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Abstract The Monte Carlo method was used for quantita-
tive structure–activity relationship modeling of bis-quino-
linium and bis-isoquinolinium compounds as acetylcholine
esterase inhibitors for a series of 36 compounds. quantita-
tive structure–activity relationship models were calculated
with the representation of the molecular structure by the
Simplified Molecular Input-Line Entry System. One split
into the training and test set was examined. The statistical
quality of the developed model was good. The best calcu-
lated quantitative structure–activity relationship model had
following statistical parameters: r2= 0.8097 for the training
set and r2= 0.9372 for the test set. Structural indicators
defined as molecular fragments responsible for increases
and decreases in the inhibition activity were calculated. The
computer-aided design of new compounds as potential
acetylcholine esterase inhibitors with the application of
defined structural alerts was presented.
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Introduction

Myasthenia gravis (MG) is an autoimmune disorder which
results from the destruction of the post-synaptic membrane
in the neuromuscular junction (Conti-Fine et al., 2006;
Vincent et al., 2001). In most MG cases, human antibodies
are produced to the nicotinic acetylcholine receptor
(nAChR) (Tzartos et al., 1998; Vincent et al., 2003). An
autoimmune attack to the endplate region of the neuro-
muscular junction resulting in reduced density of nAChR is
initiated with these antibodies, which further leads to the
destruction of the synaptic folds and the general simplifi-
cation of the post-synaptic membrane. Reduced transmis-
sion in the neuromuscular junction results in a characteristic
symptom of MG, that is, weakness of the striated muscles is
caused by the decreased probability of the acetylcholine
(ACh)–nAChR interaction (Santa et al., 1972). Acet-
ylcholinesterase inhibitors can be used in the treatment of
disorders with impaired cholinergic transmission, therefore
the first-line treatment in early stages and in the mild forms
of MG is based on peripheral inhibitors of AChE since they
work by increasing the concentration of ACh in the synaptic
junction and thus enhance the cholinergic transmission in
spite of the nAChR depletion (Drachman, 1994; Lindstrom,
2000; Richman and Agius, 2003). It has to be noted that the
application of AChE inhibitors is only a symptomatic
approach and it does not resolve the original cause of the
disease. The treatment of patients with MG is a complex
task. The quality of life of patients with MG can be
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improved with the application of mild physical exercise.
Therefore, physicians specialized in sports medicine, phy-
siatrists and experts in sports in general can ease lives of
MG patients and help them in continuous fight against this
severe disorder (Lucia et al., 2007; Rubin and Hentschel,
2007). Most common drugs used in current MG therapy are
presented in Fig. 1. Unfortunately, the use of these com-
pounds often leads to the development of serious gastro-
intestinal side effects, increased bronchial secretion, cardiac
arrhythmia. Moreover, high intake of these compounds may
lead to cholinergic crisis, characterized by even more severe
weakness (Froelich and Eagle, 1996; Juel and Massey,
2007; Leigh et al., 2003). Considering the above-stated
facts, the search is being continued for a far more effective
AChE inhibitor that can be used in the treatment of MG.

In modern drug design, quantitative structure–activity
relationship (QSAR) modeling is widely used due to the
fact that this powerful computational approach can make an
early prediction of activity-related characteristics of drug
candidates and eliminate compounds with undesired prop-
erties (Cherkasov et al., 2014; Dearden, 2016; Roy et al.,
2015; Tropsha and Golbraikh, 2007). The main aim of
QSAR modeling is to develop a simple mathematical
equation that correlates a molecule’s studied biological
activity with its properties and molecular characteristics
calculated as quantitative parameters–descriptors. There-
fore, descriptors can be defined as entities that characterize
specific information of a studied molecule in terms of
numerical values associated with the chemical constitution
for the correlation of the chemical structure with the

biological activity (Cronin and Schultz, 2003). When a
QSAR model is built on geometry-dependent molecular
descriptors, then the model development usually involves a
relatively difficult calculation of the optimal molecular
geometry which encompasses the application of high
computational resources and a long time for computational
experiments. For this reason, the conformation-independent
0D, 1D and 2D-QSPR methods emerge as an alternative
approach for developing models based on the constitutional
and topological molecular features of molecules (Ducho-
wicz et al., 2012; Talevi et al., 2012). Descriptors calculated
on the basis of molecular graphs are often used in QSAR
modeling (Ivanciuc, 2013; Talevi et al., 2012). The sim-
plified molecular input-line entry system (SMILES) can be
considered as an alternative to molecular graphs and it can
be used for defining of molecular structures (Toropov and
Benfenati, 2007; Veselinović et al., 2015). One-variable
QSAR models built up by the Monte Carlo optimization
method based on SMILES descriptors have been published
recently. One of the main advantages of this method in
comparison to most commonly used QSAR models is the
fact that it is not dependent on molecule conformation since
it is based on constitutional and topological features of
molecules. Moreover, QSAR models based on SMILES
notation descriptors have similar or better statistical char-
acteristics in comparison to 3D descriptors based QSAR
models. All the above stated facts make QSAR modeling
based on SMILES notation descriptors an attractive alter-
native to commonly used methods in drug design and dis-
covery (Veselinović et al., 2015).

Fig. 1 Drugs used in
Myasthenia gravis therapy
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The aim of this study is to build a QSAR model based on
the SMILES notation optimal descriptors using the Monte
Carlo method for bis-quinolinium and bis-isoquinolinium
compounds as AChE inhibitors and to make an attempt to
define the molecular fragments responsible for the stated
inhibitory effect. Furthermore, we used the built model and
defined molecular fragments for the computer aided drug
design of new potentially promising AChE inhibitors.

Method

The data set

A QSAR model was developed for a series of 36 bis-qui-
nolinium and bis-isoquinolinium compounds acting as
AChE inhibitors (Komloova et al., 2011; Musilek et al.,
2011). General structures of these compounds are presented
in Fig. 2. Molecular structures of the studied compounds
were transformed into the canonical SMILES with the
ACD/ChemSketch program (ACD/ChemSketch v. 11.0).
To represent the pharmacological activity, pIC50 (−log IC50)
was used as a dependent variable for building both QSAR
models (Supplementary Table S1). Molecules with reported
zero activity were discarded from the model development.
The QSAR model for was built up for one random split (20
% of the compounds were used in the test set). The nor-
mality distribution plot of the whole dataset was checked
according to literature (Ojha and Roy, 2011).

QSAR model development and validation

The main concept of the QSAR modeling can be defined as
the following:

Endpoint¼F Molecular Structureð Þ ð1Þ
The SMILES notation is one of the most convenient

molecule structure representations. In the presented QSAR
modeling, the SMILES notation is used for defining a
molecular optimal descriptor (DCW). DCW is calculated as
a function of the molecule’s SMILES notation as shown in
Eq. 2:

DCW¼F SMILESð Þ ð2Þ

Based on the SMILES notation, two types of optimal
descriptors defined can be defined. The first type of optimal
descriptors is a local SMILES attribute, defined as SMILES
atoms, a fragment of the SMILES notation which contains
one (‘C’, ‘O’, ‘#‘, etc.) or two symbols (‘Cl’, ‘Br’, ‘@@‘,
etc.) which cannot be examined separately. The simplest
way of defining a molecular DCW as a mathematical
function of SMILES atoms can be achieved with the
application of local SMILES attributes, as a mathematical
function of each character of the SMILES. Therefore, the
first and the simplest one SMILES notation based descriptor
is Sk (SMILES atom), a descriptor related to one SMILES
symbol (or two that cannot be separated). A linear combi-
nation of two or three SMILES atoms are descriptors
defined as SSk and SSSk (Veselinović et al., 2013, 2015).
The linear combination of the presented SMILES notation
based descriptors can be summarized in Eq. 3.

DCW T ;Nepoch
� �¼ α

X
CW Skð Þþβ

X
CW SSkð Þ

þγ
X

CW SSSkð Þ
ð3Þ

The inclusion of SMILES based descriptors in the QSAR
model development can be achieved with the application of
a simple rule—if the value of a coefficient is 1, then an
appropriate descriptor is included or if it is 0, then an
appropriate descriptor is discarded form the model building.
For this reason, coefficients α, β and γ from Eq. 3 are either
1 (yes) or 0 (no). In the presented QSAR model for AChE
inhibition all coefficients were 1, therefore all local
SMILES notation based descriptors were used in the model
development.

Each calculated optimal descriptor receives a numerical
value defined as the correlation weight (CW) with the
application of the Monte Carlo method. The applied Monte
Carlo method is based on a principle that suitable random
numbers are generated and further observed to see how that
fraction of numbers obeys some property/properties. The
application of iterative algorithms is used for the compu-
tation of obtaining and distribution of an unknown prob-
abilistic entity (Toropov et al., 2013). Therefore, the main
purpose of the Monte Carlo optimization process is the
calculation of the numerical data for the CW which gives
the maximal value of the correlation coefficient between the
endpoint and the optimal descriptor. The Monte Carlo

Fig. 2 General molecular
structures of studied compounds
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method is based on two parameters for the computation of
stated numerical values—Threshold (T) and the Number of
epochs (Nepoch). Threshold can be defined as the separator
of calculated SMILES based descriptors into active and
inactive with the application of the following principle: if
the descriptor is active, then T has some numerical value;
however, if the descriptor is inactive, then T has a fixed
value of zero. The number of epochs (Nepoch) is related to
the computational iterative process with one aim—to obtain
the best statistical quality for the training set (Veselinović et
al., 2013, 2015).

The linear regression approach is used as a method for
developing a QSAR model after all CW are calculated
(Eq. 4)

Endpoint¼C0 þC1 ´ DCW Threshold;Nepoch
� � ð4Þ

CORAL software was used for the development of the
presented QSAR model (http://www.insilico.eu/coral). All
local SMILES descriptors and global attributes (Sk, SSk and
SSSk) were taken into consideration during the building of
QSAR models. The search for the most predictive combi-
nation of T and Nepoch for all splits was performed from
values 0–10 for T and 0–60 for Nepoch.

The main purpose of any QSAR modeling is to develop a
robust model capable of predicting the properties of new
molecules in an objective, reliable and precise manner (Roy,
2007). The application of three methods can be used for the
assessment of robustness and reliability of a developed
QSAR model (Roy et al., 2008): (a) internal validation or
cross-validation using the training set compounds, (b)
external validation using the test set compounds and (c) data
randomization or Y-scrambling. This methodology was
successfully applied for the validation of SMILES notation
optimal descriptor based QSAR models (Veselinović et al.,
2015).

Several standard statistical metrics were used for vali-
dating the developed QSAR model, including the correla-
tion coefficient (r2), cross-validated correlation coefficient
(q2), standard error of estimation (s), mean absolute error
(MAE), Fischer ratio (F) and root-mean-square error
(RMSE). In addition, novel metrics (Rm

2 and MAE based
metric) were used for further validation. Novel statistical
metric (Rm

2) can be used to estimate true predictive
potential of a developed QSAR model (Ojha et al., 2011;
Roy et al., 2012). The calculation of this metric is based on
the correlation between the observed and predicted values
with (R2) and without (R0

2) intercept for the least squares
regression lines as shown in eq. 5:

R2
m ¼ R2 � 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � R2

0

q� �
ð5Þ

The main advantage of this metric is that it avoids the
overestimation of the quality of prediction due to a wide

response (Y-range) since it does not consider the differences
between individual responses and the training set mean. In
addition, a scaled version of Rm

2 metric can be used in order
to have a better estimation of QSAR model predictability.
For calculating both Rm

2 and scaled version of Rm
2 metrics,

an open-access web application “Rm2 calculator” is avail-
able at http://aptsoftware.co.in/rmsquare/. Finally, the mean
absolute error (MAE) metric was used for the final esti-
mation of the developed QSAR model prediction quality
according to the published methodology (Roy et al., 2016).
A software from http://teqip.jdvu.ac.in/QSAR_Tools/ web
link was used for the calculation of the MAE based metric.

One of the most important features of all developed
QSAR models is its applicability domain (AD). Molecules
from the training set are used for this purpose. For all
developed QSAR models, the AD is defined as biological,
structural, or physicochemical space, knowledge, or infor-
mation on which the model of the training set is developed
and which can be used for predicting whether a developed
QSAR model can be used on compounds which are not
used in the model developing. Therefore, a defined AD can
be applied for the assessment of the reliability of a devel-
oped QSAR model. If the application of the AD defines a
studied compound as very different in comparison to all
compounds from the training set, a reliable prediction of its
property/activity is uncertain (Gadaleta et al., 2016; Gra-
matica, 2007). Considering QSAR models based on
SMILES based descriptors, the difference between experi-
mental and calculated values for a studied endpoint can be
used for defining the AD with the application of Delta(obs),
d and d (Toropov et al., 2011). For each molecule used in
the QSAR study, Delta(obs) is calculated as the difference
between experimental and calculated values from a studied
endpoint. d and d are defined in Eqs. 6 and 7, respectively,
where n is the number of studied compounds.

d ¼
P

Delta obsð Þ
n

ð6Þ

d ¼
P

Delta obsð Þ � Delta calcð Þ½ �2
n

: ð7Þ

If Delta(obs) of a studied compound belongs within the
range d − d and d + d, then it falls in the defined model AD.
However, if compound’s Delta(obs) does not belong inside
a defined range, then that compound does not belong in the
defined AD. For this reason, the compound is considered as
outlier, and it is discarded from the development of a QSAR
model. The relation used for defining the AD is given in
Eq. 8:

Delta obsð Þ 2 d � d; d þ d
� � ð8Þ

A defined methodology for the determination of the AD
was successfully applied in the development of various
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QSAR models based on the Monte Carlo method and
SMILES based descriptors (Veselinović et al., 2015).

After defining the AD, the molecule 14 from the research
reported by Musilek et al. was defined as outlier and it was
discarded from the model development.

Results and discussion

Table 1 shows the statistical quality of the built QSAR
model for bis-quinolinium and bis-isoquinolinium com-
pounds acting as AChE inhibitors. The presented results
reveal that there is the reproduction of the statistical quality
for the calculated model in three independent runs of the
Monte Carlo optimization. Furthermore, the results from
Table 1 show that the predictability is good. In order to
further assess the quality of the developed QSAR model,
novel statistical metric was used according to published
methodologies and the results are presented in Table 2. The
presented QSAR model for IC50 is satisfactory from the
point of view of new criteria (Ojha et al., 2011; Roy et al.,
2012). Supplementary Table S2 shows Y-randomization
(Ojha and Roy, 2011) which also confirms the robustness of

the suggested models. MAE based metric revealed that the
developed QSAR model is “moderate”, what classified this
model as valid. The search for preferable T and Nepoch

revealed that preferable T is 2 and preferable Nepoch 10.
Figure 3 graphically presents the best Monte Carlo opti-
mization run (the highest value for r2) for the developed
QSAR model.

DCW(T,Nepoch) for compounds in the training and test
sets are calculated as described in the Method section of this
manuscript. The application of the above-mentioned T and
the Nepoch gives the following model for the pIC50 calcu-
lated according to Eq. 4:

pIC50 ¼ �13:7073 ð± 0:4666Þ þ 0:1431 ð± 0:0036Þ
´ DCWð2; 10Þ

ð9Þ

According to the calculated correlation weights (CW),
the values of molecular features (SAk) from three Monte
Carlo optimization runs, SAk can be classified as promoters
of increase or promoters of decrease of a studied activity,
and as undefined molecular features. A simple rule is
applied for this classification: if the CW(SAk) obtained from

Table 1 The statistical quality of the developed QSAR model for bis-quinolinium and bis-isoquinolinium compounds as acetylcholine esterase
inhibitors

Training set Test set

r2 q2 s MAE F r2 q2 s MAE F

1 run 0.8097 0.7703 0.678 0.491 111 0.9372 0.8633 0.627 0.495 75

2 run 0.8078 0.7677 0.681 0.497 109 0.9465 0.8691 0.611 0.480 88

3 run 0.8037 0.7627 0.689 0.497 106 0.9504 0.8740 0.575 0.460 96

Av 0.8071 0.7669 0.683 0.495 109 0.9447 0.8688 0.604 0.478 83

r2 correlation coefficient, q2 cross-validated correlation coefficient, s standard error of estimation, MAE mean absolute error, F Fischer ratio, RMSE
root-mean-square error, Av average value for statistical parameters obtained from three independent Monte Carlo optimization runs

Italics indicate the best Monte Carlo optimization run

Table 2 The criteria of predictability of the developed QSAR model related to the test set from three independent Monte Carlo optimization runs

Normal Scaled

r2m r2m(rev) r2m(av) Δr2m r2m r2m(rev) r2m(av) Δr2m

1 0.7174 0.5718 0.6446 0.1455 0.6969 0.5517 0.6243 0.1452

2 0.7190 0.5800 0.6495 0.1390 0.6988 0.5596 0.6291 0.1392

3 0.7344 0.6100 0.6722 0.1244 0.7173 0.5947 0.6560 0.1226

Av 0.7236 0.5873 0.6554 0.1363 0.7043 0.5687 0.6365 0.1357

r2m(rev) reverse r
2
m, r

2
m(av) average r

2
m, AV average value for statistical parameters obtained from three independent Monte Carlo optimization

runs

Each entry of submitted dataset is scaled as follows: Scaled Z(Observed or Predicted) = [Z - minimum of Observed]/[maximum of observed
−minimum of Observed]

For an acceptable QSAR model, the value of r2m(av) should be4 0.5 and Δr2m should be o 0.2 (Ojha et al., 2011; Roy et al., 2012)
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three independent Monte Carlo optimization runs is positive
then that SAk is the promoter of increase, likewise if the
CW(SAk) from three independent Monte Carlo optimization
runs is negative then that SAk is the promoter of decrease; if
there are both positive and negative values of the CW(Sk) in
three runs of the Monte Carlo optimization process, then
that SAk is undefined (Veselinović et al., 2015). The list of
all SAk, with the correlation weights for three runs of the
Monte Carlo optimization process of the built QSAR model
for maleimide derivatives is given in Supplementary Table
S3. The built QSAR model represented with Eq. 5 has the
mechanistic interpretation as well as calculated SAk which
can be further defined as molecular fragments. According to
the presented data, several important SAks that can be
classified as promoters of pIC50 value decrease are O…C…
C… (ethoxy group) and C……….. (methyl group) while
several important SAks that can be classified as promoters
of pIC50 value increase are =……….. (double bond),
C… =……. and C… =…C… (double bond on a carbon
atom), C…/……., C…/…C…, /……….., \……….. and \…
C……. both cis and trans conformations, O……….. (sp3

hybridized oxygen atom), O…C……. (methoxy group),
C…C……. (ethyl group), etc. The obtained findings are in
accordance with the results of SAR findings from published
data (Komloova et al., 2011; Musilek et al., 2011).

The analysis of SAk presented in Supplementary Table.
S3 can be useful in the search and computer aided design of
novel derivatives with desired pIC50 values. The structures
of novel compounds obtained by molecular modeling are
presented in Fig. 4.

The molecule 37 from dataset was selected as a template
for the molecular design. One of the goals of the presented
molecular design was to obtain molecules with higher pIC50

values in comparison to the template molecule, since higher
pIC50 values mean that a lower concentration is needed to
inhibit 50 % of an enzyme. Molecular structures presented
as the SMILES notation of designed molecules and their
calculated pIC50 values obtained with the application of the
built QSAR model for compounds (Eq. 5) are presented in
Table 3.

Table 4 presents an example of the calculation of
DCW(2,10) for the template molecule A. When Eq. 5 is
applied for calculating DCW, the resulting endpoint value
(pIC50) is 6.6140. In the molecule A1+ two more carbon
atoms were added to the molecule. In the molecule A1+ one
more SAk was added in comparison to the molecule A, C…
C……. (ethyl group), defined as the promoter of Ac
increase. For this reason, the molecule A1+ has the calcu-
lated Ac value of 7.6291. The molecule A2+ has two more
carbon atoms in comparison to the molecule A1+ and also a
higher value of Ac (8.5491). The molecule A3+ has sub-
stituted one carbon atom with oxygen which leads to the
introduction of O…C……. SAk, also defined as the pro-
moter of increase. The calculated value for the molecule
A3+ Ac was 7.8063. Molecules A4+ and A5+ represent two
stereo isomers. Since both have promoters of Ac increase,
their values for the calculated Ac were 7.9879 and 7.7828,
respectively. Results suggest that trans isomer is favorable
in comparison to cis since it has a higher value for the
calculated Ac.

Fig. 3 Graphical representation
of the developed QSAR model
for bis-quinolinium and bis-
isoquinolinium derivates as
acetylcholine esterase inhibitors
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Conclusion

QSAR models for bis-quinolinium and bis-isoquinolinium
compounds as acetylcholine esterase inhibitors were built.
The Monte Carlo optimization process incorporated within

CORAL software was capable to be an efficient tool to
build up a robust model of good statistical quality. The
predictive potential of the applied approach was tested and
the robustness of the model was proven with different
methods. The SMILES attributes, defined as SMILES

Fig. 4 The molecular design of
perspective acetylcholine
esterase inhibitors using the
QSAR model calculated with
Eq. (5) and SAks calculated
using the Monte Carlo method

Table 3 The SMILES notation and Ac values calculated using Eq. (9) for compounds designed with the application of the results of QSAR
modeling obtained in this study

Molecule SMILES notation Ac (calc.)

A c1c6ccccc6cc[n+]1Cc4cc5cc(C[n+]2cc3ccccc3cc2)ccc5cc4 6.6140

A1+ c1c6ccccc6cc[n+]1CCc4cc5cc(CC[n+]2cc3ccccc3cc2)ccc5cc4 7.6291

A2+ c1c6ccccc6cc[n+]1CCCc4cc5cc(CCC[n+]2cc3ccccc3cc2)ccc5cc4 8.5491

A3+ c1c6ccccc6cc[n+]1COCc4cc5cc(COC[n+]2cc3ccccc3cc2)ccc5cc4 7.8063

A4+ c1c6ccccc6cc[n+]1/C=C/c4cc5cc(/C=C/[n+]2cc3ccccc3cc2)ccc5cc4 7.9879

A5+ c1c6ccccc6cc[n+]1\C=C/c4cc5cc(\C=C/[n+]2cc3ccccc3cc2)ccc5cc4 7.7828

Med Chem Res (2016) 25:2989–2998 2995



Table 4 The example of DCW(2,10) calculation

SMILES notation: c1c6ccccc6cc[n+]1Cc4cc5cc(C[n+]2cc3ccccc3cc2)ccc5cc4

DCW= 141.95901

Ac (calc.)= 6.6140

SAk CW(SAk) SAk CW(SAk) SAk CW(SAk)

c……….. 0.4965 c…1……. 0.6605 c…1…c… 1.7547

1……….. 1.5594 c…1……. 0.6605 6…c…1… 0

c……….. 0.4965 c…6……. 1.3086 c…6…c… 0.81

6……….. 1.0634 c…6……. 1.3086 c…c…6… 0.504

c……….. 0.4965 c…c……. 0.0585 c…c…c… 0.3147

c……….. 0.4965 c…c……. 0.0585 c…c…c… 0.3147

c……….. 0.4965 c…c……. 0.0585 c…c…c… 0.3147

c……….. 0.4965 c…c……. 0.0585 c…c…6… 0.504

c……….. 0.4965 c…6……. 1.3086 c…6…c… 0.81

6……….. 1.0634 c…6……. 1.3086 c…c…6… 0.504

c……….. 0.4965 c…c……. 0.0585 c…c…[… 1.2457

c……….. 0.4965 c…[……. 2.3761 n…[…c… 1.9356

[……….. 3.3775 n…[……. 2.2235 […n…+… 2.1298

n……….. 0.6571 n…+……. 1.7468 n…+…[… 2.7159

+……….. 2.4989 […+……. 2.3774 1…[…+… 0.6532

[……….. 3.3775 […1……. 1.3789 […1…C… 0.8799

1……….. 1.5594 C…1……. 1.6548 c…C…1… −0.6827

C……….. 0.1208 c…C……. −0.4031 C…c…4… 0.3784

c……….. 0.4965 c…4……. 1.0983 c…4…c… 2.1859

4……….. 1.7489 c…4……. 1.0983 c…c…4… 1.7482

c……….. 0.4965 c…c……. 0.0585 c…c…5… 0.3445

c……….. 0.4965 c…5……. 0.0361 c…5…c… 0.0036

5……….. 0.2226 c…5……. 0.0361 c…c…5… 0.3445

c……….. 0.4965 c…c……. 0.0585 c…c…(… 0.5026

c……….. 0.4965 c…(……. 1.0638 c…(…C… 0.248

(……….. −0.407 C…(……. 0.4727 […C…(… 0.3785

C……….. 0.1208 […C……. 1.9639 n…[…C… 2.3776

[……….. 3.3775 n…[……. 2.2235 […n…+… 2.1298

n……….. 0.6571 n…+……. 1.7468 n…+…[… 2.7159

+……….. 2.4989 […+……. 2.3774 2…[…+… 1.5964

[……….. 3.3775 […2……. 0.8109 c…2…[… 1.7479

2……….. 1.9409 c…2……. 1.4711 c…c…2… 1.9706

c……….. 0.4965 c…c……. 0.0585 c…c…3… 0.909

c……….. 0.4965 c…3……. 0.8157 c…3…c… 0.2487

3……….. 2.3075 c…3……. 0.8157 c…c…3… 0.909

c……….. 0.4965 c…c……. 0.0585 c…c…c… 0.3147

c……….. 0.4965 c…c……. 0.0585 c…c…c… 0.3147
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notation based molecular descriptors, which are promoters
of IC50 increase/decrease were identified. The suggested
modeling process and computer aided drug design were
based on computational experiments with the application of
statistically stable structural alerts (promoters of increase or
decrease of IC50). This approach can be applied in the
search for new potential acetylcholine esterase inhibitors.
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