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Abstract
The inhibition of histone deacetylase (HDAC) has become a well-recognized target for cancer therapy. Until now only five
HDAC inhibitors i.e., SAHA, romidepsin (FK-228), belinostat, chidamide, and panobinostat have been approved by FDA.
The first four of them are being employed for the treatment of cutaneous T-cell lymphoma and last one is being used for the
treatment of multiple myeloma. In the present study, structure and ligand-based computational approaches were selected to
design novel histone deacetylase inhibitors. A ligand-based pharmacophore model was developed employing phase module
that exhibited five similar features and the generated pharmacophore models were validated by enrichment studies using the
decoy set. Atom-based 3D-QSAR model was developed and validated using internal, partial least square (PLS) and external
validation methods. The best 3D-QSAR model exhibited high value of regression coefficient for training set (R2)= 0.926
and test (R2)= 0.699, cross-validated coefficient (rcv

2)= 0.967 and R2 pred= 0.6578 with low root mean standard deviation
(RMSE)= 0.4963. Additionally, the selected pharmacophore model (AAADR.12514) was employed as a 3D query for
virtual screening against the ZINC database. The hit compounds were subsequently subjected to ligand–receptor interaction
studies. Further, HDAC receptor-ligand complex were subjected to MM-GBSA and molecular dynamic simulation to
evaluate the binding energy, strain energy, stability, and electrostatics of complex. Moreover, ADMET studies were also
performed on resulted molecules. The outcome of these studies could be utilized for identification of novel lead for the
development of HDAC inhibitors.
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Introduction

Cancer is the deadliest ailment and the second leading cause
of death worldwide, which involves complex phenomenon
like unregulated cell growth and proliferation, loss of
apoptosis, and metastasis due to aberrant regulation of gene
expression (Siegel et al. 2017; Suzuki and Miyata 2005).
There are two enzymes i.e., Histone acetyl-transferases
(HATs) and histone deacetylase (HDACs) playing an
important role in the dynamic equilibrium between

acetylation and deacetylation of histone proteins leading to
appropriate regulation of gene transcription and gene
expression of eukaryotes at DNA level (Singh et al. 2016).
An unbalance of them can result in the abnormalities in
proliferation and differentiation of normal cells and then
lead to the initiation of tumor (Rajak et al. 2014; Singh et al.
2017b). The enhanced HDAC activity may play a crucial
function in the pathogenesis of cancer (Minucci and Pelicci
2006; Singh et al. 2017a). The HDACs have significant role
in cancer cell biology and resides in nucleus, as well as in
cytoplasm (Binaschi et al. 2010). It is well known that the
process of histone deacetylation is mainly associated with
transcriptional repression, while histone hyperacetylation is
involved in gene expression (Taunton et al. 1996). There-
fore, inhibition of HDAC activity could promote histone
hyperacetylation, resulting in transcriptional activation of
suppressed genes, which is correlated with apoptosis,
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differentiation, or cell cycle arrest in tumor cells (Mahl-
knecht and Hoelzer 2000; Zhu et al. 2010).

HDACs are the collection of zinc-dependent metalloen-
zymes (Wu et al. 2016), divided into four structural classes
on the basis of their homology to yeast proteins. Subtypes
HDAC1, 2, 3, and 8 are included in class I and exhibits
homology to the yeast protein rpd3. Class II can be divided
into subtypes HDAC4, 5, 7, and 9 and Class IIb can be
subdivided into HDAC6 and 10. Subtype HDAC11 is
included in Class IV. The enzymatic activity of HDACs is
based on Zn2+-dependent mechanism and NAD+-depen-
dent mechanisms. Class I, Class II, and Class IV HDACs
follows Zn2+dependent mechanism while the class III
HDAC enzymes (or sirtuins) operates by a NAD+-depen-
dent mechanism. The class III comprises of seven subtypes
in humans (SIRT1 to SIRT 7) and they demonstrate

homology to the yeast protein Sir2 (Gray and Ekstrom
2001; Minucci and Pelicci 2006). A broad range of che-
mical structures including hydroxamic acids, electrophilic
ketones, benzamides, mercaptoamides, and thiols, as well as
small fatty acids have showed inhibitory potential for Zn2+

dependent HDACs (class I and II) (Biel et al. 2005; Kozi-
kowski et al. 2007; Marks et al. 2004; Schafer et al. 2008)
Among them hydroxamic acid derivatives are effective in
nanomolar concentration (TSA IC50: 12 nM and SAHA
IC50:110–370 nM) (Bieliauskas et al. 2007; Chen et al.
2009; Gopalan et al. 2013) (Fig. 1). However, TSA and
other HDAC inhibitors have a clear disadvantage that their
production is costly and profound concerns remain about
their toxicity, non-specificity, and side effects (Yoshida
et al. 1990). Thus, there has been an increasing attention in
developing novel HDAC inhibitors with lesser toxicity,

Fig. 1 Hydroxamic acid based HDAC inhibitors with their pharmacophoric features. The cap, linker, and the Zn2+ binding group are represented in
blue, green, and red color, respectively
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better pharmacokinetic properties, and improved anticancer
activity. 3D QSAR, pharmacophore modeling, and virtual
screening may be a better solution for the fulfillment of
aforementioned goal (Patel et al. 2016).

In the present work, 3D-QSAR models were developed
using Pharmacophore alignment and Scoring module
(PHASE) on hydroxamic acid derivatives as HDAC inhi-
bitors for antineoplastic activity. The efficiency and relia-
bility of 3D-QSAR models were checked by PLS analysis
and external validation methods. The obtained QSAR
contour maps were used as visual guide for the designing of
novel and active molecules. The combination of virtual
screening-based docking was used in rational drug design to
get better docking results and an information about the
inhibitory mechanisms. Virtual screening of ZINC database
with the help of developed pharmacophore models was
performed to explore novel and potential HDAC inhibitors.
Furthermore, MM-GBSA and molecular dynamic (MD)
simulation were performed for the assessment of accuracy
of docking. Absorption, distribution, metabolism, excretion,
and toxicity (ADMET) studies were also performed to
conform the drug-like property of top scored molecules.
The strategy used in this work could be a promising com-
putational strategy which could be utilized for the design of
novel HDAC inhibitors.

Methodology

The molecular modeling studies (3D QSAR, pharmaco-
phore modeling, virtual screening, docking, MM-GBSA
and ADMET) were executed using Schrodinger interface
(Maestro version 9.3) LLC, New York software and MD
simulation was performed using Accelrys Discovery Studio
4.1 software.

Dataset

The available dataset of 51 compounds having hydroxamic
acid based scaffolds with wide structural diversity was
selected for developing 3D-QSAR models with same bio-
logical assay (fluorescence assay) method (Jin et al. 2015;
Su et al. 2009; Wang et al. 2017). All the molecular
structures and activity data employed for 3D-QSAR study
are described in Table 1. The inhibitory activity (IC50 value
in moles/liter) for each compound was transformed into
negative logarithm of IC50 (pIC50). The pIC50 values were
employed as dependent variable for the QSAR analysis.

Pharmacophore modeling

The ligand-based pharmacophore models were developed
using ‘PHASE’ v3.4 (Schrödinger 2012). It is a widely used

technique for common pharmacophore recognition and 3D
QSAR model development. In phase, the development of
pharmacophore models were initiated with clean up of all
51 ligands. In the second step, conformers of all ligands
were produced with the help of conformer generation
macromodel search method with maximum number of
conformers 1000 per structure and structures were mini-
mized using OPLS_2005 force field with 100 minimization
steps (Watts et al. 2010). In the next step, sites were gen-
erated for all the ligand molecules that gave us different
Pharmacophore hypotheses based upon the activity thresh-
old of active and inactive molecules. Each of these
hypotheses contained a maximum of six features namely,
hydrogen bond donor (D), hydrogen bond acceptor (A),
aromatic ring (R), hydrophobic group (H), positively
charged group (P), and negatively charged group (N), which
were characterized by a group of chemical structure. Gen-
erated hypotheses were ranked on the basis of survival,
survival inactive, post-hoc scores, vector, volume, and site
scores (Table 2) (Sallam et al. 2013). The best pharmaco-
phore models were recognized by aligning the pharmaco-
phore with active ligands, with maximum adjusted survival
score and used for additional 3D-QSAR studies (Nair et al.
2012).

Atom-based 3D-QSAR modeling

QSAR modeling was performed using the selected
hypothesis by dividing the dataset into a training set (41)
and a test set (10) in such a manner that 80% of the com-
pounds fall under the training set and the residual 20%
compounds were taken as the test set ranging from maxi-
mally active to moderate and then least active (based on
their pIC50) compounds. In the PHASE module, two options
are available for alignment of 3D structure of molecules: (i)
the pharmacophore-based alignment and (ii) the atom-based
alignment (Teli and Rajanikant 2012). In the present study,
an atom-based QSAR model was employed, which is more
beneficial in describing the SAR (structure activity rela-
tionship). The atom-based QSAR models were generated
for selected hypothesis by maintaining 1 A° grid spacing
and 5 as maximum number of PLS factors with good sta-
tistics and predictive ability. In score hypotheses step, the
hypotheses were carefully chosen with the help of the
activity data for all ligands and visualization of the QSAR
results helped us to explore the optimization of the core
structures (Sallam et al. 2013).

Pharmacophore-based virtual screening and
docking

The virtual screening is a fast and precise database searching
method applied for the identification of novel and potential
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Table 1 Structures and IC50 values of the HDAC inhibitors investigated in the present work

Compound 
no. 

Structure HDAC 

IC  (µM)

1  

0.227 

2  

1.654 

3  

1.742 

4 

25 

5 

0.527 

6  

0.504 

7 

0.683 

8 

0.416 

9 

0.361 

10 

0.346 

11 

0.301 
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lead molecules, appropriate for additional development
(Lengauer et al. 2004). It has been accomplished on the basis
of best pharmacophore obtained through comparison of
various pharmacophoric features. The chemical database
having novel chemical structures with desired pharmaco-
phoric features was obtained from commercially available
database (ZINC database-zincpharmer.csb.pitt.edu.) and
constraints such as root mean square deviation (RMSD) kept
<1, with rotatable bonds <10 and the range of molecular
weight <500 dalton were used to achieve the best similarity
search of 3D database. In the screening of database, mole-
cules must match at least three sites for the hypotheses with
three or four pharmacophoric sites and match a minimum of
at least four sites for hypotheses of five or more pharma-
cophoric sites. The virtual screening workflow (maestro
v9.3) was employed for this study. Initially, ligands were
filtered using Qikprop (prefilterd by Lipinski rule of five),
ligands with reactive functional groups were removed, then
the preparation of ligands was done. The chemical database
ligands with the best scores were then subjected to molecular
docking studies, such as High throughput virtual screening
(HTVS), SP (standard precision), and XP (extra precision) to
estimate ligand-protein binding interactions.

Molecular docking was assessed with free-binding
energy MM-GBSA (Molecular Mechanics-Generalized
Born Surface Area). MM/GBSA is a post-scoring techni-
que that re-arrange the docked protein-ligand complexes on
the basis of their relative binding free energy.

MD simulation

MD simulation of receptor-ligand complex (cocrystal ligand
SAHA and compound 26 with PDB: 4LXZ) was performed
using the simulation tool of Accelrys Discovery Studio
4.1 software, to check the stability, conformational changes,
and interaction of structure during the simulation process.

For molecular simulation study, the protein (4LXZ) was
selected on the basis of their relevance to cancer, structural
resemblance of co-crystallized ligand (SAHA) with the
selected dataset compounds and better resolution (1.85 Å)
(Wang et al. 2017). MD simulation study consists of several
steps i.e., preparation of protein structure, solvation of
protein structure, standard dynamics cascade analysis, and
MD trajectory analysis. The prepared protein was assigned
using the CHARMm force field parameters. After solvation
of protein structure 26418 water molecules, 70 sodium and
82 chloride ions were added, which retained the system
neutral and kept the salt concentration of the system 0.145
with 0.1 kcal/mol RMS gradient. Standard dynamics cas-
cade protocol includes minimization, minimization 2,
heating, equilibration, and production. Energy minimization
were performed using 1000 steps of steepest descent and
2000 steps of adopted basis NR algorithm without assigning
any constraint. Subsequently, for equilibration and pro-
duction steps, the SHAKE constraint with Leapfrog Verlet
dynamic algorithm was employed. Finally, the production
and equilibration MD simulations were carried out for 200
and 20 ps, respectively, with explicit periodic boundary
conditions, in an NPT ensemble (T= 300 K, thermostat
relaxation time= 2.0 fs; P= 1 atm), target temperature
300 K and temperature coupling decay time 5 ps. SHAKE
algorithm was employed to secure all available covalent
bonds having hydrogens and Particle-Mesh-Ewald Techni-
que (York et al. 1993) was used for electrostatic studies.

Results and discussion

Pharmacophore model

The comparison of survival score indicates that pharmaco-
phore model (AAADR.12514) has best survival score in

Table 2 Various
pharmacophore hypotheses
generated by PHASE

S. No. Hypothesis Survival Survival
inactive

Post-hoc
score

Site Vector Volume Selectivity Matches

1 AAADR.12514 3.937 2.441 3.937 0.99 1 0.947 1.601 2

2 AAADR.15491 3.937 2.257 3.937 0.99 1 0.947 1.398 2

3 AAADR.16137 3.938 2.318 3.938 0.99 1 0.947 1.407 2

4 AAADR.16145 3.934 2.111 3.934 0.99 1 0.946 1.387 2

5 AAADR.16503 3.935 2.235 3.935 0.99 1 0.947 1.534 2

6 AAADR.20995 3.918 2.898 3.918 0.98 1 0.943 1.514 2

7 AAADR.23194 3.921 2.528 3.921 0.98 1 0.945 1.412 2

8 AAADR.24611 3.921 2.484 3.921 0.98 1 0.945 1.621 2

9 AAADR.26578 3.935 2.234 3.935 0.99 1 0.947 1.439 2

10 AAADR.26690 3.934 2.692 3.934 0.99 1 0.946 1.463 2

11 AAADR.29187 3.938 2.318 3.938 0.99 1 0.947 1.407 2

12 AAADR.29242 3.918 2.321 3.918 0.98 1 0.941 1.438 2
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comparison of all generated ligand-based pharmacophore
models and showed the best alignment over most active
compound along with the distance (Å) (Fig. 2a).The ligand-
based pharmacophoric model (AAADR.12514) exhibited
five key features including three hydrogen bond acceptors,
one hydrogen bond donar and one aromatic rings with
highest survival score of 3.937. For validation of the
developed pharmacophore model (AAADR.12514), a small
database including 117 compounds was prepared through
zincpharmer.csb.pitt.edu., consisting of 17 active molecules
and 100 decoys for HDAC inhibitors. Decoy sets were
considered on the basis of their similarity to the active
ligands with respect to five physical descriptors (molecular
weight, total hydrogen bond donors, total hydrogen bond
acceptors, number of rotational bonds and the octanol-water
partition coefficient) without being chemically identical to
any of the active ligands. Several statistical parameters such
as accuracy, precision, specificity, sensitivity, Receiver
operating characteristic curve (ROC), Area under curve
(AUC), Robust initial enhancement (RIE), Boltzmann-
enhanced discrimination of receiver operating

characteristic (BEDROC, α= 20), Enrichment factor (EF
5%) and GH (goodness of hit) (Truchon and Bayly 2007)
were calculated for selected AAADR.12514 hypothesis.
These are some essential parameters, which influences the
fitness of the pharmacophore hypothesis. The accuracy,
sensitivity, specificity, ROC, AUC, RIE, BEDROC (α=
20) and EF (5%) of the best pharmacophore model
(AAADR.12514) for the decoy set were found to be 0.99,
0.94, 0.95, 0.96, 0.89, 4.78, 0.73 and 4.6, respectively,
which were within the standard statistical limits and assisted
the envisaging capability of the top score pharmacophoric
model (Fig. 2b) indicating the ROC performance of top
score pharmacophore model (AAADR.12514).

3D-QSAR modeling

The 3D-QSAR models were prepared to set up a statistical
relationship between the 3D spatial arrangement of the
pharmacophoric features and the cytotoxic activity of
HDAC inhibitors. A total of 51 compounds under study
were divided into training set (41compounds) and a test set

Fig. 2 Phase Pharmacophore
model generation and validation.
a alignment of best
pharmacophore
(AAADR.12514) onto the most
active compound 26 with fit
value of 3.0 Å (aromatic ring
(orange circle), three hydrogen
acceptor (red sphere), and one
hydrogen donor (light blue
sphere) with distance in Å). b
receiver operating curve (ROC)
plot of best pharmacophore
model (AAADR.12514)
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(10 compounds). The compounds were divided in test and
training set as per their structural features and their biolo-
gical activity threshold. Five featured Pharmacophoric
hypothesis (AAADR.12514) with high value of survival
score was chosen for atom-based 3D-QSAR model gen-
eration (PLS model) using Schrödinger v9.3 with five PLS
factors. The predicted activities of training and test set
molecules along with fitness using AAADR.12514 phar-
macophore hypothesis are presented in Table 3 and the
residual values were calculated by subtraction of predicted
activity from observed activity and sum of residual was also
calculated and found as 1.256 for 3D-QSAR model
AAADR.12514. Scatter plots of actual vs. predicted activ-
ities showed that pIC50 values were successfully predicted
for both training (Fig. 3a) and test (Fig. 3b) set compounds
and it could be employed to identify the existence of out-
liers from a QSAR model.

3D-QSAR contour maps analysis

The QSAR contour maps received from top pharmacophore
model (AAADR.12514) showed how 3D-QSAR studies
could recognize the features vital for the interaction between
test molecules and receptor. These maps provided information
regarding positions that are essential for a particular physi-
cochemical property to augment the cytotoxic activity of a
ligand. These insights could be understood by comparing the
contour maps of the most and least active compounds (Figs.
4a–f). The QSAR model displayed 3D characteristics in the
form of boxes or cubes. The blue cubes showed positive
coefficients that are favorable, while yellow cubes showed
negative coefficients that are unfavorable features for activity.
Finally, it can be concluded that these maps hints about
desirable or undesirable functional groups at particular posi-
tions in a ligand. Figures 4a, b shows the hydrogen bond
donor contour map of most active and inactive molecule,
respectively. Figure 4a indicates the blue favorable boxes
around the NH group nearer to the benzene ring (donor fea-
ture, D9) and blue boxes seen around the hydroxyl group of
cap region, thus illustrating that additional donor groups at
these positions (blue cubes) could increase biological activity.
Although, in the contour map of most inactive molecule,
yellow unfavorable boxes were observed nearer to the ben-
zene ring (donor feature D9), indicating the biological inac-
tiveness of the molecule (Fig. 4b).

Figures 4c, d shows the hydrophobic contour map of
most active and inactive molecule, respectively. Fig. 4c
indicates the blue favorable boxes around the para-position
of benzene ring (hydrophobic feature, R14) of the molecule,
indicating the biological activeness of the molecule. While,
in the least active compound (Fig. 4d), the presence of
yellow unfavorable boxes around the para-position of ben-
zene ring (hydrophobic feature, R14) and near to benzene

ring of linker, illustrates the weak biological activity of
molecule.

Figures 4e, f shows the electron withdrawing contour
map of most active and inactive molecule, respectively.
Figure 4e shows the blue favorable boxes around the both
carbonyl groups nearer to the benzene ring and carbonyl
group of pyrrole ring (A4, A5, and A6), suggesting sub-
stitution at this position with electron withdrawing group
increases the activity. While, in the least active compound
(Fig. 4f), the yellow unfavorable boxes were found around
A4, A5, and A6, illustrating the weak biological activity of
molecule.

Statistical parameters of 3D-QSAR models

Internal validation and PLS analyses

A good 3D-QSAR model should exhibit reliable predict-
ability that can be validated by both validation methods i.e.,
internal and external validation. The predictive power of the
generated 3D-QSAR model (AAADR.12514) was analyzed
using a test set of 10 compounds and the statistical sig-
nificance of the model was achieved using a PLS factor of
5. The robustness of model in predicting the active mole-
cules were considered depending upon different internal and
PLS parameters including regression coefficient for the
training set (Q2), regression coefficient for test set (R2), the
standard deviation (SD), the root mean square error
(RMSE), the variance ratio (F), significance level of var-
iance ratio (P), the Pearson correlation coefficient (Pearson-
r), chi square (χ2), and the stability of model. The regression
coefficient for test set (R2) and training set (Q2) were 0.926
and 0.699, respectively, indicating that model had good
internal predictive ability. Additionally, the high stability of
model 0.7412, low SD 0.2154, low RMSE 0.4963, high
Pearson-r 0.8811, chi square (χ2) 0.0761, and high F-value
87.5 with smaller P-value 8.997e–019, supported the sig-
nificance of the selected model (Table 4). All the internal
statistical parameters and PLS parameters were well within
the range but, external statistical validation was also
essential for greater reliability of selected model.

External validation

A reliable 3D-QSAR model should also exhibit good cor-
relation between predicted and observed activities, which
can be indicated by external validation parameters i.e.,
correlation coefficient R2 (or r2). The best predictive ability
of selected 3D-QSAR model (AAADR.12514) was sup-
ported by a value of R2= 0.930 (or r2= 0.718).

The predictive capability of the 3D-QSAR model
(AAADR.12514) was also favored by a value of R2 pred (R2

pred= 0.6578). The predictive capability of the selected
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Table 3 Experimental and predirQSAR models (PLS factors= 5)

Compound Experimental
Activity

Predicted activity Fitness Residual value Pharm set

1 6.644 6.70 1.88 −0.056 —

2 5.781 6.12 1.85 −0.339 Inactive

3 5.759 5.94 1.96 −0.181 Inactive

4 4.602 4.64 1.88 −0.038 Inactive

5 6.278 6.14 1.96 0.138 Inactive

6 6.298 6.65 1.78 −0.352 Inactive

7 6.166 6.13 1.85 0.036 Inactive

8 6.381 6.25 1.92 0.131 Inactive

9 6.442 6.63 1.8 −0.188 —

10 6.461 6.27 1.95 0.191 —

11 6.521 6.08 1.9 0.441 —

12 6.648 6.49 1.91 0.158 —

13 6.631 6.62 1.89 0.011 —

14 6.444 6.46 1.93 −0.016 —

15 6.724 6.65 1.89 0.074 —

16 6.362 6.46 1.91 −0.098 Inactive

17 6.695 6.64 1.89 0.055 —

18 6.824 6.71 1.79 0.114 —

19 7.018 6.74 1.79 0.278 —

20 7.108 6.73 1.89 0.378 —

21 7.131 6.7 1.89 0.431 —

22 6.384 6.56 1.88 −0.176 Inactive

23 6.475 6.57 1.77 −0.095 —

24 5.89 6.58 1.86 −0.69 Inactive

25 7.463 7.09 2.94 0.373 —

26 7.428 6.85 3 0.578 Active

27 7.666 6.83 2.67 0.836 Active

28 7.886 7.12 2.94 0.766 Active

29 7.712 7.73 0.86 −0.018 Active

30 7.994 8.06 1.63 −0.066 Active

31 6.721 6.65 2.94 0.071 —

32 6.432 6.73 2.94 −0.298 —

33 6.921 6.77 2.95 0.151 —

34 6.509 6.69 2.91 −0.181 —

35 6.553 6.72 2.93 −0.167 —

36 4.301 4.2 2.7 0.101 Inactive

37 7.268 7.14 1.1 0.128 —

38 7.284 7.13 1.05 0.154 —

39 6.775 6.9 1.1 −0.125 —

40 5.87 5.84 1.06 0.03 Inactive

41 6.306 6.38 1.17 −0.074 Inactive

42 5.364 5.8 1.07 −0.436 Inactive

43 5.554 5.51 1.06 0.044 Inactive

44 5.799 6.09 1.12 −0.291 Inactive

45 5.508 5.46 1.13 0.048 Inactive

46 7.387 7.43 1.15 −0.043 —
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Table 3 (continued)

Compound Experimental
Activity

Predicted activity Fitness Residual value Pharm set

47 6.996 6.96 1.15 0.036 —

48 6.71 6.69 1.14 0.02 —

49 5.971 6.45 0.26 −0.479 Inactive

50 7.244 7.37 0.91 −0.126 —

51 5.777 5.76 0.23 0.017 Inactive

Where “—” indicates for moderately active compound

Bold face indicates highest fitness score of 3

Fig. 3 Scatter plot of observed activity vs. predicted activity for PLS 3D-QSAR models a training set and b test set

Fig. 4 Comparison of the
contour maps of the most active
compound 26 and least active
compound 51: The hydrogen
bond donor effects in a most
active compound 26 and b the
least active compound 51; The
hydrophobic effects in c most
active compound 26 and d the
least active compound 51; The
electron withdrawing effects in e
most active compound 26 and f
the least active compound 51.
Blue cubes indicates favorable
regions while yellow cubes
indicates unfavorable region for
the activity
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model was also proved by the values of r2− r0
2 / r2=

−0.0282, r2− ŕ02 / r2=−0.3328, K= 0.4810, K̍’= 0.6990,
r0

2= 0.9570 and r0′2= 0.7180 that were attained by cal-
culating the correlation coefficient of regression lines of the
scatter plot. Additionally, the external predictability and
acceptability of selected model was also confirmed by rm

2

and Rp
2. The values of rm

2 and Rp
2 were 0.7772 and 0.5018,

respectively (Table 5), which were within the standard
statistical limits. Therefore, from all of the external valida-
tion parameters, the reliability of QSAR model was con-
firmed for the prediction of a new molecule.

Virtual screening and docking

Best pharmacophore hypothesis was further employed
against the Zinc database for 3D search query. The hit

compounds were obtained by overlapping their chemical
functional features with corresponding features of the best
pharmacophoric model (AAADR.12514). As a result of
searching the features against Zinc database, a total of 5238
compounds were obtained and these screened compounds
again tested for drug likeliness by utilizing Qikprop and
Lipinski’s rule of five. After screening, total 1775 com-
pounds were obtained and further subjected to HTVS (high
throughput virtual screening). In virtual screening work-
flow, 30% of best compounds were selected for SP (stan-
dard precision) docking and after SP docking, 30% of best
compounds were selected for XP (extra precision) docking.
The structure of best hits after virtual screening i.e.,
ZINC10600215, ZINC12802221, ZINC17192586,
ZINC17189715, and ZINC12548600 are shown in Fig. 5.
The XP, SP, and HTVS dock score, glide energy, potential
energy-OPLS-2005, and RMSD of all best five hits i.e.,
ZINC10600215, ZINC12802221, ZINC17192586,
ZINC17189715, and ZINC12548600 in the active site of
4LXZ are shown in Table 6.

On the basis of docking, screened hit molecule
ZINC10600215 showed best scores and H bond interactions
as compared to crystal ligand (SAHA) (Figs. 6a, b). The 2d
interaction pattern of top scored molecule ZINC10600215
in the active site of protein (4LXZ) were compared with the
crystal ligand (SAHA) and are shown in Figs. 6c, d. For the
validation of docking, co-crystallized ligand was redocked
and its RMSD was calculated to validate the docking pro-
cess (Fig. 7).

The Fig. 6d shows the interaction of crystal ligand
(SAHA) with (C=O…..H-Tyr308 O-H…..N-His145, N-
H…..N-His146 and N-H…..O-Asp104), in addition the
hydrophobic site of catalytic pocket (Phe210 and Phe155)

Table 5 External statistical
parameters for developed 3D-
QSAR models

S.No. External validation parameters PLS model Standard limit

1 Cross-validated coefficient, (rcv
2) 0.967 rcv

2 > 0.5

2 Squared correlation coefficient, between the observed and
predicted activities

R2 0.9300 ~1

r2 0.7180 r2 > 0.5

3 K 0.4810 0.85 ≤ k ≤ 1.15

4 K̍' 0.6990 0.85 ≤ k ̍’́ ≤ 1.15

5 r0
2 0.9570 r0

2 or ŕ02close to r2

6 ŕ02 0.7283 r0
2 or ŕ02close to r2

7 r2− r0
2 / r2 −0.0282 r2− r0

2 / r2 < 0.1

8 r2− ŕ02 / r2 −0.3328 r2− ŕ02 / r2 < 0.1

9 r2 pred 0.6578 r2 pred > 0.6

10 Rp
2 0.5018 Rp

2 > 0.5

11 rm
2 0.7772 rm

2 > 0.5

Table 4 Internal statistical and PLS parameters for developed 3D-
QSAR models

Statistical parameters PLS model
(AAADR.12514)

Number of molecules in the training set 41

Number of molecules in the test set 10

Regression coefficient

Training set, R2 0.9260

Test set, Q2 0.6990

Standard deviation (SD) 0.2154

Root mean square error (RMSE) 0.4963

Stability 0.7412

Chi square (χ2) 0.0761

Pearson correlation coefficient (Pearson-r) 0.8811

Variance ratio (F-value) 87.5

Significance level of variance ratio (P-value) 8.997e–019
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showed hydrophobic interaction with aliphatic and aromatic
parts of the compound. After visual inspection of interaction
pattern of top scored molecule ZINC10600215 (Fig. 6c), it
was found that it interacted similarly with the residue in the
catalytic pocket (C=O…..H-Tyr308, N-H…..N-His146
and N-H…..O Asp104). The aliphatic and aromatic parts of
compound also showed similar hydrophobic interaction
with hydrophobic site of the receptor (Phe210 and Phe155).

MM/GBSA-based rescoring

For rescoring of already docked molecules, MM/GBSA
(Molecular Mechanics-Generalized Born Surface Area)
study was performed using Prime 3.1 module. Best five
molecules with dG_Bind (free-binding energy), dG
Bind_Solv (free solvation energy) are shown in (Table 7).
Top scored molecules ZINC10600215 impart highly

negative free-binding energy (−56.9548) than other com-
pounds, it means, ZINC10600215 exhibit high binding
affinity to the receptor as compared to other molecules.
Overall result shows that the energy profile of top scored
molecules ZINC10600215, exhibited interesting correlation
with the crystal ligand (SAHA).

MD simulation

Protein-ligand complex (docked pose of top ranked mole-
cule ZINC10600215 and SAHA with PDB ID: 4LXZ) was
simulated for 5000 ps (5 ns). Temperature vs. time and total
energy vs. time plot obtained after production step are
shown in (Fig. 8). Electrostatics of protein-ligand complex
was studied by employing spherical cutoff method and it
exhibited kinetic energy change from 4332.59 to
4381.51 kcal/mol and potential energy change from

Fig. 5 Structures of screened top five compounds after virtual screening

Table 6 Interaction pattern of
identified top five compounds
after virtual screening and
docking

S. no. Compound no. XP docking
score (kcal/
mol)

SP
docking
score
(kcal/mol)

HTVS
docking
score (kcal/
mol)

XP
docking
RMSD
(Å)

XP glide
energy

Potential
energy-
OPLS-2005

1 ZINC10600215 −10.2743 −9. 8973 −9.3973 0.3860 −47.0619 98.1262

2 ZINC12802221 −10.2136 −9.3966 −8.8966 0.3859 −44.2583 90.2016

3 ZINC17192586 −9.7179 −8.4439 −8.4438 0.3859 −44.8402 190.4191

4 ZINC17189715 −9.3217 −8.6823 −8.6824 0.3858 −38.0528 189.9049

5 ZINC12548600 −8.0714 −8.3848 −8.3848 0.3875 −50.1557 134.4306

6 SAHA (crystal
ligand)

−7.5120 −7.0453 6.9720 0.1361 −49.8186 80.826
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−3487.92 to −3585.70 kcal/mol (Fig. 9) and final RMS
gradient after simulation was 18.662 (kcal/(mol × Å)).

Trajectory snapshots were collected at every 2 ps during
the simulation. The stability of complex, conformational
changes and strength of interaction were examined by

Fig. 6 a Docked pose of compound ZINC10600215 in the active site
of 4LXZ showing the hydrogen bond interaction (pink dotted lines)
with TYR 308 and HIS 140; b Docked pose of crystal ligand SAHA in
the active site of 4LXZ showing the hydrogen bond interaction with

TYR 308, HIS 145, HIS 146, and ASP 104; c 2D interaction diagram
of compound ZINC10600215; and d 2d interaction diagram of crystal
ligand SAHA

Fig. 7 Superimposition of
crystal structure pose (yellow
color) on dock pose (green) of
co-crystallized ligand. The RMS
deviation is 1.2451 Å

Table 7 Different energies of
screened top five molecules
along with reference drugs
SAHA

Compound dG_Bind dG_Bind_vdW dG
Bind_
Solv GB

dG_Bind_Hbond Ligand
_Energy

Complex_Energy

ZINC10600215 −56.9548 −32.5544 28.1907 −1.4914 −19.5498 −16160.8752

ZINC12802221 −52.9169 −27.4729 25.4509 −1.5451 −28.2793 −16165.5669

ZINC17192586 −45.7439 −35.0210 22.4696 −1.5546 32.5273 −16097.5872

ZINC17189715 −41.9507 −33.5847 25.0692 −1.2672 33.8251 −16092.4961

ZINC12548600 −47.3164 −37.6407 24.3950 −1.5167 −41.1371 −16172.8241

SAHA −76.6842 −38.5390 32.3986 −1.5738 −22.4622 −15837.1054
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calculating RMSD, root mean square fluctuation (RMSF),
heat map, and hydrogen bond interactions map attained
throughout MD trajectories are shown in Fig. 10. The
protein backbone residues exhibited average RMSD and

RMSF values of 1.73 Å and 0.57 Å, respectively. After MD
simulation of protein-ligand complex (top scored molecule
ZINC10600215 and SAHA with PDB ID: 4LXZ) exhibited

Fig. 8 a Temperature vs. time and b total energy vs. time plot obtained during production step of MD simulation study of receptor-ligand complex
(4LXZ- SAHA)

Fig. 9 a Kinetic and b potential energy change of receptor-ligand complex (4LXZ-SAHA) after MD simulation
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average RMSD value 1.48 Å and 1.46 Å, respectively ((Fig.
10d, e).

Top scored molecule ZINC10600215-4LXZ interactions
were observed in docking analyses and found stable with
Tyr308, His146, and Asp104 during last 0.1 ns simulation.

Fig. 10 a Backbone RMSD of
4LXZ during molecular
dynamic simulation; b RMSF
values of 4LXZ which
represents local changes along
the protein chain during
molecular dynamic simulation; c
RMSD plot of top scored
molecule ZINC10600215,
4LXZ backbone and reference
compound (SAHA) during MD
simulation; d RMSF plot of top
scored molecule
ZINC10600215, 4LXZ
backbone, and reference
compound (SAHA), which
represents local changes during
molecular dynamic simulation; e
Map represents h-bond and
hydrophobic interactions of
ZINC10600215with different
residue of enzyme 4LXZ
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Apart from H-bonds, hydrophobic interaction with Phe210
was reliable during MD simulation (Fig. 10f). The stable
ligand–receptor interactions in the course of MD simulation
confirmed the results of earlier docking studies.

ADME and toxicity evaluation

ADMET studies were performed for top 5 hits using Qik-
prop module of Schrodinger v9.3. The results of analysis
included various pharmacokinetic parameters required for
ADMET and are shown in Table 8. Some important phar-
macokinetic parameters like Aq. Solubility, octanol/water
partition coefficient, percent human oral absorption, blood-
brain-barrier (BBB) penetration, apparent Caco-2 cell per-
meability, and blockage of HERG K+ channels were esti-
mated for top 5 scored molecules. All top five molecules
exhibited good octanol/water partition coefficient
(QPlogPo/w) values, which were the indication of better
absorption and distribution capability of drug. The predicted
value of partition coefficient for all compounds ranged
between 0.973 and 2.583, which were in acceptable range.
Apparent Caco-2 cell permeability (QPPCaco) is an
important parameter for understanding the cell permeability.
The QPPCaco of top five compounds ranged from 46.454 to
114.046, which was in an acceptable range. All of the
screened top molecules exhibited good pharmacokinetic
drug-like properties and were within the standard limit for
human use.

Conclusion

The present work describes the design of novel scaffold of
HDAC inhibitors by combining different in silico methods.
The ligand-based pharmacophore was developed using

Maestro v9.3. The developed pharmacophore model was
validated by enrichment studies using the decoy set and the
model exhibited five pharmacophoric features i.e., three
hydrogen bond acceptor group, one hydrogen bond donor
group, and one aromatic ring. The 3D QSAR model
developed using the pharmacophore-based alignment
showed high values of regression coefficient for training set
(R2)= 0.926 and test (Q2)= 0.699, cross-validated coeffi-
cient (rcv

2)= 0.967 and R2 pred= 0.6578 with low RMSD
= 0.4963. Additionally, the best pharmacophore model
(AAADR.12514) was further utilized in virtual screening
against the available Zinc database for 3D search query and
five top scored molecules were obtained. Finally, the rela-
tive binding free energy and binding affinity of hit mole-
cules were confirmed using MM-GBSA technique and MD
simulation. The pharmacokinetic properties of all hit
molecules were compared with the crystal ligand SAHA.
After MD simulation, docked pose of top scored molecules
ZINC10600215 exhibited similar binding interactions. It
can be concluded that the combination of the 3D QSAR,
pharmacophore modeling, virtual screening, MM-GBSA,
MD simulation, and ADMET approaches are capable to
recognize new hit molecules from chemical databases,
which might be a promising lead in the discovery of novel
HDAC inhibitors.
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Table 8 ADMET property of most active five compounds

Compound Mol_MW SASAa HB
donor

HB
accept

QPlogPo/wb QPPCacoc QPlogHERGd QPlogBBe Percent human oral
absorptionf

ZINC10600215 354.383 642.207 0.5 6.5 2.583 114.046 −6.463 −1.717 78.886

ZINC12802221 337.78 608.052 0.5 5.5 2.61 99.957 −5.998 −1.673 78.02

ZINC17192586 339.31 605.809 0.5 7 1.408 42.277 −5.823 −2.129 64.292

ZINC17189715 353.337 636.841 0.5 7 1.85 54.406 −5.997 −2.138 68.842

ZINC12548600 415.42 630.149 3 10 0.973 46.454 −5.614 −2.148 62.481

SAHA 264.324 594.069 3 6.7 0.745 108.913 −4.38 −1.835 67.76

a Total solvent accessible surface area (SASA) in square angstroms using a probe with a 1.4 Å radius (range= 300–1000)
b Predicted octanol/water partition coefficient (Range=−2.0–6.5)
c Predicted apparent Caco-2 cell permeability in nm/sec. Caco-2 cells are a model for the gut blood barrier (<25% is poor, >500 great)
d Predicted IC50 value for blockage of HERG K+ channels. concern below –5
e Predicted brain/blood partition coefficient. −3.0–1.2
f Predicted human oral absorption on 0 to 100% scale. >80% is high, <25% is poor
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