hz, ArH), 8.02 (2H, d, J = 8Hz, ArH), 8.05–8.08 (2H, m, ArH). ¹³C NMR (100 MHz, (CD₃)₂SO) δ 21.78 (CH₃), 110.86 (CN), 117.26 (C⁴_{oxazol}), 117.48 (C_{Ph}), 118.34 (C_{Ph}), 121.17 (C_{Ph}), 128.93 (2C_{Ph}), 130.86 (C_{Ph}), 130.95 (C_{Ph}), 131.36 (2C_{Ph}), 134.54 (C_{Ph}), 147.68 (C_{Ph}), 153.40 (C⁵_{oxazol}), 163.70 (C²_{oxazol}), 164.14 (C_{Ph}). LCMS, *m/z*: 343 [M+1]⁺. Anal.calcd for C₁₇H₁₁FN₂O₃S: C, 59.64; H, 3.24; N, 8.53; S, 9.77. Found: C, 59.61; H, 3.21; N, 8.57; S, 9.72.

5-Benzenesulfonyl-2-thiophen-2-yl-1,3-oxazole-4-carboni-

trile (4d) Yellow solid (76%); mp (ethanol) 165–168 °C; IR (KBr) ν_{max}/cm^{-1} 1072, 1156 (SO₂), 1289, 1328 (SO₂), 1351, 1444, 1502, 1554, 1586, 2247 (CN). ¹H NMR (300 MHz, (CD₃)₂SO) δ 7.27 (1H, dd, $J_1 = 3.9$ Hz, $J_2 = 0.9$ Hz, thiophene), 7.74–8.12 (7H, m, ArH, thiophene). ¹³C NMR (125 MHz, (CD₃)₂SO) δ 110.23 (CN), 118.43 (C⁴_{oxazol}), 125.46 (C_{thiophene}), 128.28 (2C_{Ph}), 129.24 (C_{thiophene}), 130.40 (2C_{Ph}), 132.75 (C_{thiophene}), 134.35 (C_{thiophene}), 135.98 (C_{Ph}), 137.04(C_{Ph}), 151.64 (C⁵_{oxazol}), 160.23 (C²_{oxazol}). LCMS, *m*/ *z*: 317 [M+1]⁺. Anal.calcd for C₁₄H₈N₂O₃S₂: C, 53.15; H, 2.55; N, 8.85; S, 20.27. Found: C, 53.13; H, 2.53; N, 8.82; S, 20.24.

2-(Tert-butyl)-5-(phenylsulfonyl)-1,3-oxazole-4-carbonitrile

(4e) White solid (68%); mp (ethanol) 118-120 °C; IR

(KBr) ν_{max}/cm^{-1} 1162 (SO₂), 1267, 1354 (SO₂), 1451, 1550, 2251 (CN). ¹H NMR (400 MHz, (CD₃)₂SO) δ 1.29 (9H, s, 3CH₃), 7.75–7.91 (3 H, m, ArH), 8.07 (2H, d, J = 7.6, ArH). ¹³C NMR (125 MHz, (CD₃)₂SO) δ 28.00 (3CH_{3/butyl}), 34.82 (C_{*t*butyl}), 110.76 (CN), 117.09 (C⁴_{oxazol}), 128.58 (2C_{Ph}), 130.90 (2C_{Ph}), 136.47 (C_{Ph}), 137.49 (C_{Ph}), 153.02 (C⁵_{oxazol}), 175.48 (C²_{oxazol}). LCMS, *m/z*: 291 [M+1] ⁺. Anal.calcd for C₁₄H₁₄N₂O₃S: C, 57.92; H, 4.86; N, 9.65; S, 11.04. Found: C, 57.90; H, 4.84; N, 9.55; S, 10.92.

5-((4-Bromophenyl)sulfonyl)-2-(tert-butyl)-1,3-oxazole-4-

carbonitrile (4f) White solid (73%); mp (ethanol) 93–95 ° C; IR (KBr) ν_{max}/cm^{-1} 1164 (SO₂), 1263, 1357 (SO₂), 1466, 1550, 1572, 2251 (CN). ¹H NMR (400 MHz, (CD₃) ₂SO) δ 1.30 (9H, s, 3CH₃), 7.98 (4H, s, Ar). ¹³C NMR (125 MHz, (CD₃)₂SO) δ 27.98 (3CH_{3/butyl}), 34.78 (C_{*t*butyl}), 110.73 (CN), 117.39 (C⁴_{oxazol}), 130.55 (2C_{Ph}), 130.94 (2C_{Ph}), 133.97(C_{Ph}), 136.66 (C_{Ph}), 152.40 (C⁵_{oxazol}), 175.61 (C²_{oxazol}). LCMS, *m/z*: 367 [M–1]⁻. Anal.calcd for C₁₄H₁₃BrN₂O₃S: C, 45.54; H, 3.55; N, 7.59; S, 8.68. Found: C, 45.51; H, 3.54; N, 7.50; S, 8.60.

In vitro Anticancer Screening of the synthesized compounds

One doses full NCI 60 cell panel assay

Synthesized compounds **4a–f** were submitted to National Cancer Institute NCI, Bethesda, Maryland, U.S.A. under the Developmental Therapeutic Program DTP. The cell line panel engaged a total of 60 different human tumor cell lines derived from nine cancer types, including lung, colon, melanoma, renal, ovarian, brain, leukemia, breast and prostate.

Primary in vitro one dose anticancer screening was initiated by cell inoculating of each 60 panel lines into a series of standard 96-well microliter plates at 5000-40000 cells/well in RPMI 1640 medium containing 5% fetal bovine serum and 2 mM L-glutamine (day 0), and then preincubated in absence of drug at 37 °C and 5% CO₂ for 24 h. Test compounds were then added into the plates at one concentration of 10^{-5} M (day 1) followed to incubation for a further 48 h at the same conditions. Then the media were removed, the cells were fixed in situ, washed, and dried (day 3). The sulforhodamine B assay was used for cell density determination, based on the measurement of cellular protein content. After an incubation period, cell monolayers were fixed with 10% (wt/vol) trichloroacetic acid and stained for 30 min, after which the excess dye was removed by washing repeatedly with 1% (vol/vol) acetic acid. The bound stain was resolubilized in 10 mM Tris base solution and measured spectrophotometrically on automated microplate readers for OD determination at 510 nm.

Fig. 1 One dose mean graph for 2-substituted 5-arylsulfonyl-1,3-oxazole-4-carbonitriles against the NCI 60 human cancer cell lines at $10 \,\mu\text{M}$

Compound 4e

Compound 4f

Five doses full NCI 60 cell panel assay

Cells of all 60 lines, representing nine cancer subpanels, were incubated at five different concentrations (0.01, 0.1, 1, 10 and 100 μ M) of the tested compounds. The outcomes were used to create log₁₀ concentration *versus* percentage growth inhibition curves and three response parameters (GI₅₀, TGI and LC₅₀) were calculated for each cell line. The GI₅₀ value (growth inhibitory activity) corresponds to the concentration of the compound causing 50% decrease in net cell growth. The TGI value (cytostatic activity) is the concentration of the compound resulting in total growth inhibition. The LC₅₀ value (cytotoxic activity) is the concentration of the compound causing net 50% loss of initial cells at the end of the incubation period of 48 h.

The three dose–response parameters GI_{50} , TGI and LC_{50} were calculated for each experimental compound. Data calculations were made according to the method described by the NCI/NIH Development Therapeutics Program (https://dtp.cancer.gov/discovery_development/nci-60/defa ult.htm).

The % growth curve is calculated as:

$$[(T - T_0)/(C - T_0)] \times 100,$$

where: T_0 is the cell count at day 0, *C* is the vehicle control (without drug) cell count (the absorbance of the SRB of the control growth). *T* is the cell count at the test concentration at day 3.

The GI_{50} and TGI values are determined as the drug concentrations result in a 50 and 0% growth at 48 h drug exposure. Growth inhibition of 50% (GI₅₀) is calculated from:

$$[(T - T_0)/(C - T_0)] \times 100 = 50.$$

The TGI is the concentration of test drug where:

$$100 \times (T - T_0)/(C - T_0) = 0.$$

Thus, the TGI signifies a cytostatic effect.

The LC_{50} , which signifies a cytotoxic effect, is calculated as:

$$[(T - T_0)/T_0] \times 100 = -50,$$

when $T < T_0$.

Selectivity index (SI) of the compounds is calculated as:

$$SI = MID_p/MID_{sp}$$

where MID_p – the average sensitivity of all cell lines towards the test agent, MID_{sp} – the average sensitivity of all cell lines of a particular subpanel towards the test agent.

Results and Discussion

The one dose assay

The tumor growth inhibition properties of the synthesized compounds were screened on human cancer cell lines at the NIH, Bethesda, Maryland, USA, under the drug discovery program of the NCI, for one dose anti-cancer assay. Results for each compound were reported as a mean graph of the percent growth of the treated cells when compared to the untreated control cells. The synthesized compounds showed a distinctive sensitivity against individual cell lines (Fig. 1).

Anticancer data reveals that compound **4a** showed the growth percent ranging between—82.02 and 126.69%. The most sensitive cell lines were NCI-H522 (Non-Small Cell Lung Cancer, lethality is 82.02%,), MALME-3M (Melanoma, -47.84%), SW-620 (Colon Cancer, -37.71%), MOLT-4, SR and CCRF-CEM (Leukemia, -36.39, 27.66 and 13.84%, respectively), and TK-10 (Renal Cancer, -25.29%). It also exhibited the cell proliferation inhibition against Colon Cancer HCT-116 (99.79%), Leukemia K-562 and HL-60(TB) (98.15 and 64.0%, respectively), Breast Cancer T-47D (96.02%), Melanoma LOX IMVI and M14 (82.01 and 61.61%, respectively), and Renal Cancer ACHN (75.63%) cell lines in one dose primary assay.

Compound **4b** showed the growth percent ranging from -81.24 to 117.02%, and displayed the best cytotoxicity against NCI-H522 (lung cancer), SW-620, HCT-116 (colon cancer), and MALME-3M (melanoma) cell lines with the cell proliferation of -81.24, -55.05, -49.12, and -54.48%, respectively. This compound also showed the cytotoxic effect against Renal cancer TK-10 and ACHN (-32.5 and 0.84%, respectively), Leukemia MOLT-4 and CCRF-CEM (-24.16 and -21.44%, respectively), and Breast Cancer T-470 (-15.19%) cell lines. In addition, compound **4b** shows the cell proliferation inhibition of Leukemia SR and K-562 (99.27 and 96.72\%), Melanoma LOX IMVI and M14 (69.97 and 58.25\%), and Non Small Cell Lung Cancer NCI-H23 (50.92\%) cell lines.

Compound **4c** showed broad spectrum of lethality against the human cancer cell lines: Non-Small Cell Lung Cancer NCI-H522 (70.0%), Colon Cancer SW-620 and HCT-116 (43.18 and 23.24%, respectively), Melanoma MALME-3M and LOX IMVI (35.49 and 29.71%, respectively), Leukemia CCRF-CEM (19.15, 10.80 and 7.13%), Breast Cancer T-47D (12.27%), Renal Cancer TK-10 and ACHN (8.03 and 5.12%, respectively). Apart from this, compound **4c** also exhibited the cell growth inhibition against Leukemia K-562 (78.42%), Melanoma M14 (68.21%), Colon Cancer HT-29 (55.06%), and Non-Small Cell Lung Cancer NCI-H23 (61.33%) cell lines in one dose primary assay. Fig. 2 The anticancer activity of the synthesized compounds against the NCI 60 human cancer cell lines (five-dose assay). Note. The first column describes the subpanel and cell line involved. The next two columns list the mean optical densities (MOD) of cells at day 0 and the vehicle control, the next five columns list the MOD test for each of five different concentrations. Each concentration is expressed as the log10 (molar). The next five columns list the calculated PGs for each concentration. The response parameters GI₅₀, TGI and LC50 were interpolated values representing the concentrations at which the PG is +50, 0 and -50 respectively. Sometimes these response parameters cannot be obtained by interpolation. If, for instance, all of the PGs in a given row exceed + 50, then none of the three parameters can be obtained by interpolation. In such a case, the value given for each response parameter is the highest concentration tested and preceded by a ">" sign

$ \begin{array}{ $	NSC : D - 762	315/1				Exp	erimer	1 D : 1	112NS7				Test	Type : 08	Units : #	Molar
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Report Date :	Februa	ry 07. 20	12	_	Tes	t Date	: Decer	mber 12.	2011		_	ONS		MC :	
Unit Unit <th< td=""><td>COMI : PSG1</td><td>000025</td><td>(11215</td><td>3)</td><td></td><td>Stal</td><td>in Rea</td><td>pent : S</td><td>RB Dual</td><td>Pass</td><td>Related</td><td>i i</td><td>SSP</td><td>L: OY5P</td><td></td><td></td></th<>	COMI : PSG1	000025	(11215	3)		Stal	in Rea	pent : S	RB Dual	Pass	Related	i i	SSP	L: OY5P		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							L	ogró Cor	certration							
Martine Mar	Panel/Cell Line	Zero	Ctrl	-8.0	-7.0	-6.0	-5.0	-4.0	-8.0	-7.0	-6.0	-5.0	-4.0	0150	TGI	LC50
Name Name <th< td=""><td>CCRF-CEM HL-40(TB) K-682 MOLT-4 Off</td><td>0.438 0.860 0.167 0.461 0.316</td><td>2.018 2.682 1.333 1.752 1.654</td><td>2.015 2.653 1.326 1.512 1.500</td><td>1.780 2.708 1.233 1.994 1.601</td><td>1.091 2.799 1.036 1.532 1.354</td><td>0.432 1.995 0.122 0.365 0.250</td><td>0.319 0.476 0.121 0.376 0.223</td><td>100 999 955</td><td>55 101 91 119 90</td><td>41 106 78 83</td><td>10000</td><td>444 44 44 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</td><td>6.335-7 1.305-5 1.745-6 2.085-6 2.175-6</td><td>9.298-6 3.838-6 6.408-6 6.318-6 7.538-6</td><td>1.005-4 1.005-4 1.005-4 1.005-4 1.005-4 1.005-4</td></th<>	CCRF-CEM HL-40(TB) K-682 MOLT-4 Off	0.438 0.860 0.167 0.461 0.316	2.018 2.682 1.333 1.752 1.654	2.015 2.653 1.326 1.512 1.500	1.780 2.708 1.233 1.994 1.601	1.091 2.799 1.036 1.532 1.354	0.432 1.995 0.122 0.365 0.250	0.319 0.476 0.121 0.376 0.223	100 999 955	55 101 91 119 90	41 106 78 83	10000	444 44 44 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6.335-7 1.305-5 1.745-6 2.085-6 2.175-6	9.298-6 3.838-6 6.408-6 6.318-6 7.538-6	1.005-4 1.005-4 1.005-4 1.005-4 1.005-4 1.005-4
Section 2 and 2 an	Ron-Gmail Cell Lung A545/ATCC EXVX HOP-62 HOP-62 NCI-H226 NCI-H226 NCI-H236 NCI-H236	Cancer 0.314 0.576 0.503 0.955 0.638 0.658 0.658	1,455 1,170 0,771 1,395 1,331 2,229 2,311	1.453 1.124 0.707 1.371 1.339 2.187 9.368	1,412 1,133 0,700 1,346 1,340 2,152 2,540	1,417 1,127 0,743 1,368 1,321 2,131 2,131	1,406 0,588 0,672 0,474 1,328 1,223 2,153	0.076 0.294 0.120 0.034 0.053 0.110 0.094	100 92 930 94 101 97	\$328535	97 93 43 99 3 5	242923	2485664	1.882-6 2.962-6 1.012-0 1.922-6 1.822-6 4.422-6 4.422-6	3.61E-6 1.10E-6 3.60E-0 4.39E-6 3.32E-6 3.32E-6 3.52E-6	7.068-6 = 1.008-4 0.420-3 0.682-6 6.058-6 4.708-6 7.878-6
Notestimination Notestimin	NCI-H522 Doion Cancer COLO 205 HCC-2998 HCT-115 HT25 HT25 KM12 OVF 620	0.676 0.279 0.591 0.292 0.198 0.493 0.244	1.404 0.930 1.656 1.874 1.855 1.066 1.956 1.497	1,192 1,013 1,655 1,655 1,655 1,123 2,027 1,475	1.396 1.026 1.597 1.732 1.867 1.361 2.041 1.490	0.960 1.020 1.723 1.697 1.657 1.159 2.097 1.601	0.041 1.647 0.038 0.128 0.112 2.013 0.004	-0.008 0.058 -0.008 0.049 0.069 0.069 0.060 0.010	12 22 22 22 22 22 22 22 22 22 22 22 22 2	99 115 112 91 112 90 111 105 99	39 114 1022 90 110 100	8268888 21	\$ 2222448	6.525-7 2.046-6 1.765-8 1.915-6 2.045-6 2.506-6 1.545-6 1.545-6	2,212-6 3,272-8 3,565-6 4,312-6 3,565-6 3,565-6 3,565-6 3,565-6	6.152-6 6.658-6 6.672-5 9.122-6 1.968-6 6.512-5 6.142-6
Normality Normality <t< td=""><td>2NS Canoer SF-268 SF-295 SF-399 SNB-19 SNB-75</td><td>0.496 0.819 0.695 0.650 0.735</td><td>1.466 2.473 1.716 1.969 1.327</td><td>1,488 2,372 1,729 1,856 1,188</td><td>1.814 2.337 1.765 1.822 1.174</td><td>1.528 2.330 1.752 1.608 1.171</td><td>1.091 2.356 0.742 1.024 1.200</td><td>0.032 0.417 0.001 0.607 0.007</td><td>103 94 101 91 76</td><td>105 92 105 09 74</td><td>106 91 103 88 74</td><td>61 93 5 89 80</td><td>4907.9</td><td>1.185-5 2.005-5 3.470-6 2.565-5 1.475-5</td><td>2,496-6 4,512-5 1,112-6 8,532-6 2,806-5</td><td>5.238-5 > 1.008-4 3.338-5 > 1.008-4 5.328-5</td></t<>	2NS Canoer SF-268 SF-295 SF-399 SNB-19 SNB-75	0.496 0.819 0.695 0.650 0.735	1.466 2.473 1.716 1.969 1.327	1,488 2,372 1,729 1,856 1,188	1.814 2.337 1.765 1.822 1.174	1.528 2.330 1.752 1.608 1.171	1.091 2.356 0.742 1.024 1.200	0.032 0.417 0.001 0.607 0.007	103 94 101 91 76	105 92 105 09 74	106 91 103 88 74	61 93 5 89 80	4907.9	1.185-5 2.005-5 3.470-6 2.565-5 1.475-5	2,496-6 4,512-5 1,112-6 8,532-6 2,806-5	5.238-5 > 1.008-4 3.338-5 > 1.008-4 5.328-5
Normality Normality <t< td=""><td>Melanoma Lox Invit MLME-3M M14 MDA-MB-435 GK-MEL-25 GK-MEL-25 GK-MEL-25 UACC-62</td><td>0.200 0.555 0.415 0.473 0.507 0.523 0.550 0.579</td><td>1,401 1,671 1,244 1,850 1,263 1,263 1,260 1,200 2,143</td><td>1,444 1,728 1,319 1,804 1,636 1,249 2,648 1,182 2,549</td><td>1.322 1.735 1.350 1.783 1.658 1.229 2.622 1.163 2.056</td><td>1.173 1.721 1.324 1.762 1.617 1.235 2.609 1.141 1.984</td><td>0.116 1.370 0.313 0.645 1.361 1.076 2.413 0.317 1.179</td><td>0.063 0.201 0.011 0.042 0.049 -0.013 -0.014 0.005 0.005</td><td>**********</td><td>882318233</td><td>7050 100 100 100 100 100 100 100 100 100</td><td>\$23~7×22</td><td>787740099</td><td>1.502-6 1.452-5 3.112-6 1.342-5 1.352-5 1.452-5 2.038-6 5.942-6</td><td>3.632-6 3.332-6 6.562-6 1.132-6 2.692-5 2.692-5 3.012-5 4.602-6 1.902-5</td><td>5.242-5 7.672-5 2.242-5 3.742-5 5.452-5 5.152-5 1.362-5 1.362-5 4.452-5</td></t<>	Melanoma Lox Invit MLME-3M M14 MDA-MB-435 GK-MEL-25 GK-MEL-25 GK-MEL-25 UACC-62	0.200 0.555 0.415 0.473 0.507 0.523 0.550 0.579	1,401 1,671 1,244 1,850 1,263 1,263 1,260 1,200 2,143	1,444 1,728 1,319 1,804 1,636 1,249 2,648 1,182 2,549	1.322 1.735 1.350 1.783 1.658 1.229 2.622 1.163 2.056	1.173 1.721 1.324 1.762 1.617 1.235 2.609 1.141 1.984	0.116 1.370 0.313 0.645 1.361 1.076 2.413 0.317 1.179	0.063 0.201 0.011 0.042 0.049 -0.013 -0.014 0.005 0.005	**********	882318233	7050 100 100 100 100 100 100 100 100 100	\$23~7×22	787740099	1.502-6 1.452-5 3.112-6 1.342-5 1.352-5 1.452-5 2.038-6 5.942-6	3.632-6 3.332-6 6.562-6 1.132-6 2.692-5 2.692-5 3.012-5 4.602-6 1.902-5	5.242-5 7.672-5 2.242-5 3.742-5 5.452-5 5.152-5 1.362-5 1.362-5 4.452-5
Number Numer Numer Numer <td>Dvarlan Cancer IDROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-5 NCIADR-RE5 SK-OV-3</td> <td>0.590 0.517 0.534 0.597 0.417 0.532 0.487</td> <td>1,231 1,299 1,093 1,371 1,684 1,726 1,030</td> <td>1,215 1,355 1,097 1,371 1,709 1,744 1,545</td> <td>1.228 1.402 1.013 1.509 1.636 1.694 1.063</td> <td>1.247 1.399 1.643 1.602 1.632 1.632 1.720 1.027</td> <td>0.169 0.320 1.549 0.579 1.233 1.064</td> <td>0.045 0.015 0.025 0.004 0.313 0.014</td> <td>97 105 101 102 102 101 103</td> <td>99 138 138 158 57 10</td> <td>102 113 103 99 99</td> <td>7792285</td> <td>8787878 77</td> <td>2.008-6 2.068-6 1.768-6 3.568-6 1.228-5 1.898-5</td> <td>3.898-6 3.688-6 4.948-6 5.178-5 1.308-6 3.868-6 3.386-6 3.338-6</td> <td>7.548-6 6.548-6 1.518-6 3.728-0 3.648-5 - 1.008-4 5.668-5</td>	Dvarlan Cancer IDROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-5 NCIADR-RE5 SK-OV-3	0.590 0.517 0.534 0.597 0.417 0.532 0.487	1,231 1,299 1,093 1,371 1,684 1,726 1,030	1,215 1,355 1,097 1,371 1,709 1,744 1,545	1.228 1.402 1.013 1.509 1.636 1.694 1.063	1.247 1.399 1.643 1.602 1.632 1.632 1.720 1.027	0.169 0.320 1.549 0.579 1.233 1.064	0.045 0.015 0.025 0.004 0.313 0.014	97 105 101 102 102 101 103	99 138 138 158 57 10	102 113 103 99 99	7792285	8787878 77	2.008-6 2.068-6 1.768-6 3.568-6 1.228-5 1.898-5	3.898-6 3.688-6 4.948-6 5.178-5 1.308-6 3.868-6 3.386-6 3.338-6	7.548-6 6.548-6 1.518-6 3.728-0 3.648-5 - 1.008-4 5.668-5
Note Note <th< td=""><td>Renai Canter 766-0 A496 ACHN CANH RXF 393 SNI2C TK-10 UO-31</td><td>0.834 1.307 0.312 0.656 0.466 0.738 0.555</td><td>2.311 1.838 1.319 1.038 1.220 1.829 1.232 1.889</td><td>2343 1722 1393 1298 1234 1298 1237 1372</td><td>2.402 1.721 1.462 1.034 1.290 1.754 1.274 1.558</td><td>2.391 1.687 1.444 1.803 1.289 1.771 1.285 1.656</td><td>2.393 1.736 0.043 0.229 1.017 0.320 0.047</td><td>0.143 0.010 -0.009 -0.002 0.002 0.014 -0.003 0.014</td><td>102 707 104 100 100</td><td>87482398</td><td>1072202281157</td><td>8444448</td><td>-53 -090 -1000 -100 -100 -100 -100 -100 -10</td><td>1.975-8 1.485-5 2.065-6 1.878-4 2.245-6 6.705-6 2.315-6 1.785-6</td><td>3.638-5 2.812-5 3.662-6 4.296-6 1.972-5 4.596-6 3.272-6</td><td>6.692-5 5.332-5 6.562-6 8.078-4 8.228-6 4.552-5 9.132-6 6.022-6</td></th<>	Renai Canter 766-0 A496 ACHN CANH RXF 393 SNI2C TK-10 UO-31	0.834 1.307 0.312 0.656 0.466 0.738 0.555	2.311 1.838 1.319 1.038 1.220 1.829 1.232 1.889	2343 1722 1393 1298 1234 1298 1237 1372	2.402 1.721 1.462 1.034 1.290 1.754 1.274 1.558	2.391 1.687 1.444 1.803 1.289 1.771 1.285 1.656	2.393 1.736 0.043 0.229 1.017 0.320 0.047	0.143 0.010 -0.009 -0.002 0.002 0.014 -0.003 0.014	102 707 104 100 100	87482398	1072202281157	8444448	-53 -090 -1000 -100 -100 -100 -100 -100 -10	1.975-8 1.485-5 2.065-6 1.878-4 2.245-6 6.705-6 2.315-6 1.785-6	3.638-5 2.812-5 3.662-6 4.296-6 1.972-5 4.596-6 3.272-6	6.692-5 5.332-5 6.562-6 8.078-4 8.228-6 4.552-5 9.132-6 6.022-6
Compound 4a	Prostate Canoer PC-3 DU-145	0.513	1.881	1.868	1.835	1.872	1,793	0.074	29	97 110	22	24	-05	1.788-6	3.338-6	6.328-5
Compound 4a	516362 Cancer MCF7 MDA-MB-2351ATC0 HD 578T 8T-429 T-47D MDA-MB-258	0.268 0.490 1.204 0.840 0.624 0.549	1.563 1.064 1.850 1.431 1.475 0.895	1.401 1.052 1.801 1.507 1.411 0.896	1.396 1.091 1.744 1.563 1.507 0.911	1.417 1.018 1.756 1.552 1.420 0.888	0.459 0.517 1.767 1.043 0.330 0.242	0.014 0.024 0.005 0.005 0.310 0.126	47 98 92 113 90	87 105 64 122 91 105	99252398	242242	288688	3.345-6 3.025-6 1.925-5 6.575-6 2.015-6 2.058-6	1.365-5 1.115-5 4.555-5 1.805-5 4.555-5 4.555-6 4.335-6	3.905-5 3.525-5 > 1.005-4 4.275-5 7.505-5 9.155-6
						(Co	m	po	un	ıd	4a	ı			
				0.1011	sano		In-	Vitro	Testi	ng R	esult	s	Pour	co i rogra		
In-Vitro Testing Results	NSC : D - 762	311/1				Exp	erimer	e ID : 1	112NS7	1			Test	Type : 08	Units : F	Molar
In-Vitro Testing Results NSC:0-782311/1 Experiment ID:11124871	Report Date :	Februa	y 07, 20	012		Tes	t Date	: Decer	viber 12,	2011			QNS		MC :	
NBC 10-762311 / 1 Experiment ID: 1112NS71 Text Type : 08 Units : Molar Repert Date : February 07, 2012 Text Date : Desember 12, 2011 OMS : MC :	COMI : PSG1	000021	(11214	5)		Sta	in Rea	pent : S	RB Dual	-Pass	Related	5	SSP	L: CY5P		
Exercise Oracle (Construction) Device Operation Transmission In-Vitro Testing Peebulis Testing Peebulis Units Maar Reperiment D:::1105/11 Experiment D::1105/11 Bit Type: 68 Units Maar Reperiment D:::1105/11 Experiment D::1105/11 Bit Type: 68 Units Maar COM:: P50100021 (12146) Stain Reager: 1988 Dui-Pass Related 59%; DYP Experiment D::1105/11		Time			Mean	0,000	Denst	9910 Cor 65	certration		ercent o	itowith				
Inv.Vtro Testing Results Testing Results 062.0.74231111 September 0: 1115011 Test Type 100 Units Maar Repert Own Fileworks Test Type 100 Units Maar Units Maar COM POD002011121401 Test Type 100 Units Maar Units Maar Def POD002011121401 Sam Respect 1580 Duark Pass Readed DSRL 0178 DSRL 0178 NextMont On the One of 4.0 of	Panel/Cell Line Leukemia	Zero	CIN	-8.0	-7.0	-6.0	-9.9	4.0	-6.0	17.4		-0.0		0.00	101	LCSO

1.000-4 6.315-6 1.006-4 1.006-4 1.006-4 1.006-4

1.00E-4 1.00E-4 1.00E-4 1.00E-4

1.008-4 1.008-4 6.908-4 1.008-4 1.008-4 6.338-4 6.338-4 6.308-4

÷ 1.005-4 > 1.005-4

CNS Ca SF-258 SF-258 SF-258 SNB-15 SNB-75 0.496 0.819 0.093 0.650 1.496 2.433 1.772 1.961

Velanoma LOK INV MALME-1 M14 MDA-MB SK-MEL-1 SK-MEL-1 SK-MEL-1 UACO-25

1.805 1.753 1.717 1.625 1.415 1.291 1.310 1.278 0.876 0.643

100 113 96 93 86 119 115 64

1.437 1.430 1.347 1.381 0.154 0.092 92 92 91 4.3 466 1.860 1.324 1.207 1.313 0.441 0.2727 94 106 92 -0 45 1.840 1.324 1.207 1.313 0.441 0.2727 94 106 92 -0 45 1.843 1.842 1.341 1.346 1.846 1.864 95 19 18 -14 4.2 1.844 1.445 1.446 1.441 0.266 0.364 115 109 107 44 4.4 0.752 0.777 0.776 0.778 0.278 0.101 95 94 94 95 95 47 -42

0.513 1.809 0.381 1.160

						In	Vitro	Testi	ng R	esult	ts		io i iogia		
NSC : D - 7622	Exp	erime	nt ID : 11	12NS71				Test	Type : 08	Units : N	Molar				
Report Date : P	-eoruar	y 07. 20	12		Tes	t Date	: Decen	iber 12,	2011			QNS		MG :	
COMI : PSG10	00020	(11082)	3)		Sta	in Rea	gent : SF	RB Dual-	Pass I	Related	i i	SSPI	: 0Y5P		
						L	aatti Cana	entration							
Panel/Cell Line	Time Zero	Ctrl	-8.0	Mear -7.0	-6.0	-6.0	46 -4.0	-8.0	-7.0 P	ercent G -6.0	roeth -5.0	~4.0	9150	TĢI	υ
CORF-CEM	0.438	1.991	1.931	1.874	1.280	0.394	0.503	96	92	54	-10	.4	1.165-6		- 1
HL-60(10) K-682	0.860	1,228	1.326	1,208	1.083	0.143	0.532	104	100	109	-18	-38	0.920-0	3.190-0	- 11
MOLT-4	0.461	1,712	1.617	1.993	1.662	0.331	0.403	105	120	22	-28	-13	2.338-0	5.52E-0 7.788-0	- 11
Non-Small Cell Lung	Canoer														
AS45IATCC	0.314	1,462	1,411	1.396	1,449	1,421	0.119	96	54	99	96	-12	1.968-6	4.068-5	
H0P-62	0.303	0.716	0.724	6713	0.736	0.651	0.164	102	40 99	105	64		1.645-5	4.448-5	- 11
H0P-92	0.965	1.412	1.403	1.365	1.378	0.305	0.100	- 58	- 65	92	-69	-90	1.825-6	3.725-6	- 7
NCI-H226	0.638	1.304	1.274	1.275	1.342	1,275	0.347	25	96	106	25	-45	2.118-6	4.766-5	1
NCI-H460	0.285	2,434	2.392	2.331	2.356	2.276	0.112	98	- 95	- 56	93	-41	1.908-5	4.028-5	- i
NCI-H522	0.678	1,443	1.414	1.435	0.821	0.235	0.063	96	99	19	-65	-92	4.076-7	1.675-6	
Colon Cancer		0.043	0.074				0.004	103				-0.0	2,008.4	1448.4	
HCC-2998	0.591	1.009	1.730	1.871	1.700	1.820	0.082	90	100	94	- 16	-16	1,798-6	3.378-6	ě
HCT-116	0.219	1.614	1.884	1.694	1.893	0.047	0.034	98	106	58	-79	-65	1.885-6	3.608-6	- 6
HCT-15	0.292	2.001	1.982	2.003	1.957	0.123	0.069		100	97	-58	-76	2.025-6	4.238-6	
KM12	0.493	2.028	2.054	2.060	2.030	2.027	0.126	102	102	100	100	-75	1.938-6	3.745-5	7
5W-620	0.244	1.585	1.494	1.524	1.884	0.049	0.028	93	95	58	-80	-69	1.858-6	3.548-6	
CNS Canoer	0.456	1.54	1.538	1.651	1.642	1 254	0.140	100	100	101	73	.22	1445.6	3.195.4	
07-295	0.819	2,452	2.345	2.275	2.327	2.352	0.715	93	89	92	94	-13	2.588-5	7.596-5	1
57-539	0.655	1.811	1.765	1.818	1.755	0.759	0.136		101	25		-60	3.192-6	1.178-6	1
0ND 75	0.735	1.022	1,222	1.173	1.204	1.255	0.015	65	76	60	00	-56	1.610-6	2,500-6	- 14
Melanoma															
LOK IMVI	0.255	1,828	1,478	1,444	1,218	0.104	0.126		.53	.25	-09	-01	1.558-6	3.638-6	- 4
M14	0.415	1,292	1,209	1.371	1.204	0.235	0.037	100	109	97	-43	-91	2.170-0	4.940-5	
MOA-MB-435	0.473	1.796	1.714	1.723	1.704	0.822	0.068	94	54	93	26	-06	4.425-6	1.725-5	
5X-MEL-2 5X-MEL-28	0.861	1,678	1,736	1,747	1,789	1.653	0.204	107	108	114	97	-78	1.878-6	3.638-6	7
SK-MEL-5	0.523	2.595	2.656	2.647	2.580	2.302	0.003	103	102	99	86	-100	1.568-5	2.918-5	
UA00-257	0.550	1.180	1.159	1.133	1.136	0.339	0.005	97	90	93	-38	-99	2.138-6	5.106-6	1
0400-82	0.5/9	2.100	2,060	2.091	2,000	1,210	0.042	92	74	34	50	-93	1.130-0	2.435-0	
Ovarian Canoer	0.592	1,249	1.225	1.222	1,200	0.172	0.000	10	10	102	-71	-91	2.005-0	3.010-0	
OVCAR-3	0.517	1.276	1.309	1,268	1,318	0.058	0.065	104	99	106	-69	-68	1.938-6	3.456-6	
OVCAR-6	0.534	1.099	1.062	1.628	1.046	1.645	0.034	93	- 67	- 21	-47	-03	1.975-6	4.552-6	
OVCAR-8	0.417	1.711	1.642	1.614	1.618	0.646	0.015		- 65	63	18	47	3.718-6	1.438-6	
NCUADR-RES	0.532	1.751	1.742	1.721	1.731	1.299	0.359	95	37	50	62	-33	1.355-5	4.545-5	- 11
Ranni Chrone		- ANE 1	- 494							-49	-17		A - 1010	4619	
700-0	0.034	2.290	2.349	2.027	2.529	2,010	0.271	104	110	102	110	-00	2.270-0	4,270-0	
ACHIN	1.307	1,058	1.679	1.667	1.652	1.668	0.019	73	.10	67		-22	1.325-5	2.615-5	
CANI-1	0.638	1.922	1.879	1,799	1,055	0.209	0.049	97	10	- 20	-55	-92	1,995-6	4,305-6	
RXF 363	0444	1.125	1.122	1.124	1.132	0.043	0.001	66	100	102	-94	-100	1.8.08-6	3.328-4	-
SIN12C	0.466	2.041	1.006	1.656	1.624	1.425	0.034	.90			61	-93	1,105-5	2.496-5	5
UD-31	0.555	1,675	1,558	1,558	1.615	0.007	0.024	.00	90	95	-95	-44	1,735-6	3.196-6	
Prostate Ganger															
PO-3	0.513	1.005	1.769	1,740	1.744	1.767	0.206	97	.95	95	97	-60	1.995-5	4.155-5	
Breast Cancer	4.461	1.467	1.401			144	*****	-104		. 14		- 48		1,4510	
MCF7	0.268	1.002	1,453	1,414	1,452	0.472	0.024	92	.09	92	10	-91	3.570-6	1.410-0	
MDA-MB-231IATCC	0.490	1.155	1.165	1.151	1.120	0.741	0.065	100	102	23	37	-67	5.925-6	2.005-5	
The scale	1494	1.958	1.790	1.478	1.423	- 625	w.re2	12		- 47	- 47		1.460-0	a x 0 6 - 0	
87-549	0.540	1.445	1.479	1.585	1.546	1.147	0.038	106	124	117	81	-54	1.018-6	2 228-6	

Compound 4b

		Natio	onal	Cano	er Ir	nstitu In-	te D Vitro	evelop Testi	men ng R	tal T esult	hera s	peutic	s Progran	n	
NSC : D - 762	317/1				Exp	erimer	t ID : 1	112NS71				Test T	ype:08	Units : N	lolar
Report Date :	Februar	y 07, 20	12		Tes	n Date	: Dece	mbar 12,	2011			QNS :		MC :	
COMI : PSG1	Stai	in Rea	pent : S	RB Dual-	Pass P	Related		SSPL	: 0Y5P						
			_	L	igito Co	rcentration									
Panel/Cell Line	Time Zero	Ctrl	-8.0	-7.0	-6.0	-5.0	4.0	-8.0	-7.0	-6.0	-5.0	-4.0	0.60	101	LCSD
CORF-CEM HL-60(T8) K-602 MOLT-4 DR	0.438 0.860 0.167 0.461 0.310	1.851 2.393 1.210 1.635 1.094	1.887 2.499 1.170 1.670 1.400	1.800 2.128 1.094 1.613 1.430	1.001 2.325 0.824 1.383 1.310	0.325 1.424 0.103 0.290 0.275	0.400 0.414 0.099 0.333 0.200	903 907 96 903 03	96 83 89 91	46 96 63 79 70	-26 37 -35 -37 -10	44797	8.178-7 8.968-6 1.348-6 1.768-6 1.048-0	4.34E-6 2.60E-5 4.18E-6 4.77E-6 7.00E-0	> 1.005-4 9.535-5 > 1.005-4 > 1.005-4 > 1.005-4
Non-Ornal Cell Lung AsiaSiATCC EXVX HOP-02 HOP-02 NCI-H226 NCI-H225 NCI-H23 NCI-H23 NCI-H420 NCI-H522	Canoer 0.314 0.576 0.303 0.988 0.638 0.658 0.285 0.678	1,402 1,256 0,694 1,416 1,233 2,239 2,367 1,439	1.395 1.160 0.694 1.293 1.169 2.175 2.452 1.375	1,410 1,156 0,671 1,387 1,180 2,215 2,396 1,221	1.372 1.149 0.724 1.394 1.200 2.091 2.239 0.691	1.376 0.492 0.627 0.245 1.053 1.139 2.167 0.265	0.062 0.291 0.053 0.181 0.052 0.052 0.067 0.174	នទំនន់ទំនន់	28282822	5325383*	<u> </u>	100000000	1.000-6 2.220-6 1.540-6 1.640-6 3.700-6 1.600-6 1.600-6 2.000-7	3.705-5 7.112-5 3.612-5 2.652-5 3.682-5 3.682-5 1.562-5	7.248-5 > 1.008-4 0.308-5 7.308-6 8.648-5 4.678-5 7.548-6 6.698-6
Colon Canoer COLO 205 HCC-2998 HCT-116 HCT-15 HCT-15 HT29 KM12 OW-620	0.279 0.591 0.292 0.198 0.493 0.244	0.878 1.759 1.543 1.952 1.103 2.034 1.071	0.929 1.697 1.511 1.876 1.126 1.997 1.500	0.904 1.752 1.575 1.835 1.115 1.972 1.673	0.925 1.748 1.601 1.873 1.163 2.040 1.477	0.038 1.626 0.027 0.132 0.088 1.937 0.043	0.028 0.066 0.079 0.110 0.149 0.078 0.042	2828882	14 9 2 2 2 2 3 5 8 0	108 109 109 109 109 109 109 109 109 109	****	****	1.982-6 1.652-5 1.922-6 2.001-6 2.232-6 1.762-6 1.762-6	3.585-6 3.165-5 3.495-6 4.315-6 4.545-6 3.365-5 3.365-6	6.452-6 6.027-5 6.352-6 9.298-6 6.422-5 6.522-6
CNS Cancer SF-268 SF-295 SR-395 SNB-19 SNB-75	0.496 0.819 0.650 0.650 0.735	1.543 2.581 1.607 1.919 1.315	1.517 2.390 1.411 1.868 1.226	1.517 2.411 1.730 1.810 1.235	1.547 2.384 1.650 1.857 1.193	1.170 2.203 1.003 1.741 1.215	0.172 0.558 0.003 0.113 0.037	57 89 27 8 50 50	90 90 91 85	100 89 95 95 79	64 79 55 83	음음-12음 음	1.298-6 1.818-6 3.200-6 1.638-6 1.538-6	3.145-5 5.145-5 1.705-0 3.235-5 2.925-5	7.625-5 > 1.005-4 4.002-0 5.405-5 5.585-5
Melanoma Lolix Invi MALMS-3M M14 NCA-MB-435 SK-4MEL-28 SK-4MEL-28 SK-4MEL-28 SK-4MEL-28 UACC-62 UACC-62	0.255 0.558 0.415 0.851 0.507 0.523 0.550 0.579	1,405 1,694 1,263 1,867 1,862 1,262 2,324 1,199 1,968	1.333 1.750 1.227 1.910 1.643 1.265 2.262 1.192 1.937	1.575 1.672 1.226 1.907 1.683 1.264 2.274 1.195 1.951	1.060 1.733 1.299 1.769 1.749 1.234 2.252 1.179 1.935	0.004 1.368 0.191 0.677 1.346 1.642 0.229 1.265	0.100 0.086 0.085 0.044 0.177 0.016 0.011 0.026 0.046	884888888	2222222222	1223238858	\$23252559	ㅎ ☆\$\$\$\$\$\$	1.425-6 1.396-6 3.525-6 1.201-6 1.3976-6 1.3976-6 2.025-6 9.385-6	3.200-0 2.678-6 4.658-6 1.378-6 2.738-6 2.738-6 2.738-6 4.278-6 4.278-6 2.228-6	7.525-6 5.978-5 9.425-6 4.098-5 5.318-5 5.318-6 9.058-6 9.058-6 5.038-5
Ovartan Canoer 15/ROV1 OVCAR-3 OVCAR-4 OVCAR-4 OVCAR-5 NCIAOR-RES DX-OV-3	0.590 0.517 0.534 0.597 0.417 0.532 0.487	1.316 1.339 1.108 1.586 1.797 1.648 1.051	1,252 1,364 1,115 1,626 1,815 1,677 1,073	1.272 1.377 1.088 1.537 1.770 1.736 1.083	1.231 1.406 1.077 1.551 1.661 1.712 1.083	0.157 0.072 0.278 1.422 0.511 1.189 0.569	0.118 0.181 0.335 0.055 0.217 0.292 0.146	91 103 104 101 103 104	315 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8	20,8552	78427 84	음음음음음음음	1.735-6 1.996-6 2.065-6 3.035-6 1.225-6 1.225-6 1.666-6	3.51E-6 3.60E-6 4.61E-6 3.01E-5 1.33E-5 3.68E-5 3.60E-6	7.155-6 6.528-6 > 1.002-4 > 1.002-4 > 1.002-4 > 1.002-4 7.418-5
Ranai Cancer 786-0 A498 ACHN CAX5-1 RXF 393 SN12C TX-10 UO-31	0.834 1.307 0.312 0.656 0.466 0.738 0.555	2.207 1.804 1.386 9.116 1.068 1.786 1.304 1.666	2.207 1.694 1.360 9.549 1.063 1.742 1.276 1.444	2.250 1.713 1.386 1.063 1.062 1.788 1.264 1.490	2.249 1.782 1.407 1.888 1.098 1.712 1.324 1.565	2.182 1.714 0.030 0.000 0.031 1.027 0.108 0.013	0.256 0.050 0.021 0.049 0.017 0.021 0.180 0.018	975555559	10 82 10 9 90 10 9 10 9 10 9 10 9 10 9 10 9 1	23 8 22 2 2 4 4 5	에 있어? 아무하 다	*****	1.948-5 1.518-5 1.868-6 1.668-4 1.928-6 7.178-6 1.928-6 1.658-6	3.858-5 2.888-5 3.818-6 3.818-6 2.038-6 2.038-6 3.538-6 3.038-6	7.648-5 5.508-5 7.708-6 5.978-6 4.688-5 6.508-6 5.508-6
Prostate Canoer PC-3 DU-145	0.513 0.381	1.801 1.223	1.802 1.258	1.777	1.747 1.289	1.689 1.084	0.070	900 904	98 100	96 108	91 83	-66 -93	1.718-6 1.888-6	3.268-5 2.568-5	6.248-5 8.738-5
MOAME-231047 MOA-MB-23104T00 HD 578T 87-549 T-270 MDA-MD-455	0.268 0.490 1.204 0.840 0.624 0.549	1.542 1.110 1.944 1.479 1.450 0.792	1.505 1.157 1.910 1.453 1.424 0.752	1,469 1,132 1,899 1,499 1,497 0,764	1,443 1,092 1,932 1,499 1,462 0,773	0.455 0.553 1.618 1.041 0.319 0.160	0.082 0.047 0.760 0.023 0.332 0.149	97129695788	322225	927923592	151743197	-70-0-7-0-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7	3.508-6 3.545-6 1.598-5 5.518-6 2.205-6 1.515-6	1,498-6 1,432-5 4,925-5 1,762-5 4,732-5 3,582-6	5.868-6 4.192-5 > 1.005-4 4.292-6 - 1.002-4 7.452-6

Compound 4c

1.005-4 > 1.00E-4 > 1.00E-4

2.62E-6 2.61E-6 1.00E-4 2.55E-6 2.10E-6 4.798-6 7.985-6 - 1.005-4 8.268-6 4.905-6 2.098-4 > 1.008-4 > 1.008-4 > 1.008-4 > 1.008-4 > 1.008-4

Mean Optics AUBAMIS CCRF-CE HL-60(TB K-562 MOLT-4 0.438 1.991 0.860 2.874 0.167 1.278 0.461 1.712 56 -12 -14 99 -15 -54 99 -16 -40 99 -16 -40 90 -17 -40 90 -17 -40 90 -17 -14 1.228-6 2.118-6 1.258-6 2.198-6 2.658-6 6.668-6 4.452-6 5.772-6 5.802-6 0.202-6 1.008-4
 9.548-6
 1.008-4
 1.008-4
 1.008-4 1.308 0.386 0.375 2.661 0.403 0.367 0.804 0.137 0.110 1.590 0.332 0.278 \$\$225 2,635 83 85 99 7.60E-5 1.21E-5 6.53E-6 1.00E-4 5.59E-5 6.44E-5 5.96E-6 6.388-6 7.88E-6 7.88E-6 7.40E-6 6.57E-6 CNS Car SF-268 SF-298 SF-539 SNB-19 SNB-75 0.496 0.819 0.695 0.655 7.11E-0 7.56E-0 9.27E-0 1.00E-4 1.534 2.452 1.611 1.954 1.29E-5 1.67E-5 2.15E-6 2.03E-5 3.038-6 3.558-6 4.465-6 5.228-6 Aelanomi Lox INV MALME-M14 MDA-ME SK-MEL-SK-MEL-UACC-21 UACC-21 0.090-0 6.328-8 6.970-6 2.718-8 6.668-8 3.688-8 5.188-6 7.368-6 5.208-6 7.448-6 3.578-4 3.498-4 4.058-4 3.128-6 9.338-4 1.718-6 6.000-6 8.208-6 > 1.008-4 9.508-5 Renar o 786-0 A438 ACHN CAKI-1 RXF 3 SN120 TK-10 UO-31 0.834 1.301 0.510 0.654 0.464 0.735 0.551 7.358-6 8.238-6 8.238-6 8.048-4 8.978-6 8.128-6 6.458-6 6.278-6 2.29 1.81 1.33 1.92 1.12 2.54 1.22 1.87 1.88E-1.38E-1.88E-1.88E-1.88E-1.78E-1.78E-1.97E-1.97E-1.80E-1.66E-5 1.01E-5 0.513 1.805 1.808 1.791 1.796 1.615 0.128 0.381 1.231 1.240 1.235 1.264 0.811 0.028 3.405-5 6.97E-5 100 .22 .27 65 -75
 0.260
 1.852
 1.486
 1.835
 1.539
 0.134
 0.091
 96
 99
 90
 40
 460

 0.2460
 1.955
 1.486
 1.835
 1.211
 0.246
 0.054
 0.05
 0.33
 -27
 -37

 1.254
 1.346
 1.052
 1.896
 1.805
 1.896
 1.825
 1.98
 -27
 -37

 1.254
 1.346
 1.052
 1.896
 1.805
 1.896
 1.826
 1.98
 -27
 -37

 0.2464
 1.402
 1.496
 1.826
 1.264
 1.84
 -37
 -37
 -37
 -37

 0.2464
 1.402
 1.496
 1.207
 1.202
 58
 502
 1.53
 -37
 -37

 0.2464
 1.432
 1.442
 1.444
 1.444
 -37
 -37
 -37
 -37

 0.549
 1.436
 0.259
 0.157
 0.250
 59
 59
 59
 1.54
 -37
 -37

 0.549
 0.158< 2,138-6 2,298-6 2,058-6 2,668-6 2,178-6 4.622-6 5.942-6 8.852-6 6.712-6 4.442-4 1.008-5 2.405-5 - 1.006-4 2.475-5 Compound 4e

Compound 4d

NSC : D - 76	5447 / 1				Exp	erime	t ID : 12	07NS06				Test	Type : 08	Units : 7	Nolar
Report Date	Septer	iber 05.	2012		Tes	A Date	July 1	1, 2012				QNS		MC :	
COMI : PSG:	000037	(11236	4)		544	in Rea	gent : Si	RB Dual	Pass	Relate	±	SSPL	: 0Y5P		
						L	g10 Con	centration				-			
PanelCell Line	Time Zero	CHI	-6.0	Mean -7.0	-6.0	-5.0	4.0	-8.0	-7.0 P	ercent o -6.0	-5.0	-4.0	G150	TOI	
CCRF-CEM HL-60(TB) K-662	0.627 0.895 0.240	2.673 2.573 1.809	2.675 2.835 1.851	2,472 2,742 1,905	1.639 2.732 1.356	0.364 0.578 0.195	0.478 0.549 0.170	100 116 98	90 110 106	49 109 68	-37 -35 -19	4983	9.696-7 2.575-6 1.600-6	3.72E-6 5.69E-6 6.07E-6	÷
5/PMI-0220	1,272	2,904	2,000	2,762	2,697	1,191	0,965	32	90	07 23	10	4	2.000-6	0.04E-0 5.01E-6	- 8
Non-Small Cell Lun	g Canoer														
A549(ATCC 1109-62 H09-92 NCI-H226 NCI-H23	0.400 0.410 1.410 0.904 0.521	1.899 1.577 1.836 2.427 2.403	1.862 1.402 1.765 2.415 2.389	1,847 1,407 1,752 2,458 2,453	1.795 1.372 1.768 2.430 2.382	1.625 1.205 0.549 0.551 0.691	0.159 0.021 0.166 0.644 0.366	98 93 99 99	97 50 102 102	30808	52525	\$\$\$\$\$	1.678-5 1.525-5 2.005-6 2.296-6 2.665-6	3.768-5 2.918-5 4.908-6 5.248-6 7.278-6	
NCI-H322M NCI-H460	0.815	1.605 2.495	1.660 2.510	1,659 2,578	1,659 2,447	1,702 1,992	0.062	101	104	97 98	199	翁	1.642-5	3.34E-5 4.02E-5	
Colon Canoer COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12	0.360 1.199 0.187 0.160 0.303 0.409	1.949 3.292 2.000 1.903 1.664 2.046	2.022 3.285 2.038 1.906 1.719 2.066	2.040 3.333 2.170 1.708 1.709 2.227	1.995 3.283 1.432 1.204 1.761 2.195	0.045 3.366 -0.002 0.072 0.159 1.911	0.027 0.050 0.013 0.129 0.156 0.084	105 100 101 105 105	106 100 108 108 104 111	103 108 60 109 109	1569989	****	1,892-6 1,788-5 1,288-6 1,228-6 2,358-6 1,758-6	3.462-6 3.228-6 2.548-6 3.328-6 4.948-6 3.438-6	
CNS Carrier	w.e.	1.975	1.944	1.947	1.497	4.665	0.000	101	100		~~*	~*	1.006.9	2.916-6	
5F-268 5F-639 5ND-19 5ND-75 U251	0.562 0.453 0.034 1.227 0.456	1.861 2.282 2.247 2.213 2.147	1.862 2.264 2.110 2.052 2.052	1.962 2.166 2.132 2.001 2.021	1.961 2.189 2.117 2.065 2.071	1.379 0.410 2.009 2.005 1.895	0.266 0.083 0.227 0.276 0.031	022238	2049209	108 95 85 95	63 -17 52 55	24255	1,298-6 2,828-6 1,708-6 1,598-6 1,578-6	3.505-5 7.072-5 3.510-0 3.272-5 2.595-5	
Melanoma Lox IMVI MALME-3M M14 MDA-MB-435 SK-MEL-2 SK-MEL-2 SK-MEL-3 UACC-62 UACC-62	0.715 0.563 0.445 0.376 1.033 0.539 0.576 0.900 1.049	3.149 1.107 1.505 1.502 2.561 1.812 3.564 1.804 2.872	3.175 1.125 1.707 1.537 2.076 1.467 3.033 1.779 2.866	3.134 1.132 1.778 1.489 2.207 1.482 3.114 1.771 2.876	2.049 1.052 1.673 1.418 2.162 1.473 3.026 1.716 2.794	0.075 0.203 0.065 1.530 0.470 1.613 0.110 1.446	0.171 0.290 0.031 0.025 0.007 0.007 0.005 0.024 0.024	101 103 101 96 105 92 100	2222313282	888558888	-409000000	*****	2.305-6 1.818-6 1.625-6 1.648-6 9.338-6 2.648-6 6.585-6 1.666-6 4.248-6	1.202-6 3.836-6 3.392-6 3.248-6 2.248-6 7.618-6 3.218-6 3.218-6 1.548-6	
Ovarian Canoer IGROV1 OVCAR-3 OVCAR-4 OVCAR-6 OVCAR-6 NCIADR-RE5 SK-0V-3	0.638 0.485 0.769 0.434 0.417 0.748 0.592	1.809 1.542 1.616 1.450 1.772 2.396 1.363	1.886 1.641 1.608 1.454 1.739 2.413 1.414	1,819 1,712 1,566 1,566 1,751 2,513 1,407	1,780 1,639 1,567 1,565 1,662 2,380 1,455	0.413 0.055 0.405 0.254 0.234 1.114 1.393	0.227 0.079 0.645 0.006 0.042 0.480 0.028	107 109 100 98 101 107	5533855	90332291	로마는강스하슈	☆☆☆☆☆☆	2,285-6 1,995-6 2,055-6 2,035-6 4,355-6 1,865-5	5.42E-6 3.57E-6 4.63E-6 3.49E-6 2.41E-6 3.32E-6	
Renai Canoer 785-0 A458 ACMN CAK5-1 RXF 350 SN12C TX-10 UO-31	0.838 1.396 0.259 1.099 0.885 0.968 0.779 0.680	2.835 2.002 1.845 2.845 1.202 2.564 1.413 2.029	2,879 1,862 1,825 2,725 1,296 2,819 1,405 1,976	2.567 1.517 1.832 2.726 1.314 2.843 1.497 1.576	2.846 1.890 1.737 2.664 1.362 2.779 1.456 1.983	0.115 1.869 0.019 0.109 0.066 1.840 0.053 0.053	0.098 0.028 0.033 0.211 0.046 0.091 0.013 0.047	\$825587 <u>18</u>	106 85 99 108 413 66 113 66	101 #33600 200 100 200 100 20000000000	*****	하는 것을 수 있는 것을 것 같이 않을 것 않을 것 않을 수 있다. 것 같이 않을 것 않을 	1.868-6 1.448-5 1.668-4 2.158-6 7.518-6 1.508-8 1.778-6	3,458-6 2,788-6 3,178-6 3,728-6 2,728-6 3,368-6 3,368-6 3,268-6	
Prostate Canoer PC-3 DU-145	0.518 0.389	2.117 1.470	2.058 1.550	2.060	2.032 1.539	1.505 0.611	0.049 0.007	96 107	96 114	95 106	62 21	-91 -98	1.198-5 4.542-6	2.548-5 1.492-5	
MCF7 MDA-M8-231IATC HS 578T 8T-549 T-470 MDA-M8-668	0.424 0.512 0.746 0.664 0.767	2.442 1.368 2.626 1.905 1.701 1.509	2.273 1.341 1.984 1.925 1.680 1.552	2.215 1.363 1.562 1.962 1.744 1.555	2.162 1.297 1.964 1.969 1.646 1.494	0.482 0.240 1.769 0.433 0.347 0.243	0.242 0.080 0.511 0.035 0.434 0.303	8883888	894748	883888	*****	48.828	2,718-6 1,818-6 2,248-6 2,388-6 2,118-4 1,768-6	1.168-6 3.818-6 9.978-6 5.198-6 4.748-4 3.668-6	

Compound 4d showed the growth percent ranging from -91.30 to 116.64%, and displayed the best cytotoxicity against Renal cancer ACHN and TK-10 (-91.30 and -77.21%, respectively), Colon Cancer HCT-116 and SW-620 (-77.26 and -75.66, respectively), Non-Small Cell Lung Cancer NCI-H522 of -72.43%, Melanoma MALME-

3M of -61.98%, and Breast Cancer T-470 of -51.74% cell lines. This compound also showed the minor cytotoxic effect against Leukemia CCRF-CEM cell line of -6.15%. In addition, compound **4d** demonstrated the cell proliferation inhibition of Leukemia SR, MOLT-4 and HL-60(TB) (96.37, 87.74 and 59.70\%, respectively), Melanoma M14 and LOX IMVI (76.02 and 71.99\%) and Breast Cancer MDA-MB-468 and BT-549 (74.41 and 53.01\%, respectively) cell lines.

Compound **4e** showed the growth percent ranges from -91.06 to 138.09%, and displayed cytotoxicity against Colon Cancer HCT-116 and SW-620 (-91.06 and -88.59%, respectively), Renal Cancer ACHN and TK-10 (-84.39 and -78.27%, respectively), Non-Small Cell Lung Cancer NCI-H522 (-68.79%), Melanoma MALME-3M (-56.67%), Ovarian Cancer OVCAR-4 (-16.60%), Leukemia MOLT-4 and CCRF-CEM (-18.46 and -14.67%, respectively) and Breast Cancer T-470 (-7.72%) cell lines. This compound showed the cell proliferation inhibition of Leukemia K-562, SR and HL-60(TB) (97.94, 94.23 and 91.08%, respectively), Melanoma M14 and LOX IMVI (72.22 and 60.12%), Breast Cancer MCF-7 and MDA-MB-468 (64.72 and 57.97%, respectively), and Non-Small Cell Lung Cancer NCI-H23 (62.09%) cell lines.

Compound 4f showed the growth percent ranges from -91.06 to 138.09%, and displayed the cytotoxicity against Renal Cancer ACHN, TK-10, CAKL-1, RXF-393, UO-31 and SN12C (-99.41, -98.10, -94.50, -89.62, -73.68 and -22.92%, respectively), Ovarian Cancer OVCAR-3 (-93.53%), Colon Cancer HCT-116, COLO-205, HCT-15, SW-620 and HT-29 (-96.54, -92.68, -92.16, -91.05 and -76.26%, respectively), Melanoma LOX IMVI, MALME-3M and N14 (-88.95, -61.25 and -57.85%), Breast Cancer BT-549, VDA-MB-469 and T-470 (-84.34, 80.16 and 67.62%, respectively), Leukemia CCRF-CEM and MOLT-4 (-33.31 and -26.32%, respectively), Non-Small Cell Lung Cancer NCI-H522, HOP-92, NCI-H226 (-83.93, -16.17 and -7.04%, respectively) cell lines. This compound showed the cell proliferation inhibition of Leukemia K-562 and HL-60(TB) (99.71 and 93.30%, respectively), Breast Cancer MCF-7 (88.79%), Renal Cancer 786-0 (86%), Melanoma MDA-MB-435 (60.92%), and Ovarian Cancer OVCAR-8 and OVCAR-4 (-66.52 and -63.72%, respectively) cell lines.

CNS Cancer, Ovarian Cancer, and Prostate Cancer cell lines were least sensitive to the synthesized compounds.

The five-dose assay

All synthesized compounds satisfied the pre-determined threshold inhibition criteria of the NCI-60 One-Dose Screening were tested against the panels of 60 cancer cell lines of NCI. Figure 2 represents the results of the five-dose

assay for anticancer activity of these compounds against each cancer cell line.

Compound **4a** showed GI50 values ranging from 0.63 (Leukemia CCRF-CEM cell line) to 25.6 μ M (CNS Cancer SNB-19 cell line), TGI—from 2.2 (Non-Small Cell Lung Cancer NCI-H522 cell line) to 85.3 μ M (CNS Cancer SNB-19 cell line), and LC50—from 6.1 (Non-Small Cell Lung Cancer NCI-H522) to 84.2 μ M (Non-Small Cell Lung Cancer HOP-62 cell line). LC50 of compound 4a for Leukemia subpanel, EKVX (lung cancer), SF-295 and SNB-19 (CNS cancer), NCI/ADR-RES (ovarian cancer) and HS 578 T (breast cancer) cell lines exceeded 100 μ M.

Compound **4b** showed GI₅₀ values ranging from 0.41 (Non-Small Cell Lung Cancer NCI-H522 cell line) to 37.3 μ M (CNS Cancer SNB-19 cell line), TGI – from 1.67 (Non-Small Cell Lung Cancer NCI-H522 cell line) to 75.9 μ M (CNS Cancer SF-395 cell line), and LC₅₀—from 6.0 (Renal Cancer RXF-393 cell line) to 83.9 μ M (Non-Small Cell Lung Cancer A549/ATCC cell line). LC₅₀ of compound **4b** for Leukemia subpanel, EKVX, HOP-62 and NCI-H226 (lung cancer), SF-295 and SNB-19 (CNS cancer), NCI/ADR-RES and SK-OV-3 (ovarian cancer), HS-578T and T-47D (breast cancer) cell lines exceeded 100 μ M. TGI for SNB-19 (CNS cancer) cell line was also more than 100 μ M.

Compound **4c** showed GI₅₀ values ranging from 0.31 (Non-Small Cell Lung Cancer NCI-H522 cell line) to 46.9 μ M (Non-Small Cell Lung Cancer HOP-62 cell line) with the exception of cancer lines with LC₅₀ > 100 μ M, TGI—from 2.86 (Non-Small Cell Lung Cancer NCI-H522 cell line) to 41.5 μ M (Breast Cancer HS-578T cell line) with the same exception. Typical locate of LC₅₀ tend to be in the short range of 6.0 to 10 μ M with the exception of Breast Cancer MCF7 cell line (21 μ M), and cancer lines with LC₅₀ > 100 μ M (Table 1).

Compound **4d** showed GI₅₀ values ranging from 0.20 (Non-Small Cell Lung Cancer NCI-H522 cell line) to 19.4 μ M (Renal Cancer 786-0), TGI – from 1.1 (Non-Small Cell Lung Cancer NCI-H522 cell line) to 51.4 μ M (CNS Cancer SF-295 cell line), and LC₅₀ – from 40.9 (Non-Small Cell Lung Cancer NCI-H522) to 95.3 μ M (Leukemia HL-60(TB) cell line). LC₅₀ of compound **4d** for Leukemia subpanel with the exception of HL-60(TB), and EKVX (lung cancer), SF-295 (CNS cancer), OVCAR-4, OVCAR-8 and NCI/ ADR-RES (ovarian cancer), HS 578 T and T47D (breast cancer) cell lines exceeded 100 μ M.

Compound **4e** showed GI₅₀ values ranging from 0.27 (Non-Small Cell Lung Cancer NCI-H522 cell line) to 21.3 μ M (CNS Cancer SNB-19 cell line), TGI – from 1.7 (Non-Small Cell Lung Cancer NCI-H522 cell line) to 55.5 μ M (Breast Cancer HS 578 T cell line), and LC₅₀—from 5.8 (Colon Cancer SW-620 cell line) to 98.0 μ M (Ovarian Cancer SK-OV-3 cell line). LC₅₀ of compound **4e** for Leukemia subpanel with the exception of HL-60(TB), and

Table 2 Selectivity indices ofthe synthetic compounds

towards the particular subpanels

Indices	Leukemia	Non- Small Cell Lung Cancer	Colon Cancer	CNS Cancer	Melanoma	Ovarian Cancer	Renal Cancer	Prostate Cancer	Breast Cancer
Compou	nd 4a								
GI ₅₀	2.50	0.82	1.23	0.55	1.02	1.00	1.30	0.54	1.38
TGI	1.42	0.85	1.50	0.49	1.05	1.03	1.46	0.64	1.17
LC ₅₀	-	0.73	1.48	0.80	0.91	1.22	1.45	0.64	0.92
Compou	nd 4b								
GI ₅₀	3.15	0.85	1.41	0.49	1.00	0.96	1.32	0.53	1.31
TGI	1.59	0.81	1.62	0.561	1.04	0.86	1.50	0.58	1.09
LC ₅₀	-	0.80	1.51	0.66	0.86	1.51	1.36	0.52	1.01
Compou	nd 4c								
GI ₅₀	2.45	0.40	2.82	1.58	0.78	1.72	2.61	0.20	2.50
TGI	1.05	2.52	1.69	0.31	0.75	1.45	1.04	_	1.23
LC ₅₀	-	1.26	1.03		1.08	1.06	1.23	_	0.56
Compou	nd 4d								
GI ₅₀	3.32	0.83	1.24	0.57	0.96	1.03	1.23	0.48	1.31
TGI	1.89	0.87	1.45	0.54	0.99	1.07	1.34	0.56	1.01
LC ₅₀	0.40	0.81	1.49	0.63	0.99	1.04	1.45	0.64	1.01
Compou	nd 4e								
GI ₅₀	3.83	0.78	1.17	0.54	1.15	1.01	1.07	0.54	1.38
TGI	2.66	0.74	1.38	0.54	1.10	1.01	1.24	0.58	1.22
LC ₅₀	3.68	0.84	1.51	0.65	0.99	0.69	1.34	0.59	2.13
Compou	nd 4f								
GI ₅₀	3.40	0.57	0.96	0.47	1.64	1.26	1.45	0.73	1.08
TGI	2.43	0.64	1.21	0.52	1.44	1.28	1.67	0.72	0.67
LC ₅₀	-	0.54	1.22	0.54	1.20	1.48	2.00	0.75	3.52

cell lines NCI-H23 (lung cancer), SNB-19 (CNS cancer), NCI/ADR-RES (ovarian cancer), and HS 578 T (breast cancer) exceeds $100 \,\mu$ M.

Compound **4f** showed GI₅₀ values ranging from 0.43 (Leukemia SR cell line) to 22.4 μ M (Breast Cancer HS 578 T cell line), TGI—from 2.5 (Colon Cancer HCT-116 cell line) to 37.6 μ M (Non-Small Cell Lung Cancer A549/ATCC cell line), and LC₅₀ – from 5.0 (Colon Cancer HCT-116) to 98.6 μ M (Non-Small Cell Lung Cancer NCI-H460 cell line). LC₅₀ of compound **4f** for Leukemia subpanel, NCI-H226 (lung cancer), HT29 (colon cancer), OVCAR-4 and NCI/ADR-RES (ovarian cancer), SF-295 and SNB-19 (CNS cancer), OVCAR-4 and NCI/ADR-RES (ovarian cancer), MCF-7, MDA-MB-231/ATCC and T-47D (breast cancer) cell lines exceeded 100 μ M.

Thus, all the compounds displayed growth inhibitory (GI₅₀), and cytostatic activities (TGI) against the most sensitive cell lines at submicromolar (0.2–0.6 μ M) and micromolar concentrations (1–3 μ M), respectively. Cytotoxic activity (LC₅₀) of these compounds, with the

exception of **4d**, against the most sensitive cancer cell lines was also high $(5-6 \,\mu\text{M})$.

Table 2 demonstrates selectivity of the synthesized compounds towards the particular cancer subpanels.

Discussion

Thus, all compounds exhibited high antiproliferative selectivity towards leukemia cell lines, and among them, **4e** and **4f** showed the best antiproliferative and cytostatic selectivity. These compounds displayed the considerable cytotoxic selectivity towards Renal (**4f**) and Breast Cancer (**4e** and **4f**) subpanels. But high antiproliferative selectivity towards these cancer subpanels demonstrated compound **4c** only (Table 2).

The anticancer activity results showed that the presence of a hydrophobic *tert*-butyl moiety, stabilizing a molecule conformation, at 2 position of 1–3-oxazol ring (compounds **4e** and **4f**) instead of phenyl one (compounds **4a** and **4b**) appreciably enhances their anticancer activity towards Leukemia, while displacement of phenyl moiety at 5 position of one on p-tolyl group (compound **4c**) enhances its anticancer activity against Renal and Breast Cancer.

The present human tumor cell line in vitro screen provides preliminary data of anticancer activity of new compounds. This assay was designed only to select compounds for a secondary, more comprehensive, in vivo testing.

Conclusion

The novel series of 2-substituted 5-arylsulfonyl-1,3-oxazole-4-carbonitriles have been synthesized in good yields and displayed high anticancer activity. Differently substituted oxazoles have different activity. Indeed the obtained results indicate that compounds **4e** and **4f** showed higher anticancer activity towards Leukemia, whereas compound **4c** displays considerable cytotoxic selectivity towards Renal Cancer and Breast Cancer subpanels. The present studies reveal that the 2-substituted 5-arylsulfonyl-1,3-oxazole-4carbonitriles provides a valuable new therapeutic intervention for the treatment of cancer diseases, and the **4e** and the **4f** are the potent lead compounds for anticancer drug discovery and further research.

Acknowledgements We would like to thank US Public Health Service and National Cancer Institute, Bethesda, MD, USA, for in vitro evaluation of anticancer activity (providing the NCI-60 cell testing) within the framework of Developmental Therapeutic Program (http://dtp. cancer.gov), and Enamine Ltd for the material and technical support.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

References

El-All ASA, Osman SA, Roaiah HMF, Abdalla MM, El Aty AAA, El-Hady WH (2015) Potent anticancer and antimicrobial activities of pyrazole, oxazole and pyridine derivatives containing 1,2,4-triazine moiety. Med Chem Res 24:4093–4104

- Jin Z (2016) Muscarine, Imidazole, Oxazole and Thiazole Alkaloids. Nat Prod Rep 33:1268–1317
- Joshi S, Bisht AS, Juyal D (2017) Systematic scientific study of 1, 3oxazole derivatives as a useful lead for pharmaceuticals: a review. Pharma Innov J 6:109–117
- Liu XH, Liu HF, Pan CX, Li JX, Bai LS, Song BA, Chu XF (2010) Novel 5-methyl-2,4-disubstitued-oxazole derivatives: synthesis and anticancer activity. Lett Drug Des & Discov 7:238–243
- Narang AS, Desai DS (2009) Anticancer drug development. In: Lu Y, Mahato RI (eds) Pharmaceutical perspectives of cancer therapeutics. Springer, New York, NY, p 49–92
- Pil'o SG, Brovarets VS, Vinogradova TK, Golovchenko AV, Drach BS (2002) Synthesis of New 5-mercapto-1,3-oxazole derivatives on the basis of 2-acylamino-3,3-dichloroacrylonitriles and their analogs. Rus J Gen Chem 72(11):1714–1723
- Pouramiri B, Moghimi S, Mahdavi M, Nadri H, Moradi A, Tavakolinejad-Kermani E, Firoozpour L, Asadipour A, Foroumadi A (2017) Synthesis and anticholinesterase activity of new substituted benzo[d]oxazole-based derivatives. Chem Biol Drug Des 89:783–789
- Romagnoli R, Baraldi PG, Prencipe F, Oliva P, Baraldi S, Salvador MK, Lopez-Cara LC, Brancale A, Ferla S, Hamel E, Ronca R, Bortolozzi R, Mariotto E, Porc— E, Basso G, Viola G (2017) Synthesis and Biological Evaluation of 2-Methyl-4,5-Disubstituted Oxazoles as a Novel Class of Highly Potent Antitubulin Agents Sci Rep 7(1):1–19
- Schobert R, Biersack B, Dietrich A, Effenberger K, Knauer S, Mueller T (2010) 4-(3-Halo/amino-4,5-dimethoxyphenyl)-5-aryloxazoles and -N-methylimidazoles that are cytotoxic against combretastatin A resistant tumor cells and vascular disrupting in a cisplatin resistant germ cell tumor model. J Med Chem 53:6595– 602
- Semenyuta IV, Kovalishin VV, Kopernik IN, Vasilenko AN, Prokopenko VV, Brovarets VS (2013) Molecular docking of 1,3-oxazole derivatives into the active site of tubulin. Rep Nat Acad Sci Ukr 11:168–173
- Semenyuta IV, Kovalishyn VV, Pilyo SG, Blagodatnyy VN, Trokhimenko EP, Brovarets VS, Metelitsa LA (2014) Application of QSAR models to the search for tubulin inhibitors in a series of derivatives of 1,3-oxazole. Rep Nat Acad Sci Ukr 12:152–157
- Semenyuta I, Kovalishyn V, Tanchuk V, Pilyo S, Zyabrev V, Blagodatnyy V, Trokhimenko O, Brovarets V, Metelytsia L (2016) 1,3-Oxazole derivatives as potential anticancer agents: computer modeling and experimental study. Comput Biol Chem 65:8–15
- Suh JH, Yum EK, Cho YS (2015) Synthesis and biological evaluation of N-aryl-5-aryloxazol-2-amine derivatives as 5-lipoxygenase inhibitors. Chem Pharm Bull (Tokyo) 63:573–578
- Zhou H, Cheng JQ, Wang ZS, Chen FH, Liu XH (2016) Oxazole: a promising building block for the development of potent antitumor agents. Curr Top Med Chem 16:3582–3589