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Abstract The G protein coupled receptor 119 is an exciting
and promising target for the treatment of type 2 diabetes
mellitus. In this study, three dimensional quantitative
structure activity relationships i.e. a comparative molecular
field analysis and comparative molecular field analysis
region focusing have been carried out on a novel series
of G protein coupled receptor 119 agonists. A quality
pharmacophore model was built by Hip-Hop algorithm.
The best pharmacophore model indicated which feature of
hydrogen-bond acceptor and hydrophobic existed around
active compounds. As the quality of the pharmacophore
model is satisfactory, it was utilized to search the
ZINC database for a virtual screening task. The obtained
compounds subjected to Lipinski filter at first, were docked
with Gold algorithm to discover potent hits. The energy
difference between the highest occupied molecular orbital
and lowest unoccupied molecular orbital (“gap”) implies
high reactivity of the most active molecule in the active site
of protein. In addition, the molecular electrostatic potential
energy at density functional theory level confirms the results
from molecular docking. In silico absorption, distribution,
metabolism, and excretion and toxicity risk assessment
analysis were carried out on the seven hits with the highest
Gold score fitness. Six of the new hits from virtual
screening had diverse structures and are reported as new

scaffold candidates for G protein coupled receptor 119
agonists.
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Introduction

Type 2 diabetes mellitus (T2DM) is one of the most com-
mon diseases which many of the world’s people suffer from,
and is increasing rapidly. T2DM constitutes approximately
90% diabetic patients (Sharma and Chandola 2011). It is
estimated that 382 million people have diabetes and this
number is expected to reach 592 million by 2035
(Guariguata et al. 2014). Therefore, there is a great
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requirement for the discovery of novel drugs in this field.
Intensive efforts have been made worldwide to develop
therapies for type 2 diabetes. The attractive targeting of G-
protein-coupled receptor 119 (GPR119) with the small
molecules inhibitors is one of the most promising new
approaches for the treatment of type 2 diabetes and other
elements of the metabolic syndrome. GPR119 is a class A
type receptor (Shah 2009) that is expressed in pancreatic β-
cells and incretin releasing cells in the gastrointestinal (GI)
tract (Overton et al. 2008). One of reasons that cause T2DM
is gradual loss of beta-cells function in the pancreatic
(Wellenzohn et al. 2012). Agonists of GPR119 as anti-
diabetics attract interest for their capability to simulate an
incretin response in the gut and glucose-dependent insulin
release in the pancreas (McClure et al. 2011).

In recent years, the computer-aided drug design
approaches (Cern et al. 2014) have made a large contribu-
tion to the design of novel drugs. Comparative molecular
field analysis (CoMFA) (Cramer et al. 1988; Shiri et al.
2015) studies through interpretation of contour maps have
given insight to design the new inhibitors. The pharmaco-
phore approach (Ambure et al. 2014) (Ambure et al. 2014;
Pirhadi and Ghasemi 2012) is effective in drug design.
According to a definition by IUPAC, a pharmacophore
model is ‘an ensemble of steric and electronic features that
is necessary to ensure the optimal supramolecular interac-
tions with a specific biological target and to trigger (or
block) its biological response’(Yang 2010). Virtual screen-
ing as a power tool to introduce novel hits have been used
(Cano et al. 2014; Shoichet 2004). Molecular docking
(Gschwend et al. 1996) is applied for the investigation of
the interactions between protein and ligand and to attain
bioactive conformers (Ghasemi et al. 2013; Li et al. 2011;
Negoro et al. 2012). In the present work, we are to find new
inhibitors for type 2 diabetes from the approaches of
pharmacophore modeling, molecular docking, and virtual
screening.

Moreover the electronic effects play a key role in drug
discovery process (Feng et al. 2005). Herein, docking stu-
dies and quantum chemistry calculations were performed on
the basis of density functional theory (DFT) theory in order
to explore some amino acids involved in the binding site by
paying special attention to the electronic effects which are
related to highest occupied molecular orbital (HOMO) and
lowest unoccupied molecular orbital (LUMO) energies and
molecular electrostatic potential (MEP) map. Herein, we
have introduced the novel hits with different scaffolds using
virtual screening in the ZINC 3D database which involve
ligand-based pharmacophore and molecular docking.
Finally, absorption, distribution, metabolism, and excretion
(ADME) prediction and toxicity risk assessment analysis
were carried out by virtual screening to obtain the required
ADMET properties.

Material and method

Data set

A series of 44 small molecules of GPR119 agonist and their
functional potency (EC50 value) were taken from the lit-
erature (Scott et al. 2012). The dataset was split to training
set (33 compound) and test set (10 compound) by Kennard
and Stone algorithm to maximize the diversity of the test set
and to test the predictive accuracy of the model when
extrapolating outside the training set (Kennard and Stone
1969). Due to large residual compound 34 is outlier and was
removed from the training set. The EC50 values (μM), (The
EC50 is the concentration of a drug that gives half-maximal
response) was converted to pEC50 in the molar range in
order to give reliable numerical values. The structure of the
compounds and their functional potency are shown in
Tables 1a–e.

Table 1a Structures and experimental biological activities (pEC50)
for compounds of the general structure Ι

Compound Core EC50 (μM) pEC50

1 0.065 7.19

2 1.084 5.96

3 0.485 6.31

4 0.186 6.73

5 0.737 6.13

6 0.161 6.79
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Table 1b Structures and experimental biological activities (pEC50)
for compounds of the general structure IΙ

Compound Core EC50 (μM) pEC50

7 0.893 6.05

8 0.041 7.39

9 0.019 7.72

10 0.054 7.27

11 0.054 7.27

12 0.466 6.33

13 0.064 7.19

14 0.039 7.41

15 2.217 5.65

Table 1b continued

Compound Core EC50 (μM) pEC50

16 0.156 6.81

Table 1c Structures and experimental biological activities (pEC50) for
compounds of the general structure ΙII

Compound R EC50 (μM) pEC50

17 0.029 7.54

18 0.079 7.1

19 0.039 7.41

20 0.006 8.22

21 0.003 8.52

22 0.016 7.8

23 0.045 7.35
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Table 1e Structures and experimental biological activities (pEC50) for
compounds of the general structure V

Compound R EC50 (μM) pEC50

32 0.112 6.95

33 0.054 7.27

34 0.020 7.7

35 0.100 7

Table 1e continued

Compound R EC50 (μM) pEC50

36 0.063 7.2

37 0.008 8.1

38 0.014 7.85

39 0.234 6.63

40 0.002 8.7

41 0.021 7.68

42 0.010 8

43 0.025 7.6

44 0.005 8.3

Table 1d Structures and experimental biological activities (pEC50)
for compounds of the general structure ΙV

Compound R X EC50 (μM) pEC50

24 H H 0.621 6.21

25 H 3-Me 0.075 7.12

26 H 3-OMe 1.925 5.72

27 H 3-F 0.063 7.2

28 H 3-CN 0.021 7.68

29 H 3,5-F,F 0.154 6.81

30 Me 3-Me 0.184 6.74

31 Me 3-CN 0.005 8.3
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Molecular modeling and alignment

The 3D structures of compounds 1–44 (Tables 1a–e) were
built in SYBYL 7.3 molecular modeling software package
from Tripos, Inc., St. Louis, MO. The partial atomic charges
of structures were calculated by Gasteiger–Hückel and their
energy was minimized using the Tripos force field with a
distance-dependent dielectric and the Powell conjugate gra-
dient algorithm convergence criterion of 0.01 kcal/mol (Clark
et al. 1989). Alignment is a critical step in CoMFA modeling.
Appropriate alignment method caused to acquire a model
with high quality statistical parameters. Here, we applied rigid
body alignment by the SYBYL Distill module. Compound 40
was considered as a template for the alignment of compounds
because it had the highest potency. Alignment of molecules
was performed with maximum common substructure by
distill method without including bond types in rings (Pirhadi
and Ghasemi 2012; Pirhadi et al. 2014). Because CoMFA
models are very sensitive to the different space orientations of
the molecular aggregate with regard to the grid box, all-
orientation search (AOS) strategy was used to achieve the best
orientation and minimize the effect of the initial orientation of
aligned compounds. AOS module was written in SYBYL
programming language (Wang et al. 1998).

CoMFA study

The CoMFA model described the molecular characteriza-
tion with van der Waals and electrostatic fields, using
Lennard–Jones and Coulombic potential, respectively. The
CoMFA descriptor fields were calculated at each grid point
by a sp3 hybridized carbon atom with a charge of +1 as the
probe atom in a 3D cubic lattice. Column filtering was set to
2.0 kcal/mol. Cut-off for both steric and electrostatic field
was set to 30 kcal/mol. Also, in method comparative
molecular field analysis region focusing (CoMFA-RF)
applies weights to the lattice points which attenuate the
contribution of these points to subsequent analysis and
refining model, here ‘StDev* Coefficients’ values and dif-
ferent weighing factors were applied in addition to grid
spacing for achieving the better models (Pirhadi and Gha-
semi 2010; Shiri et al. 2016). Partial least squares (PLS)
regression was used to find the relationship between the
CoMFA descriptors as independent variables and the bio-
logical activities as dependent variables (Wold et al. 2001).

Model validation

Leave-one-out cross-validation (LOO-CV) as internal valida-
tion was employed to validate the derived quantitative struc-
ture activity relationships (QSAR) model. In the LOO-CV
method, one compound of the training set was excluded, and a
new QSAR model was built by the remaining compounds and

the activity of the excluded compound was predicted using the
new constructing model. This process was repeated until all
compounds of the training set were excluded once. The
optimum number principle component for the model as the
number leading to the highest value of q2 is defined as

q2 ¼ 1�
Pn

i¼1 Ypred � Yobs
� �2

Pn
i¼1 Yobs � Ymeanð Þ2

where Yobs, Ypred, and Ymean are the observed, predicted, and
mean of the biological activity values, respectively, and n is
the number of compounds in the training set. A high q2 value
(q2> 0.5) was used as the evidence of high predictive ability
of the model (Gibbs 2000; Hawkins et al. 2003). Golbarikh
and Tropsha reported that the high value of q2 is essential
and important but not adequate for a predictive model (Lu
et al. 2010) and an external analysis should be employed by a
test set of molecules to investigate the prediction of model.
They also stated that a QSAR model is predictive if it fulfills
the following conditions (Tropsha et al. 2003):

q2 ≥ 0:5

R2 ≥ 0:6

R2 � R2
0

� �

R2
<0:1 or

R2 � R′2
0

R2
<0:1

0:85 � k � 1:15 or 0:85 � k′ � 1:15

Where R2 is the squared correlation coefficient values
between the observed and predicted values of the test set
compounds (Lu et al. 2010). R2

0 and R′2
0 are squared corre-

lation coefficient values for predicted vs. observed and
observed vs. predicted activities, through origin, respec-
tively, and k’ is the slope of regression lines through the
origin (Lu et al. 2010). In order to evaluate the predictive
power of the CoMFA models, the activity values of the
external test set of compounds not used in model genera-
tion, were predicted. The predictive R2 (R2

pred) of the
external prediction was obtained as following formula:

R2
pred ¼ 1�

P
Yobs � Ypred
� �2

P
Yobs � Ymean

� �2

where Yobs, Ypred, and Ymean are the observed, predicted, and
mean values of the activity, respectively.

Molecular docking

The crystal structure of GPR119 has not been published yet.
The pdb homology modeled from the primary sequences of
human GPR119 (Q8TDV5) was taken from the CSSB (http://
cssb.biology.gatech.edu/skolnick/sup/GPCRt3). Among the
top five generated homology models, the first one was selected
based on the highest C-score (2.1) and used for docking study.
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Molecular docking was done in Discovery studio 2.5 package
(AccelrysInc, San Diego, CA, USA) with Gold algorithm. The
highest active compound 40 was typed with CHARMM force
field and the partial charges were determined by the
Momany–Rone option. Then, the resulting compound was
minimized by a smart minimizer algorithm which performs
1000 steps of the steepest descent with a RMS gradient tol-
erance of 3, followed by conjugate gradient minimization. The
preparation and minimization of protein were made, the pro-
tein structure was typed with CHARMM force field, the
partial charge was computed by Momany–Rone, hydrogen
atoms were added, and all water molecules were removed and
pH of protein was adjusted to almost neutral 7.4, using protein
preparation protocol. The active site of the target protein was
created as a spherical region with a radius of 16 Å which
shows atoms of the ligand and the side-chains of the residues
of the receptor within 16 Å from the center of the binding site
are free to move. Other parameters were fixed by default
protocol settings. The most active compound 40 was docked
into active site of the protein. The best pose among 10 given
poses with the higher Gold score fitness function was chosen
in order to achieve the key interaction between the compound
and the amino acid of active site.

Quantum chemical calculations

In this study, the geometry optimization and calculations
were performed at the DFT level on a personal computer by
energy optimization, using the Gaussian 09 (Frisch et al.
2009) program package. The HOMO and the LUMO ener-
gies at B3LYP/6-31G (d,p) level were calculated for
bioactive conformer obtained of compound 40 in the dock-
ing studies. The MEP was also studied at the same level. The
MEP surface was created using Molekel (Varetto 2009).

3D-Pharmacophore generation

A pharmacophore is a structural representation of a spatial
arrangement of the essential features (hydrogen bond donor,
hydrogen bond acceptor, hydrophobic area, and positively
and negatively ionized areas) for a set of molecules to interact
with the specific target receptor (24–26). The pharmacophore
model was generated to extract the common important
pharmacophore features among the first five most active
compounds by Hip-Hop in the discovery studio 2.5 packages.
The best pharmacophore model was obtained by two features
including hydrogen bond acceptor and hydrophobic feature
which were color coded with green and blue, respectively.

Virtual screening

Virtual screening including a wide variety of computational
approaches let us derivate the most active hits from a

massive virtual library. The pharmacophore validated model
was used as a 3D virtual screening query for the detection of
the potent candidates from ZINC chemical database. At first
we selected a random collection 124,276 molecule from
ZINC database and built an in-house chemical database. For
each compound in the database, a fast conformer generation
approach produced 100 conformers allowing a maximum
energy of 15 kcal/mol above the global energy minimum for
the conformation searching. In the first screening step, a
total 7430 compounds were detected by pharmacophore
model. The hit compounds were further screened by phar-
macokinetic property filters, Lipinski’s rule of five to make
them more drug-like because the molecules with molecular
weight (MW) more than 500 calculated logP higher than 5,
and hydrogen-bond donors, or hydrogen-bond acceptors
more than 5 and 10 respectively, were rejected from the
database (32, 33). Based on Lipinski’s rules, 264 com-
pounds were retrieved. The obtained hit compounds were
docked into the protein structure as a structure-based
screening using a fast screening method, GOLD, within
Discovery Studio 2.5 package. Finally, seven compounds
were chosen at this step using a high Gold fitness score. The
virtual screening steps are shown in a flowchart in Fig. 1.

ADME and toxicity risk assessment studies

The best binding interactions with a target for the best drug
are necessary but not a sufficient condition. An ideal oral
medicine absorbed rapidly and completely from the diges-
tive tract, and distributed exactly and specially to its target
in the body, does not metabolize the way that immediately
clear its activity, and eliminate in a proper way without

Fig. 1 The flowchart of the combined virtual screening
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leading harm. The ADME are the main subjects in phar-
macokinetics (Hodgson 2001). The ADME properties pre-
diction of compounds before synthesis would be beneficial
in the process of drug discovery. The chemists need this
data to improve the pharmacokinetic features of com-
pounds. Some chemical descriptors such as MW (less MW
for better absorption) were used to measure the pharmaco-
kinetic parameters. Drugs with more MW include many
polar functional groups and rotatable bonds so their
absorption is poor, and drugs with low MW can result in the
extracellular solution of body organs rather quickly (Gur-
anatra 2001). Lipinski rules (Lipinski et al. 2001) were used
as a filter to assess the medicinal ability of the compounds
in virtual screening step. Some of computed pharmacoki-
netic parameters were blood-brain barrier (logBB), apparent
Caco-2 permeability, apparent MDCK permeability, logKp
for skin permeability, the distribution volume, and plasma
protein binding (logKhsa) which make effect for the dis-
tribution of a drug in the body (Reichel and Begley 1998).
LogP (the octanol–water partition coefficient) is a physi-
cochemical parameter of a drug’s hydrophobicity property,
and also logP and MW are effective in drug excreting from
the body. It is obvious that compounds with greater lipo-
philicity have low absorption and more metabolisms in liver
since they can bind macromolecules easier causing their
toxicity, also fast renal clearance is related to hydrophilic
and small compounds. On the other hand, the metabolism of

Table 2 Summery of the statistical parameters for the CoMFA and
CoMFA-RF models

Statistical parameters CoMFA CoMFA- RF

q2 0.509 0.605

R2
ncv 0.944 0.945

R2
pred 0.77 0.88

R2
bs 0.969 0.965

SEE 0.205 0.204

SEP 0.214 0.198

F 72.52 72.86

R2 0.774 0.851

R2
0 0.757 0.850

R0
′2 0.762 0.835

R2−R2
0/R

2 0.022 0.001

R2−R0′
2/R2 0.016 0.018

k 0.861 0.956

k´ 0.987 0.989

n 4 6

q2 cross-validated correlation coefficient, R2
ncv non-cross-validated

correlation coefficient, n number of optimum component, R2
pred

predictive correlation coefficient, R2
0 (test) correlation coefficient for

regression through the origin for predicted vs. observed activities,
R'2

0(test) correlation coefficient for regression through origin for
observed vs. predicted activities

Table 3 Gold fitness, experimental and predicted pEC50 values with
residual values of the training and test set compounds

CoMFA CoMFA-RF

Compound Experimental Pred. Res. Pred. Res. Gold
fitness

1 7.19 7.43 −0.24 7.55 −0.36 49.72

2 5.96 5.89 0.07 5.98 −0.02 50.66

3 6.31 6.52 −0.21 6.4 −0.09 51.66

4a 6.73 6.49 0.24 6.49 0.24 50.48

5a 6.13 6.02 0.11 5.93 0.2 50.02

6 6.79 6.74 0.05 6.81 −0.02 49.34

7 6.05 6.25 −0.2 6.07 −0.02 48.98

8a 7.39 7.39 0 7.3 0.09 51.84

9 7.72 7.39 0.33 7.3 0.42 51.84

10a 7.27 7.21 0.06 7.16 0.11 52.04

11 7.27 7.21 0.06 7.16 0.11 52.04

12 6.33 6.26 0.07 6.2 0.13 51.83

13 7.19 7.21 −0.02 7.21 −0.02 50.58

14 7.41 7.38 0.03 7.4 0.01 51.53

15 5.65 5.63 0.02 5.68 −0.03 50.73

16 6.81 6.75 0.06 6.86 −0.05 52.03

17a 7.54 7.39 0.15 7.6 −0.06 54.14

18 7.1 7.14 −0.04 7.18 −0.08 52.38

19 7.41 7.39 0.02 7.6 −0.19 49.03

20a 8.22 7.72 0.5 7.7 0.52 54.79

21 8.52 8.6 −0.08 8.42 0.1 53.58

22 7.8 7.96 −0.16 8.1 −0.3 49.57

23 7.35 7.34 0.01 7.19 0.16 50.02

24 6.21 6.34 −0.13 6.41 −0.2 46.44

25 7.12 6.93 0.19 6.96 0.16 47.47

26 5.72 5.68 0.04 5.7 0.02 45.14

27 7.2 6.86 0.34 6.76 0.44 47.4

28 7.68 7.92 −0.24 7.77 −0.09 47.71

29 6.81 6.8 0.01 6.79 0.02 49.7

30 6.74 6.87 −0.13 7.08 −0.34 52.48

31 8.3 7.86 0.44 7.96 0.34 47.86

32 6.95 7.24 −0.29 7.01 −0.06 46.09

33a 7.27 7.83 −0.56 7.59 −0.32 44.59

34 7.7 6.79 0.91 7.07 0.63 51.06

35 7 6.95 0.05 7.04 −0.04 47.92

36 7.2 7.32 −0.12 7.29 −0.09 52.78

37 8.1 7.75 0.35 7.96 0.14 51.48

38a 7.85 7.57 0.28 7.71 0.14 55.13

39 6.63 6.84 −0.21 6.68 −0.05 51.05

40 8.7 8.57 0.13 8.59 0.11 55.99

41 7.68 7.63 0.06 7.66 0.02 52.26

42a 8 7.69 0.31 7.82 0.18 55.18

43a 7.6 7.8 −0.2 7.88 −0.28 54.15

44 8.3 8.56 −0.26 8.45 −0.15 56.03

a Prediction set
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most medicines in the liver is related to hydrophobic and
big compounds (Lombardo et al. 2003; Testa et al. 2001).
The in-silico prediction of ADME descriptors were calcu-
lated using QikProp v.3.0 program (Jorgensen 2006) and
were investigated about related standard ranges (http://
www.schrodinger.com/QikProp/). All hits were subjected to
the toxicity risk assessment (mutagenicity, tumorigenicity,
irritant, and reproductive effects) using OSIRIS program.
Also, their drug-likeness drug score values were
determined.

Results and discussion

CoMFA analysis

The statistical parameters from CoMFA and CoMFA-RF
models constructed with steric and electrostatic fields are
mentioned in Table 2. The best results were obtained for
CoMFA-RF model. LOO-CV procedure of the CoMFA-RF
model showed a high q2 value of 0.605 with 6 latent vari-
ables. The non-cross-validated PLS analysis of the model
leading to R2

pred= 0.88 and standard error of estimation
(SEE) of 0.204, F= 72.86. To evaluate the robustness and
statistical confidence of the models, a total of 100 runs
bootstrapping analysis was carried out. A high R2

bs (0.965)
indicated the degree of confidence in analysis. These results
detected a good conventional statistical correlation. The
observed and predicted activities, based on the prediction of
the models are listed in Table 3. Figure 2 depicts the rela-
tionship between the experimental and predicted activities
based on the derived QSAR models. The interpretation of
this model’s contour maps is easier and more rational than
the corresponding CoMFA model.

The steric (green and yellow) and electrostatic (blue and
red) fields of CoMFA-RF model as 3D contour maps for
visualizing the results are exhibited in Fig. 3a, b for com-
pound 40 as template. The changes in fields around the
molecules were associated with the changes in volume and
position of the contour maps leads to the differences in
biological activity. Higher activity values are related to
greater bulky group near green, minor bulky group near
yellow, more electrons donating near blue and more electron
withdrawing near red regions in all grid potential analysis.

The yellow contour near R2 substituent demonstrated the
activity of compound 21 because the presence of F sub-
stituent on the aryl ring is higher than compound 22 with
cyanide group here. Also, compound 18 with more bulky
group has lower inhibitory activity than compound 19. A
favorable steric green contour covering R4 substituent and
showing bulky groups at this position is able to increase the
activity. This can be expressed by comparing the order of
activities in these compounds: 33> 32 and 38> 39

(compound 38 has cyclopropyl group instead of methyl
group in compound 39 at R4 position). Two small red
contours near X substituent at C5 position of the ring shows
presence of the electronegative groups are beneficial for the
activity. As it is obvious, the compound 29 with F elec-
tronegative substituent is more active than the compounds
24 and 26 with H atom. The presence of small blue contour
around the R2 substituent expressed that electropositive
groups in this area will increase the activity. For example,
the activity of compound 20 (pEC50= 8.22) (N groups as
resonance in aromatic ring) is better than compound 19
(pEC50= 7.41).

Pharmacophore modeling analysis

Using ligand-based pharmacophore modeling, first, com-
mon features were obtained by five compounds 20, 21, 31,

5
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5 6 7 8 9

P
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ed
pE

C
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Experimental pEC50 values

Train

Test

Fig. 2 Predicted against observed activities for training and test sets of
GPR 119 agonists based on the CoMFA model

Fig. 3 Contour maps of a steric and b electrostatic fields of CoMFA
based on the most active compound 40
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40, and 44 as active compounds with the Hip-Hop algo-
rithm. Hydrogen-bond acceptor, hydrogen-bond acceptor
lipid, hydrophobic, hydrophobic aromatic, and ring aro-
matic features were chosen as the initial chemical features in
the qualitative pharmacophore generation. The qualitative
pharmacophore model indicated which feature of
Hydrogen-bond acceptor and hydrophobic existed around
active compounds. In brief, the chemical features common
to a set of active compounds were estimated by the program
and some hypotheses were generated for their activity.
Spatial dispositions of pharmacophore features providing
the compounds’ relative alignment in the active site of the
target are hypotheses. The top ranked solutions, HYP1
(rank= 82.95), had two features; hydrogen bond acceptor
and hydrophobic feature. The pharmacophore model which
was mapped to the most active compound 40 is shown in
Fig. 4. For model validation, 110 GPR 119 agonists asso-
ciated with EC50 obtained from binding database (http://
www.bindingdb.org) which is a large library. Among these
compounds, nearly 90 compounds had the two pharmaco-
phore features of the best pharmacophore model. This fact
let us use this pharmacophore model for virtual screening.
The initial pharmacophore model (HYP1) returned 90
molecules (82% of the database, Table 1S in Supplementary
Information). These results validate the HYP1 pharmaco-
phore model as a screening methodology for potent inhi-
bitors of T2DM.

Molecular docking analysis

Molecular docking computations were carried out to dis-
cover the better binding conformations of the inhibitors.
Many interactions between the more active compounds and
amino acids of the active site were observed. The amino
acids of the active site are shown in the literature (Negoro
et al. 2012). The key interactions between the ligands and
the active site confirm the three dimensional quantitative
structure activity relationships (3D-QSAR) model results as
well. Binding modes of the most active ligand (compound
40) with receptor were investigated and the best docked
conformation of this compound is shown in Fig. 5. The
Gold program validated docking performance using
GOLDscore fitness and Binding energy (kcal/mol) which
showed a high reliability of the docking method. Molecular
docking study between the most active compound and the
receptor indicated hydrogen bonding interactions with three
active site residues of Thr86 (O ….. H–N, bond length=
3.2 Å), Trp238 (O ….. H–O, bond length= 2.47 Å), and
Ser156 (O….H–O, bond length= 2.32 Å and N…..H–O,
bond length= 1.98 Å). Also, there are several van der
Waals interactions between Ile136, Ala90, Trp265, and
Phe241 residues and more active molecule in the dataset.
Furthermore, all 44 compounds associated their

GOLDscore values are shown in Table 4. Site-directed
mutagenesis of target residues was applied to validation of
GPR119 homology modeled. We selected three key resi-
dues (THR86, SER156, and TRP238) of interest from the
docking area that had H-bond with compound 40 for the
site-directed mutagenesis. Then, single, double, and triple
mutated of 3 key residues to ALA were done. Compound
40 was docked to all mutants GPR119. Table 2S clearly
depicted that all mutant GPR119 had small GOLDscore
values than the GPR119 without mutagenesis. Also, there
was not any H-bond in docking results of all mutant
GPR119 and compound 40.

Frontier molecular orbital

According to the frontier molecular orbitals theory, HOMO
and LUMO energy are two significant indicators of che-
mical reactivity. The character electron donor and electron
acceptor of compound were measured by the HOMO and
LUMO energies, respectively. The energy difference
between the HOMO and LUMO (gap) is an important factor

Fig. 4 Mapping of the most active compound 40 on the pharmaco-
phore model. These chemical features are color coded with green,
hydrogen-bond acceptor and blue, hydrophobic feature

Fig. 5 The best docked conformation of the most active compounds
(compound 40), in the binding site of GPR119. Hydrogen bonding
interactions as highlighted by the dashed lines in green color formed
between compound 40 and HSA
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Table 4 Structures, Gold fitness values for hits

Hits ZINC ID Structures Gold fitness

Vs1 ZINC108876 74.96

Vs2 ZINC114411 69.82

Vs3 ZINC32095 63.04

Vs4 ZINC35847 52.05

Vs5 ZINC102809 56.96
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to represent a simple measure of molecule stability. A small
gap value implies high reactivity of molecules in reactions
while a large gap value implies high stability of molecules
and low reactivity in reactions.

GAP ¼ EHOMO � ELUMO

HOMO represents the ability to donate an electron while
LUMO as an electron acceptor represents the ability to
obtain an electron. In Fig. 6, HOMO and LUMO orbitals of
the conformer obtained from docking with HOMO–LUMO
gap are given. As seen in the figure, in the HOMO, the
electrons are mainly delocalized on the nitrogen of the
piperazine and pyrimidine ring, and partially on the nitrogen
and oxygen of 1,2,4-oxadiazole ring; in the LUMO the
electrons are completely delocalized on the pyridine and
cyanide group. These observations confirm the obtained
results from molecular docking.

Molecular electrostatic potential

The MEP, V(r), at a given point r(x, y, z) located in the
neighborhood of a molecule can be defined in terms of the
interaction energy between the electrical charge generated
from the molecule electrons and nuclei, as well as a positive
test charge (a proton) placed at r. The V(r) values for the
system studied were calculated employing the equation
(Politzer and Murray 2002)

V rð Þ ¼
X

ZA= RA � rj j � ρ r′ð Þ= r′� rj jd3r′
where ZA is the charge of nucleus A located at RA, ρ(r′) is
the electronic density function of the molecule, and r′ is the
dummy integration variable.

The MEP is related to the electronic density and can also
be used as a highly beneficial descriptor for the determi-
nation of sites for electrophilic attack and nucleophilic
reactions as well as hydrogen-bonding interactions (Kauf-
man 1979; Pomelli et al. 2001). The electrostatic potential
V(r) is also well-suited for analyzing processes based on the
recognition of one molecule from another one as in
drug–receptor and enzyme substrate interactions, since it is
through their potentials that the two species first ‘see’ each
other (Politzer et al. 1985). Defined as a real physical
property, V(r) can be determined experimentally by dif-
fraction or by computational methods (Politzer et al. 1981).

Table 4 continued

Hits ZINC ID Structures Gold fitness

Vs6 ZINC112531 53.57

Vs7 ZINC22132 53.56

Fig. 6 The HOMO and LUMO orbitals and the energy levels for the
most active molecule (40)
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MEP was calculated at the B3LYP/6-31G (d,p) opti-
mized geometry so that it was possible to anticipate reactive
sites for electrophilic and nucleophilic attack for the title
molecule. As shown in Fig. 7, the two regions namely
negative (red) and positive (blue) were related to electro-
philic and nucleophilic reactivity respectively. As can be
seen from the figure, the negative region for electrophilic
attack is at pyridine and 1,2,4-oxadiazole ring and oxygen
with red and yellow color. The negative regions are loca-
lized on the unprotonated nitrogen atom of the pyridine
ring, on the oxygen between the pyridine and pyrimidine
rings and on the nitrogen and oxygen of 1,2,4-oxadiazole
ring that are H-bond acceptor from backbone NH group of
the Trp238, backbone OH group of the Thr86 and backbone
OH group of the Ser156, respectively in docking. However,
there are some positive regions are localized on hydrogen
atoms in pyridine and pyrimidine rings that indicated they
are possible sites for nucleophilic attack.

Virtual screening results

The best pharmacophore model was used as a 3D virtual
screening query for regaining novel and potent candidates
from ZINC chemical database. At first we selected a ran-
dom collection 124,276 compound from it. The model was
filtered using different steps. In first screening step, the
compounds of database were obtained by pharmacophore
model. A total 7430 compound was retrieved. The com-
pounds of pharmacophore model were screened by phar-
macokinetic property filters, Lipinski’s rule of five (Lipinski
2000; Lipinski et al. 2012). Based on Lipinski’s rule of five
264 compound was retrieved. The next step, the yield hit
compounds was docked in to the protein structure as a
structure—based on screening using a fast screening
method, GOLD, within Discovery Studio 2.5 program
package.

The structures of the seven hits associated their GOLD-
score values are shown in Table 4. The retrieved compounds
show new scaffolds and they are useful for drug design. All
of seven retrieved compounds had amine group and aromatic
ring in their structures which were mapped to the hydrogen
bond acceptor and hydrophobic features of pharmacophore
model. In addition, six of seven hits have new scaffold. The
first hit with high GOLDscore value had two hydrogen bond
with Glu261 and Arg81. One of the retrieved compounds
with a GOLDscore of 53.56, namely, Vs7, was so similar the
dataset compound and it has two hydrogen bond to Thr86
and Arg81. The claim of “discovery of a new scaffold” from
virtual screening analysis is supported by having six of seven
hits which are not GPR 119 agonists derivatives. We did a
search in ChEMBL database (Gaulton et al. 2012) to find the
structures retrieved from the virtual screening. Compounds
Vs4 (CHEMBL174261), Vs6 (CHEMBL419709), and Vs7
(CHEMBL62803) were in the database. There were several
reports of identification Vs4 (Lipinski 1983), Vs6 (Andrea
and Kalayeh 1991), and Vs7 (Berlin et al. 2010; Faghih et al.
2002; Gfesser et al. 2004; Vasudevan et al. 2002) with good
potency as inhibitor for different target in literature.

We did a search in ChEMBL database to find the
structures retrieved from the virtual screening. Compounds
Vs4 and Vs7 were in the database. There were two reports
inhibitory concentration by compound Vs7 (i) for Hista-
mine H3 receptor with potency of 8.86 nM (ii) for Hista-
mine H1 receptor with potency of 6.56 nM. Also, we saw
some reports inhibitory concentration by compound Vs4 (i)
potency of 2238.7 nM Ubiquitin carboxyl-terminal hydro-
lase 2 (ii) potency of 4466.8 nM Microtubule-associated
protein tau (iii) potency of 5623.4 nM Beta-
glucocerebrosidase.

In silico ADME and toxicity risk assessment analysis

In silico ADME prediction was performed on the hits
extracted from ZINC (Koes and Camacho 2012) database.
For this purpose pharmacokinetic parameters, logBB, skin-
permeability coefficient (logKp), apparent Caco-2 and
MDCK permeability that the higher the value of MDCK
cell, higher the cell permeability, aqueous solubility (log S),
number of metabolic reactions, logKhsa for serum protein
binding, human oral absorption in the GI tract, logP for
octanol/water which control hydrophilicity or lipophilicity
property of molecules, were calculated. The drug with too
much hydrophobic property will be badly soluble in the gut
and will solve in fat globules. Hydrophilic compounds
unlike hydrophobic ones have low logP, low serum protein
binding, potent aqueous solubility and bad cell permeability
(Jorgensen 2004). Almost, all hits fell in the acceptable
ranges for the properties analyzed for 95% of known drugs,
Table 5. Additionally, they all confirm drug-like properties

Fig. 7 MEP map (in a.u.) of the most active molecule (40)
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according to Lipinski’s rule of 5 (Lipinski 2000; Lipinski
et al. 1997), which was second filter applying in the
combined virtual screening analysis. All retrieved com-
pounds had amine group in their structures involving
effective interactions such as forming hydrogen bonds with
receptor. They can pass cell membranes in their non-ionized
forms, and they can be solved in water well in their ionized
forms (Palm et al. 1997). Toxicity risk assessment para-
meters and drug relevant properties of hits were within the
acceptable interval which valid the hits are as drugs. As it
can be seen in Table 6 none of the hits presented a risk of
mutagenicity, tumorogenicity, irritating, or reproductive
toxicity.

Conclusion

In this study, 3D-QSAR models with high predictive cap-
abilities were derived for a series of GPR119 agonist using

CoMFA method to assist of the design of new potent can-
didates. Molecular docking was performed to investigate
the binding interactions of inhibitors and finding the
bioactive conformations. The pharmacophore models have
been developed with the aid of Hip-Hop algorithm within
Discovery Studio program package. The best pharmaco-
phore model was obtained by two features including
hydrogen bond acceptor and hydrophobic feature. The
validated pharmacophore model was used as a 3D search
query to prescreen the compounds from binding database
(http://www.bindingdb.org). The Gold program was used as
a fast method docking based screening methods. The MEP
energy at DFT level confirms the results from molecular
docking. These methods allowed us to select seven mole-
cules with high binding affinity for the treatment of type 2
diabetes from the ZINC database. In silico ADME studies
indicated the hits to compare the computed values of
ADME descriptors with the accepted ranges. Therefore,
“Discovery of a new scaffold” and finding the new inhibitors

Table 5 The pharmacokinetic parameters of the retrieved hits compound using Qikprop

Descriptors 108876 114411 32095 35847 102809 112531 22132 Stand. range

Apparent Caco-2 permeability (nm/s) 96 52 352 57 27 230 348 <25 poor, >500 great

39 27 161 22 30 272 175 <25 poor, >500 great

Apparent MDCK permeability (nm/s) 0.011 0.000 0.110 0.000 0.005 0.002 0.005 mg/cm2h

– – −4.299 −7.181 −2.881 −5.379 −4.089 −6.5/0.5

Jm (max. transdermal transport rate) 3.943 5.348 89 63 38 88 94 <25% is poor

58 72 −1.861 −2.610 −2.593 −1.595 −0.698 −3.0/102

logS (aqueous solubility) – – 0.209 0.380 −1.065 0.167 0.222 −1.5/105

% human oral absorption in GI (±20%) 2.428 2.868 2.774 2.916 −0.373 3.259 3.762 −2.0/6.5

– – −2.320 −8.164 −5.076 −2.946 −3.781 −8.0 to −1.0, Kp in cm/h

log BB for brain/blood 0.564 0.043

logKhsa (serum protein binding) 1.382 2.458

logP for octanol/water – –

Skin-permeability coefficient (logKp) 3.68 4.082

Table 6 Compliance of the hits
with the standard intervals for
computational toxicity risk
parameters

NO. of hits Toxicity risks parameters Drug-likeness parameters (Osiris)

MUT TUM IRR REP CLP S DL

1 No risk No risk No risk No risk 0.44 −4.30 −39.38

2 No risk No risk No risk No risk 1.33 −2.26 −1.28

3 No risk No risk No risk No risk 1.36 −5.08 −20.84

4 No risk No risk High risk No risk 4.18 −3.56 −9.54

5 No risk No risk No risk No risk 2.99 −3.13 −4.87

6 No risk No risk No risk No risk 1.87 −4.56 −12.18

7 No risk No risk No risk No risk −3.63 −1.38 6.15

MUT mutagenicity, TUM tumorigenicity, IRR irritating effects, REP reproductive effects, CLP cLogP, S
solubility, DL drug-likeness (calculated through OSIRIS property explorer)
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for the treatment of type 2 diabetes within the hit com-
pounds is possible in near future.
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