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Abstract To discover new compounds with anti-
inflammatory activity, a series of novel 3-alkyl-6-(4H-
1,2,4-triazol-4-yl)-3,4-dihydro-2H-benzo[e][1,3]oxazine
derivatives were synthesized and their structures were
confirmed by spectroscopic techniques. In vivo anti-
inflammatory activity of the synthesized compounds was
determined using the xylene-induced mouse ear edema
model. 3-Heptyl-6-(4H-1,2,4-triazol-4-yl)-3,4-dihydro-2H-
benzo[e] [1,3]oxazine and 3-p-tolyl-6-(4H-1,2,4-triazol-4-
yl)-3,4-dihydro-2H-benzo[e][1,3]oxazine demonstrated
higher anti-inflammatory activity (74.04 % and 64.99 %,
respectively) at 0.5 h after intraperitoneal administration
than the reference drug ibuprofen (62.65 %). Further, the
time of peak effect after oral administration was 4 h for both
compounds. Our results identify new compounds with anti-
inflammatory activity in vivo that may have improved
safety/side effect profiles relative to the currently approved
nonsteroidal anti-inflammatory drugs.

Keywords Synthesis ● Anti-inflammatory ● Mannich
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Introduction

Inflammation is part of the complex biological reaction
in vascular tissues to protect from injury or harmful
stimuli including pathogens, damaged cells, or irritation
(Ferrero-Miliani et al., 2007). However, prolonged
inflammation can cause serious diseases such as diabetes,
cancer, and atherosclerosis (Lyman et al., 2014; Momi et al.,
2012). Nonsteroidal anti-inflammatory drugs (NSAIDs) are
currently the most commonly administered medicines to
reduce acute and chronic inflammation (Sng and Schug,
2009), fever (Eccles, 2006), and pain (Zahradnik et al., 2010;
Kraemer and Rose, 2009). Recently, many studies have
shown that long-term oral administration of NSAIDs is fre-
quently associated with gastrointestinal (Botting, 2006;
Naesdal and Brown, 2006; Cryer, 2005; Lazzaroni and
Bianchi, 2004; James and Hawkey, 2003), hepatic (Adebayo
and Bjarnason, 2006), and renal (Schneider et al., 2006;
Mounier et al., 2006) side effects in patients. Therefore, the
discovery of new compounds with enhanced safety profiles
remains an area of unmet medical need.

Literature reports suggest that 1,2,4-triazoles exhibit a
wide spectrum of therapeutic properties, including anti-
bacterial (Demirbas et al., 2005; Sharma et al., 2008; Turan-
Zitouni et al., 2005), antiviral (Kritsanida et al., 2002;
Abdel-Aal et al., 2008), analgesic (Turan-Zitouni et al.,
2001), anti-inflammatory (Tozkoparan et al., 2007; Rabea
et al., 2006; Labanauskas et al., 2004), anticonvulsant
(Almasirad et al., 2004; Kucukguzel et al., 2004), anti-
depressant (Varvaresou et al., 1998), and anticancer (Holla
et al., 2003; Duran et al., 2002). Further, derivatives con-
taining oxazine also exhibit anti-mycobacterial (Sindhu
et al., 2014), anticancer (Kalirajan et al., 2012), anti-
inflammatory (Liu et al., 2010), antimicrobial, and anti-
fungal (EI Azab et al., 2015) activities.
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In this study, we designed and synthesized 3-alkyl-6-
(4H-1,2,4-triazol-4-yl)-3,4-dihydro-2H-benzo[e][1,3]oxa-
zine derivatives (Fig. 1) and evaluated their anti-
inflammatory activity in a xylene-induced mouse ear
edema model of inflammation.

Results and discussion

Chemistry

Target compounds 2a–y were prepared by a two-step
synthesis (Scheme 1). In the first step, compound 1 was
prepared by the Michael method (Stocks et al., 2004):
dimethylformamide dimethylacetal (DMF-DMA) and for-
mohydrazide were reacted in acetonitrile at 50 °C for 30

min, and then 4-aminophenol was added to the mixture to
obtain compound 1, which was catalyzed by ice water.
Structures of all synthesized compounds were confirmed by
infrared (IR), proton nuclear magnetic resonance (1H-
NMR), 13C-NMR and high resolution-mass spectrometry
(HRMS) techniques.

Pharmacology

Xylene-induced ear edema in kunming mice is a reliable
model to evaluate the in vivo anti-inflammatory activity of
test compounds (Sowemimo et al., 2013; Da Silva et al.,
2010). ibuprofen was used as a reference drug. As a primary
screen, the anti-inflammatory activity for each of the newly
synthesized compounds was evaluated at a dose of 100mg/kg
administered by intraperitoneal injection. Since most anti-
inflammatory medications are administered orally in the
clinical setting, we chose two of the compounds with the
highest anti-inflammatory activity in the primary screen (2d,
2h) for further assessment by oral (p.o.) administration.
Compounds 2d and 2h were administered at multiple time
points (1, 2, 3, 4, 5, and 6 h) prior to xylene application. The
time of peak anti-inflammatory effect for compounds 2d
and 2h was 4 h after p.o. administration.

In the primary screen, all of the synthesized compounds
were administrated intraperitoneally to assess their anti-
inflammatory activity in the xylene-induced mouse ear
edema model. Anti-inflammatory activity was expressed as
the inhibition percentage compared to the control group. As
shown in Table 1, most compounds exhibited some degreeFig. 1 Structure of compounds 1, 2, and 2a–y
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2b -C5H11 2i -C6H4(p-OCH3) 2p -CH2C6H4(p-CH3) 2w -CH2C6H4(p-Cl) 

2c -C6H11 2j -C6H4(o-F) 2q -CH2C6H4(p-OCH3) 2x -CH2C6H4(o-Br) 

2d -C7H15 2k -C6H4(m-F) 2r -CH2C6H4(m-F) 2y -CH2C6H4(p-Br) 

2e -C8H17 2l -C6H4(p-F) 2s -CH2C6H4(p-F)  

2f -C12H23 2m -C6H4(m-Cl) 2t -CH2C6H4(2,4-2F)  

2g -C6H5 2n -C6H4(p-Br) 2u -CH2C6H4(o-Cl)  

Scheme 1 Synthesis of the target compounds 2a-2y
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of anti-inflammatory activity when administered intraper-
itoneally. Compounds 2d and 2h showed the highest inhi-
bition percentage, 74.04 % and 64.99 %, respectively, and
outperformed the reference drug ibuprofen in the assay
(62.65 %). Among the tested compounds, compounds 2a,
2f, 2i, 2n, 2s, 2t, and 2v–x showed 5–20 % anti-
inflammatory activity compared to the control group.
However, their anti-inflammatory activities were lower than
that of ibuprofen. Compounds 2b, 2c, 2e, 2f, 2k, 2l, 2o, and
2p were not significantly different from ibuprofen. The
remaining compounds did not exhibit significant differences
compared to vehicle.

Most of the alkyl chain-substituted derivatives investi-
gated exhibited at least modest anti-inflammatory activity in

the xylene-induced ear edema assay. As the carbon chain
lengthened, the anti-inflammatory activity of tested com-
pounds first increased and then decreased, suggesting that
C-7 is the appropriate length of the alkyl chain, and that
appropriate lipophilic property is essential to the anti-
inflammatory activity of the compounds (Li et al., 2009;
Kroll et al., 1998).

For aromatic ring-substituted derivatives, electron-
donating groups seemed to be a more beneficial structural
feature than electron-withdrawing groups for anti-
inflammatory activity. For compounds 2g–n, the order of
activity for different electron-withdrawing substituents was
m-F> p-F> p-Br (>o-F>m-Cl), while the order of activity
for electron-donating substituents was p-CH3> p-OCH3.
For compounds 2o–y, the order of activity for electron-
withdrawing substituents was m-Cl > p-F> p-Cl> 2,4-2F >
o-Br (>m-F> o-Cl > p-Br), and the order of activity for
electron-donating substituents was p-CH3> p-OCH3. In
addition, comparing compounds 2g-n with compounds
2o–y suggested that differences existed for compounds
substituted at the phenyl ring; however, an all-inclusive rule
for the effect of phenyl ring substitutions on anti-
inflammatory activity was not clear.

Based on the results from our primary screen, com-
pounds 2d and 2h were chosen to be further evaluated at
multiple time points after oral administration (1, 2, 3, 4, 5,
and 6 h). As shown in Table 2, the anti-inflammatory effects
of 2d, 2h, and ibuprofen first increased and then declined
over this time period. The time of peak effect was 4 h for all
three compounds. Moreover, derivative 2d showed higher
activity than the reference drug at all time points.

Experimental

Chemistry

Reactions were monitored by thin-layer chromatography on
silica gel plates precoated with F254 gel. Developed plates

Table 1 Anti-inflammatory activity of compounds 2a–y after
intraperitoneal administration (n= 8)

Comp. R Dose Edema mean Inhibition

(mg/kg) Mean± S.E.M.
(mg)

Rate(%)

2a –C4H9 100 5.03± 1.53** 49.41

2b –C5H11 100 3.85± 0.52*** 61.31

2c –C6H13 100 3.82± 1.05*** 61.64

2d –C7H15 100 2.58± 1.05*** 74.04

2e –C8H17 100 3.87± 0.63*** 61.14

2f –C12H23 100 4.25± 1.55*** 57.29

2g –C6H5 100 5.58± 3.48* 43.89

2h –C6H4(p-CH3) 100 3.48± 1.31*** 64.99

2i –C6H4(p-OCH3) 100 4.68± 2.24** 52.93

2j –C6H4(o-F) 100 6.65± 1.15 33.17

2k –C6H4(m-F) 100 4.07± 1.58*** 59.13

2l –C6H4(p-F) 100 4.33± 1.90*** 56.45

2m –C6H4(m-Cl) 100 6.92± 2.42 30.49

2n –C6H4(p-Br) 100 5.12± 1.32** 48.58

2o –CH2C6H5 100 3.90± 1.13*** 60.80

2p –CH2C6H4(p-
CH3)

100 3.73± 1.42*** 62.56

2q –CH2C6H4(p-
OCH3)

100 6.75± 1.87 32.16

2r –CH2C6H4(m-F) 100 6.18± 2.75 37.86

2s –CH2C6H4(p-F) 100 4.42± 1.96** 55.61

2t –CH2C6H4(2,4-
2F)

100 5.03± 2.20** 49.41

2u –CH2C6H4(o-Cl) 100 6.87± 1.63 30.99

2v –CH2C6H4(m-Cl) 100 4.38± 2.41** 55.95

2w –CH2C6H4(p-Cl) 100 4.58± 0.99** 53.94

2x –CH2C6H4(o-Br) 100 5.53± 0.73* 44.39

2y –CH2C6H4(p-Br) 100 7.37± 2.34 25.96

DMSO — 100 9.95± 0.58 –

Ibuprofen — 100 3.72± 0.75*** 62.65

— No anti-inflammatory activity

*0.01<p< 0.05, **p< 0.01, ***p< 0.001 compared to the vehicle
group at corresponding time

Table 2 Anti-inflammatory activity of compounds 2d and 2h
administered o.p. at different times before xylene application

Time (h) Dose (mg/kg) Inhibition

2d 2h Ibuprofen

1 100 18.05 31.56 10.26

2 100 49.48* 33.90 24.03

3 100 68.57*** 38.70 44.68*

4 100 80.52*** 52.34* 56.63**

5 100 62.73** 36.75 15.71

6 100 53.64** 29.87 9.22

*0.01< p< 0.05, **p< 0.01, ***p< 0.001 compared to the vehicle
group at corresponding dose
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were examined under an ultraviolet lamp (254 nm). Melting
points were determined in open capillary tubes and were
uncorrected. IR spectra were recorded (in KBr) using an
fourier transform infrared spectroscopy1730 Spectrometer
(PerkinElmer, Waltham, MA, USA). 1H-NMR and 13C-
NMR spectra were recorded using an AV-300 Spectrometer
(Bruker Daltonik, Bremen, Germany), and all chemical
shifts were described in parts per million relative to that of
tetramethylsilane. High-resolution mass spectra were mea-
sured using a matrix-assisted laser desorption/ionization-
time of flight (MALDI-TOF) mass spectrometer (Bruker
Daltonik, Germany). Chemicals were purchased from
Aldrich Chemical Corporation.

General procedure for the synthesis of compound 1
(Deng et al., 2014) Dimethoxy-N,N-dimethylmethanamine
(DMF-DMA; 6.5 g, 55 mmol) was added to a solution of
3.3 g (55 mmol) formohydrazide in acetonitrile (30 ml) in a
100 ml round-bottomed flask equipped with a reflux
condenser. The reaction mixture was warmed to 50 °C for
30 min and then 5.5 g (50 mmol) of 4-aminophenol in
acetonitrile (10 ml) was added with 5 ml acetic acid. The
reaction temperature was increased to 120 °C for 9 h. After
being cooled and concentrated, the product was added to ice
water. The precipitate was collected via filtration and
vacuum dried to produce the product at a moderate yield.
The average of the yield was shown in the text.

4-(4H-1,2,4-Triazol-4-yl)phenol(1) M.p. 288–290 °C,
yield: 76 %. 1H-NMR (dimethyl sulfoxide (DMSO), 300
MHz) δ: 6.90 (d, 2H, J= 8.5 Hz, Ar–H), 7.46 (d, 2H, J=
8.5 Hz, Ar–H), 8.96 (s, 2H, J= 7.5 Hz, Triazole-H), 9.92 (s,
1H, –OH).

General procedure for the synthesis of compounds 2a–y
(Wen et al., 2015) Formaldehyde (18 mmol) was added to
a solution of 6 mmol amine in 20 ml ethanol in a 50 ml
round-bottomed flask. Compound 1 (1.0 g, 6 mmol) was
added portion-wise to the mixture over 15 min with stirring
at 0 °C, followed by addition of 1 ml triethylamine as a
catalyst. The temperature of the mixture was gradually
increased to 100 °C and stirred at 100 °C for 48 h. The
reaction mixture was concentrated under reduced pressure,
diluted with 30 ml dichloromethane, washed with 30 ml
(1 mol/L) sodium hydroxide and 30 ml distilled water, and
then saturated with 30 ml sodium chloride. The combined
organic extracts were dried over anhydrous sodium sulfate,
filtered, and concentrated under reduced pressure to afford
brown oil. The oil was purified on a silica gel column with
methanol and dichloromethane [V(methanol):V(dichlor-
omethane)= 1:50] and collected as eluent fractions to yield
target compounds 2a–y.

3-Butyl-6-(4H-1,2,4-triazol-4-yl)-3,4-dihydro-2H-benzo[e]
[1,3]oxazine (2a) M.p. 111–112 °C, yield: 34 %. 1H-NMR

(CDCl3, 300MHz) δ: 0.94 (t, 3H, J= 7.2 Hz, –CH3),
1.31–1.43 (m, 2H, –CH2–), 1.51–1.61 (m, 2H, –CH2–),
2.75(t, 2H, J= 6.0 Hz, –CH2–), 4.05 (s, 2H, –N–CH2–Ar),
4.93 (s, 2H, –O–CH2–N–), 6.90 (d, 1H, J= 8.6 Hz, Ar–H),
7.00 (s, 1H, Ar–H), 7.13 (d, 1H, J= 6.7 Hz, Ar–H), 8.38 (s,
2H, Triazole-H). 13C-NMR (CDCl3, 75MHz) δ: 13.93,
20.28, 30.13, 49.97, 51.17, 82.98, 117.90, 121.97, 122.22,
126.37, 141.83, 154.96. IR (KBr) cm−1: 1525 (C=N), 1223,
1092 (C–O–C). ESI-HRMS calcd. for C14H19N4O

+ ([M +
H]+): 259.1553; found: 259.1560.

3-Pentyl-6-(4H-1,2,4-triazol-4-yl)-3,4-dihydro-2H-benzo[e]
[1,3]oxazine (2b) M.p. 129–130 °C, yield: 36 %. 1H-NMR
(CDCl3, 300MHz) δ: 0.92 (t, 3H, J= 6.0 Hz, –CH3),
1.31–1.39 (m, 4H, –CH2–), 1.53–1.64 (m, 2H, –CH2–),
2.75 (t, 2H, J= 7.5 Hz, –CH2–), 4.06 (s, 2H, –N–CH2–Ar),
4.94 (s, 2H, –O–CH2–N–), 6.91 (d, 1H, J= 8.7 Hz, Ar–H),
7.00 (s, 1H, Ar–H), 7.13 (dd, 1H, J1= 3.0 Hz, J2= 6.0 Hz,
Ar–H), 8.38 (s, 2H, Triazole-H). 13C-NMR (CDCl3, 75
MHz) δ: 14.02, 22.50, 27.70, 29.26, 49.95, 51.43, 82.95,
117.87, 121.96, 122.17, 126.36, 141.81, 154.93. IR (KBr)
cm−1: 1528 (C=N), 1200, 1093 (C–O–C). ESI-HRMS
calcd. for C15H21N4O

+ ([M + H]+): 273.1710; found:
273.1706.

3-Hexyl-6-(4H-1,2,4-triazol-4-yl)-3,4-dihydro-2H-benzo[e]
[1,3]oxazine (2c) M.p. 131–133 °C, yield: 32 %. 1H-NMR
(CDCl3, 300MHz) δ: 0.89 (t, 3H, J= 6.7 Hz, –CH3),
1.27–1.39 (m, 6H, –CH2–), 1.52–1.61 (m, 2H, –CH2–),
2.74 (t, 2H, J= 7.5 Hz, –CH2–), 4.05 (s, 2H, –N–CH2–Ar),
4.93 (s, 2H, –O–CH2–N–), 6.90 (d, 1H, J= 8.7 Hz, Ar-H),
7.00 (s, 1H, Ar–H), 7.13 (dd, 1H, J1= 2.5 Hz, J2= 8.6 Hz,
Ar–H), 8.38 (s, 2H, Triazole-H). 13C-NMR (CDCl3, 75
MHz) δ: 14.03, 22.59, 26.80, 27.98, 31.65, 49.94, 50.24,
51.46, 82.94, 117.87, 121.96, 122.17, 126.35, 141.81,
154.92. IR (KBr) cm−1: 1531 (C=N), 1223, 1095 (C–O–C).
ESI-HRMS calcd. for C16H23N4O

+ ([M + H]+): 287.1866;
found: 287.1881.

3-Heptyl-6-(4H-1,2,4-triazol-4-yl)-3,4-dihydro-2H-benzo
[e][1,3]oxazine (2d) M.p. 129–131 °C, yield: 28 %. 1H-
NMR (CDCl3, 300MHz) δ: 0.89 (t, 3H, J= 6.7 Hz, –CH3),
1.31 (s, 10H, –CH2–), 2.75 (t, 2H, J= 7.5 Hz, –CH2–), 4.05
(s, 2H, –N–CH2–Ar), 4.94 (s, 2H, –O–CH2–N–), 6.91
(d,1H, J= 8.7 Hz, Ar–H), 7.00 (s, 1H, Ar–H), 7.13 (d, 1H,
J= 6.0 Hz, Ar-H), 8.39 (s, 2H, Triazole-H). 13C-NMR
(CDCl3, 75MHz) δ: 14.07, 22.61, 27.10, 28.04, 29.13,
31.79, 49.97, 51.48, 82.97, 117.91, 121.97, 122.22, 126.36,
141.83, 154.96. IR (KBr) cm−1:1531 (C=N), 1232, 1095
(C–O–C). ESI-HRMS calcd for C17H25N4O

+ ([M + H]+):
301.2023; found: 301.2020.

3-Octyl-6-(4H-1,2,4-triazol-4-yl)-3,4-dihydro-2H-benzo[e]
[1,3]oxazine (2e) M.p. 130–132 °C, yield: 31 %. 1H-NMR
(CDCl3, 300MHz) δ: 0.88 (t, 3H, J1= 6.0 Hz, -CH3),
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1.27–1.32 (m, 12H, –CH2–), 2.75 (t, 2H, J1= 7.5 Hz,
–CH2–), 4.05 (s, 2H, –N–CH2–Ar), 4.94 (s, 2H,
–O–CH2–N–), 6.91 (d, 1H, J= 8.7 Hz, Ar–H), 7.00 (d, 1H,
J= 3.0 Hz, Ar–H), 7.13 (dd, 1H, J1= 3.0 Hz, J2= 9.0 Hz,
Ar–H), 8.39 (s, 2H, Triazole-H). 13C-NMR (CDCl3, 75
MHz) δ: 14.08, 22.63, 27.15, 28.05, 29.25, 29.43, 31.80,
49.97, 51.48, 82.98, 117.90, 121.97, 122.21, 126.37,
141.82, 154.97. IR (KBr) cm−1: 1524 (C=N), 1223, 1091
(C–O–C). ESI-HRMS calcd for C18H27N4O

+ ([M + H]+):
315.2179; found: 315.2186.

3-Dodecyl-6-(4H-1,2,4-triazol-4-yl)-3,4-dihydro-2H-benzo
[e][1,3]oxazine (2f) M.p. 116–117 °C, yield: 29 %. 1H-
NMR (CDCl3, 300MHz) δ: 0.89 (t, 3H, J1= 6.0 Hz, –CH3),
1.27 (s, 18H, –CH2–), 1.52–1.63 (m, 2H, –CH2–), 2.75(t,
2H, J= 7.5 Hz, –CH2–), 4.05 (s, 2H, –N–CH2–Ar), 4.94 (s,
2H, –O–CH2–N–), 6.91 (d, 1H, J= 8.7 Hz, Ar–H), 6.99 (d,
1H, J= 3.0 Hz, Ar–H), 7.13 (dd, 1H, J1= 3.0 Hz, J2= 9.0
Hz, Ar–H), 8.38 (s, 2H, Triazole-H). 13C-NMR (CDCl3, 75
MHz) δ: 14.10, 22.66, 27.15, 28.05, 29.32, 29.48, 29.60,
31.89, 49.98, 51.49, 82.97, 117.89, 121.96, 122.20, 126.37,
141.81, 154.96. IR (KBr) cm−1: 1519 (C=N), 1226, 1093
(C–O–C). ESI-HRMS calcd. for C22H35N4O

+ ([M + H]+):
371.2805; found: 371.2808.

3-Phenyl-6-(4H-1,2,4-triazol-4-yl)-3,4-dihydro-2H-benzo
[e][1,3]oxazine (2g) M.p. 164–165 °C, yield: 25 %. 1H-
NMR (CDCl3, 300MHz) δ: 4.70 (s, 2H, –N–CH2–Ar), 5.43
(s, 2H, –O–CH2–N–), 6.90–7.22 (m, 6H, Ar–H), 7.29 (t,
2H, J= 7.5 Hz, Ar–H), 8.36 (s, 2H, Triazole-H). 13C-NMR
(CDCl3, 75MHz) δ: 50.48, 79.89, 118.43, 118.52, 121.21,
122.08, 122.36, 122.41, 126.69, 129.41, 141.77, 147.85,
154.82. IR (KBr) cm−1:1521 (C=N), 1232, 1078 (C–O–C),
1120 (C–N). ESI-HRMS calcd. for C16H15N4O

+ ([M +
H]+): 279.1240; found: 279.1242.

3-p-Tolyl-6-(4H-1,2,4-triazol-4-yl)-3,4-dihydro-2H-benzo[e]
[1,3]oxazine (2h) M.p. 168–170 °C, yield: 27 %. 1H-NMR
(CDCl3, 300MHz) δ: 2.29 (s, 3H, –CH3), 4.67 (s, 2H,
–N–CH2–Ar), 5.41 (s, 2H, –O–CH2–N–), 6.94(d, 1H, J=
9.0 Hz, Ar–H), 7.02–7.14 (m, 6H, Ar–H), 8.37 (s, 2H,
Triazole-H). 13C-NMR (CDCl3, 75MHz) δ: 20.56, 50.84,
80.39, 118.47, 118.90, 121.26, 122.48, 126.63, 129.94,
131.88, 141.81, 145.53, 154.93. IR (KBr) cm−1: 1517
(C=N), 1220, 1099 (C–O–C), 1100 (C–N). ESI-HRMS
calcd. for C17H17N4O

+ ([M + H]+): 293.1397; found:
293.1393.

3-(4-Methoxyphenyl)-6-(4H-1,2,4-triazol-4-yl)-3,4-dihy-
dro-2H-benzo[e][1,3]oxazine (2i) M.p. 133–135 °C, yield:
25 %. 1H-NMR (CDCl3, 300MHz) δ: 3.77 (s, 3H, –OCH3),
4.63 (s, 2H, –N–CH2–Ar), 5.37 (s, 2H, –O–CH2–N–), 6.85
(d, 2H, J= 8.9 Hz, Ar-H), 6.95 (d, 1H, J= 8.7 Hz, Ar–H),
7.03 (s, 1H, Ar–H), 7.12 (t, 3H, J= 8.9 Hz, Ar–H), 8.38 (s,
2H, Triazole-H). 13C-NMR (CDCl3, 75MHz) δ: 51.32,

55.50, 81.12, 114.61, 118.46, 120.96, 121.26, 122.51,
126.63, 141.82, 154.95, 155.40. IR (KBr) cm−1: 1512
(C=N), 1241, 1085 (C–O), 1187 (C–N). ESI-HRMS calcd.
for C17H17N4O2

+ ([M + H]+): 309.1346; found: 309.1346.

3-(2-Fluorophenyl)-6-(4H-1,2,4-triazol-4-yl)-3,4-dihydro-
2H-benzo[e][1,3]oxazine (2j) M.p. 153–154 °C, yield:
16 %. 1H-NMR (CDCl3, 300MHz) δ: 4.65 (s, 2H,
–N–CH2–Ar), 5.38 (s, 2H, –O–CH2–N–), 6.97–7.25 (m,
7H, Ar–H), 8.39 (s, 2H, Triazole-H). 13C-NMR (CDCl3, 75
MHz) δ: 50.47, 80.59, 116.36, 116.63, 118.57, 121.22,
122.33, 122.58, 124.51, 124.61, 126.86, 136.17, 136.29,
141.80, 154.50. IR (KBr) cm−1: 1523 (C=N), 1230,
1082 (C–O–C), 1183 (C–N). ESI-HRMS calcd. for
C16H14FN4O

+ ([M + H]+): 297.1146; found: 297.1152.

3-(3-Fluorophenyl)-6-(4H-1,2,4-triazol-4-yl)-3,4-dihydro-
2H-benzo[e][1,3]oxazine (2k) M.p. 164–165 °C, yield:
20 %. 1H-NMR (CDCl3, 300MHz) δ: 4.70 (s, 2H,
–N–CH2–Ar), 5.41 (s, 2H, –O–CH2–N–), 6.65–7.25 (m,
7H, Ar–H), 8.38 (s, 2H, Triazole-H). 13C-NMR (CDCl3, 75
MHz) δ: 50.54, 79.39, 105.43, 105.76, 108.56, 108.84,
113.81, 118.71, 121.25, 122.15, 122.70, 126.94, 130.54,
130.67, 141.86, 154.73. IR (KBr) cm−1: 1520 (C=N), 1233,
1081 (C–O–C), 1184 (C–N). ESI-HRMS calcd. for
C16H14FN4O

+ ([M + H]+): 297.1146; found: 297.1142.

3-(4-Fluorophenyl)-6-(4H-1,2,4-triazol-4-yl)-3,4-dihydro-
2H-benzo[e][1,3]oxazine (2l) M.p. 118–120 °C, yield:
22 %. 1H-NMR (CDCl3, 300MHz) δ: 4.66 (s, 2H,
–N–CH2–Ar), 5.38 (s, 2H, –O–CH2–N–), 6.95–7.17 (m,
7H, Ar–H), 8.38 (s, 2H, Triazole-H). 13C-NMR (CDCl3, 75
MHz) δ: 51.26, 80.59, 115.83, 116.13, 118.58, 120.71,
120.82, 121.23, 122.16, 122.64, 126.79, 141.79, 144.33,
154.81. IR (KBr) cm−1: 1519 (C=N), 1234, 1078 (C–O–C),
1185 (C–N). ESI-HRMS calcd. for C16H14FN4O

+ ([M +
H]+): 297.1146; found: 297.1148.

3-(3-Chlorophenyl)-6-(4H-1,2,4-triazol-4-yl)-3,4-dihydro-
2H-benzo[e][1,3]oxazine (2m) M.p. 154–156 °C, yield:
20 %. 1H-NMR (CDCl3, 300MHz) δ: 4.70 (s, 2H,
–N–CH2–Ar), 5.41 (s, 2H, –O–CH2–N–), 6.94–7.25 (m,
7H, Ar–H), 8.39 (s, 2H, Triazole-H). 13C-NMR (CDCl3, 75
MHz) δ: 50.53, 79.28, 116.43, 118.46, 118.71, 121.24,
122.01, 122.12, 122.65, 126.89, 130.43, 135.08, 141.79,
149.04, 154.70. IR (KBr) cm−1: 1518 (C=N), 1229, 1079
(C–O–C), 1182 (C–N). ESI-HRMS calcd. for
C16H14ClN4O

+ ([M + H]+): 313.0851; found: 313.0849.

3-(4-Bromophenyl)-6-(4H-1,2,4-triazol-4-yl)-3,4-dihydro-
2H-benzo[e][1,3]oxazine (2n) M.p. 164–166 °C, yield:
20 %. 1H-NMR (CDCl3, 300MHz) δ: 4.68 (s, 2H,
–N–CH2–Ar), 5.40 (s, 2H, –O–CH2–N–), 6.96 (d, 1H, J=
8.7 Hz, Ar–H), 7.00–7.05 (m, 3H, Ar–H), 7.15 (dd, 1H, J1
= 3.0 Hz, J2= 9.0 Hz, Ar-H), 7.37–7.43 (m, 2H, Ar–H),
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8.37 (s, 2H, Triazole-H). 13C-NMR (CDCl3, 75MHz) δ:
49.34, 54.88, 82.46, 118.00, 121.38, 121.40, 121.90,
122.23, 126.61, 130.42, 131.58, 136.54, 141.66, 154.58. IR
(KBr) cm−1: 1510 (C=N), 1232, 1083 (C–O–C), 1188
(C–N). ESI-HRMS calcd. for C16H14BrN4O

+ ([M + H]+):
357.0346; found: 357.0353.

3-Benzyl-6-(4H-1,2,4-triazol-4-yl)-3,4-dihydro-2H-benzo[e]
[1,3]oxazine (2o) M.p. 134–136 °C, yield: 27 %. 1H-NMR
(CDCl3, 300MHz) δ: 3.95 (s, 2H, –N–CH2–Ar), 4.04 (s,
2H, –N–CH2–Ar), 4.96 (s, 2H, –O–CH2–N–), 6.97 (d, 2H,
J= 7.9 Hz, Ar–H), 7.16 (dd, 1H, J1= 3.0 Hz, J2= 9.0 Hz,
Ar–H), 7.32–7.38 (m, 5H, Ar–H), 8.38 (s, 2H, Triazole-H).
13C-NMR (CDCl3, 75MHz) δ: 49.33, 55.59, 82.66, 118.00,
121.66, 122.00, 122.24, 126.59, 127.63, 128.56, 128.86,
137.52, 141.78, 154.76. IR (KBr) cm−1: 1523 (C=N), 1219,
1067 (C–O–C), 1124 (C–N). ESI-HRMS calcd. for
C17H17N4O

+ ([M + H]+): 293.1397; found: 293.1401.

3-(4-Methylbenzyl)-6-(4H-1,2,4-triazol-4-yl)-3,4-dihydro-
2H-benzo[e][1,3]oxazine (2p) M.p. 154–156 °C, yield:
29 %. 1H-NMR (CDCl3, 300MHz) δ: 2.38 (s, 3H, –CH3),
3.90 (s, 2H, –N–CH2–Ar), 4.03 (s, 2H, –N–CH2–Ar), 4.95
(s, 2H, –O–CH2–N–), 6.97 (d, 2H, J= 8.5 Hz, Ar–H),
7.15–7.20 (m, 3H, Ar–H), 7.26 (d, 2H, J= 8.0 Hz, Ar–H),
8.39 (s, 2H, Triazole-H). 13C-NMR (CDCl3, 75MHz) δ:
21.17, 49.22, 55.32, 82.65, 118.04, 121.71, 122.02, 122.30,
126.55, 128.87, 129.28, 134.38, 137.41, 141.82, 154.86. IR
(KBr) cm−1: 1520(C=N), 1220, 1000 (C–O–C), 1135
(C–N). ESI-HRMS calcd. for C18H19N4O

+ ([M + H]+):
307.1553; found: 307.1550.

3-(4-Methoxybenzyl)-6-(4H-1,2,4-triazol-4-yl)-3,4-dihy-
dro-2H-benzo[e][1,3]oxazine (2q) M.p. 157–159 °C,
yield: 28 %. 1H-NMR (CDCl3, 300MHz) δ: 3.85
(d, 5H, J= 12.7 Hz, –N–CH2–Ar, –OCH3), 4.03 (s, 2H,
–N–CH2–Ar), 4.94 (s, 2H, –O–CH2–N–), 6.89 (s, 1H,
Ar–H), 6.92 (s, 1H, Ar–H), 6.95–6.98 (m, 2H, Ar–H), 7.16
(dd, 1H, J1= 3.0 Hz, J2= 9.0 Hz, Ar–H), 7.28 (d, 2H, J=
6.0 Hz, Ar–H), 8.39 (s, 2H, Triazole-H). 13C-NMR (CDCl3,
75MHz) δ: 49.14, 54.89, 55.22, 82.36, 113.86, 117.90,
121.64, 121.90, 122.14, 126.49, 129.41, 130.04, 141.70,
154.75, 159.06. IR (KBr) cm−1: 1527 (C=N), 1242, 1093
(C–O–C), 1128 (C–N). ESI-HRMS calcd. for C18H19N4O2

+

([M + H]+): 323.1503; found: 323.1498.

3-(3-Fluorobenzyl)-6-(4H-1,2,4-triazol-4-yl)-3,4-dihydro-
2H-benzo[e][1,3]oxazine (2r) M.p. 138-149 °C, yield:
23 %. 1H-NMR (CDCl3, 300MHz) δ: 4.03 (s, 4H, -N-CH2-
Ar), 4.94 (s, 2H, -O-CH2-N-), 6.98 (t, 3H, J= 10.8 Hz, Ar-
H), 7.10-7.18 (m, 3H, Ar-H), 7.31 (t, 1H, J= 7.5 Hz, Ar-H),
8.38 (s, 2H, Triazole-H). 13C-NMR (CDCl3, 75MHz) δ:
49.37, 55.06, 82.63, 114.60, 118.02, 121.47, 121.99,
124.24, 124.25, 124.29, 126.65, 130.07, 140.28, 140.38,
141.74, 154.60, 161.36, 164.62. IR (KBr) cm−1: 1524

(C=N), 1237, 1081 (C–O–C), 1125 (C–N). ESI-HRMS
calcd for C17H16FN4O

+ ([M + H]+): 311.1303; found:
311.1305.

3-(4-Fluorobenzyl)-6-(4H-1,2,4-triazol-4-yl)-3,4-dihydro-
2H-benzo[e][1,3]oxazine (2s) M.p. 153–154 °C, yield:
19 %. 1H-NMR (CDCl3, 300MHz) δ: 3.91 (s, 2H,
–N–CH2–Ar), 4.03 (s, 2H, –N–CH2–Ar), 4.94 (s, 2H,
–O–CH2–N–), 6.96–6.99 (m, 2H, Ar–H), 7.07 (t, 2H, J=
8.6 Hz, Ar–H), 7.16 (dd, 1H, J1= 2.5 Hz, J2= 8.6 Hz,
Ar–H), 7.35 (dd, 2H, J1= 6.0 Hz, J2= 8.6 Hz, Ar–H), 8.39
(s, 2H, Triazole-H). 13C-NMR (CDCl3, 75MHz) δ: 49.33,
54.85, 82.45, 115.32, 115.60, 118.12, 121.54, 122.01,
122.38, 126.64, 130.39, 130.50, 133.16, 133.20, 141.80,
154.77. IR (KBr) cm−1: 1510 (C=N), 1215, 1095 (C–O–C),
1122 (C–N). ESI-HRMS calcd. for C17H16FN4O

+ ([M +
H]+): 311.1303; found: 311.1303.

3-(2,4-Difluorobenzyl)-6-(4H-1,2,4-triazol-4-yl)-3,4-dihy-
dro-2H-benzo[e][1,3]oxazine (2t) M.p. 134–136 °C, yield:
18 %. 1H-NMR (CDCl3, 300MHz) δ: 3.94 (s, 2H,
–N–CH2–Ar), 4.05 (s, 2H, –N–CH2–Ar), 4.94 (s, 2H,
–O–CH2–N–), 6.79–7.00 (m, 4H, Ar–H), 7.17 (dd, 1H, J1
= 2.7 Hz, J2= 8.7 Hz, Ar–H), 7.40 (dd, 1H, J1= 8.5 Hz, J2
= 15.0 Hz, Ar–H), 8.39 (s, 2H, Triazole-H). 13C-NMR
(CDCl3, 75MHz) δ: 48.42, 49.50, 82.48, 103.57, 103.91,
104.25, 111.24, 118.05, 121.36, 121.92, 122.33, 126.63,
131.71, 141.70, 154.58. IR (KBr) cm−1: 1518 (C=N), 1228,
1076 (C–O–C), 1131 (C–N). ESI-HRMS calcd. for
C17H15F2N4O

+ ([M + H]+): 329.1208; found: 329.1213.

3-(2-Chlorobenzyl)-6-(4H-1,2,4-triazol-4-yl)-3,4-dihydro-
2H-benzo[e][1,3]oxazine (2u) M.p. 150–152 °C, yield: 21
%. 1H-NMR (CDCl3, 300MHz) δ: 4.06 (d, 4H, J= 8.1 Hz,
–N–CH2–Ar), 4.99 (s, 2H, –O–CH2–N–), 6.99 (d, 2H, J=
8.8 Hz, Ar–H), 7.18 (dd, 1H, J1= 3.0 Hz, J2= 6.0 Hz,
Ar–H), 7.25–7.33 (m, 2H, Ar–H), 7.41 (dd, 1H, J1= 3.0
Hz, J2= 6.0 Hz, Ar–H), 7.47 (dd, 1H, J1= 3.0 Hz, J2= 6.0
Hz, Ar–H), 8.40 (s, 2H, Triazole-H). 13C-NMR (CDCl3, 75
MHz) δ: 49.55, 52.89, 82.97, 118.06, 121.56, 121.98,
122.29, 126.56, 126.82, 128.80, 129.70, 130.44, 134.35,
135.20, 141.71, 154.67. IR (KBr) cm−1: 1524 (C=N), 1230,
1074 (C–O–C), 1130 (C–N). ESI-HRMS calcd. for
C17H16ClN4O

+ ([M + H]+): 327.1007; found: 327.1012.

3-(3-Chlorobenzyl)-6-(4H-1,2,4-triazol-4-yl)-3,4-dihydro-
2H-benzo[e][1,3]oxazine (2v) M.p. 163–165 °C, yield:
23 %. 1H-NMR (CDCl3, 300MHz) δ: 3.93 (s, 2H,
–N–CH2–Ar), 4.04 (s, 2H, –N–CH2–Ar), 4.96 (s, 2H,
–O–CH2–N–), 6.98 (d, 2H, J= 3.0Hz, Ar–H), 7.18 (d, 1H,
J= 9.0Hz, Ar–H), 7.30 (s, 3H, Ar–H), 7.41 (s, 1H, Ar–H),
8.40 (s, 2H, Triazole-H). 13C-NMR (CDCl3, 75MHz)
δ: 49.37, 55.03, 82.59, 118.02, 121.39, 121.94,
122.26,126.62, 126.78, 127.72, 128.67, 129.76, 134.40,
139.69, 141.68, 154.58. IR (KBr) cm−1: 1517 (C=N), 1228,
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1079 (C–O–C), 1129 (C–N). ESI-HRMS calcd. for
C17H16ClN4O

+ ([M + H]+): 327.1007; found: 327.1003.

3-(4-Chlorobenzyl)-6-(4H-1,2,4-triazol-4-yl)-3,4-dihydro-
2H-benzo[e][1,3]oxazine (2w) M.p. 164–166 °C, yield:
25 %. 1H-NMR (CDCl3, 300MHz) δ: 3.91 (s, 2H,
–N–CH2–Ar), 4.03 (s, 2H, –N–CH2–Ar), 4.94 (s, 2H,
–O–CH2–N–), 6.98 (d, 2H, J= 6.0 Hz, Ar–H), 7.17 (dd,
1H, J1= 3.0 Hz, J2= 9.0 Hz, Ar–H), 7.34 (dd, 4H, J1= 9.0
Hz, J2= 12.0 Hz, Ar–H), 8.39 (s, 2H, Triazole-H). 13C-
NMR (CDCl3, 75MHz) δ: 49.38, 54.91, 82.53, 118.12,
121.49, 122.00, 122.37, 126.64, 128.74, 130.15, 133.42,
136.00, 141.77, 154.73. IR (KBr) cm−1: 1519 (C=N), 1234,
1083 (C–O–C), 1134 (C–N). ESI-HRMS calcd. for
C17H16ClN4O

+ ([M + H]+): 327.1007; found: 327.1013.

3-(2-Bromobenzyl)-6-(4H-1,2,4-triazol-4-yl)-3,4-dihydro-
2H-benzo[e][1,3]oxazine (2x) M.p. 162–164 °C, yield:
24 %. 1H-NMR (CDCl3, 300MHz) δ: 4.05 (d, J= 13.5 Hz,
4H, –N–CH2–Ar), 5.00 (s, 2H, –O–CH2–N–), 7.01 (s, 2H,
Ar–H), 7.20 (s, 2H, Ar–H), 7.31–7.41 (m, 1H, Ar–H), 7.48
(d, 1H, J= 3.0 Hz, Ar–H), 7.61 (d, 1H, J= 6.0 Hz, Ar–H),
8.40 (s, 2H, Triazole-H). 13C-NMR (CDCl3, 75MHz) δ:
49.52, 55.36, 82.98, 118.09, 121.59, 122.01, 122.31,
124.65, 126.56, 127.44, 129.07, 130.56, 133.04, 136.84,
141.72, 154.70. IR (KBr) cm−1: 1525 (C=N), 1224, 1083
(C–O–C), 1138 (C–N). ESI-HRMS calcd. for
C17H16BrN4O

+ ([M + H]+): 371.0502; found: 371.0502.

3-(4-Bromobenzyl)-6-(4H-1,2,4-triazol-4-yl)-3,4-dihydro-
2H-benzo[e][1,3]oxazine (2y) M.p. 166–168 °C, yield:
27 %. 1H-NMR (CDCl3, 300MHz) δ: 3.89 (s, 2H,
–N–CH2–Ar), 4.02 (s, 2H, –N–CH2–Ar), 4.93 (s, 2H,
–O–CH2–N–), 6.95–6.98 (m, 2H, Ar–H), 7.17 (dd, 1H, J1
= 3.0 Hz, J2= 6.0 Hz, Ar–H), 7.26 (d, 2H, J= 9.0 Hz,
Ar–H), 7.49 (d, 2H, J= 8.2 Hz, Ar–H), 8.39 (s, 2H,Tria-
zole-H). 13C-NMR (CDCl3, 75MHz) δ: 49.34, 54.88,
82.46, 118.00, 121.38, 121.40, 121.90, 122.23, 126.61,
130.42, 131.58, 136.54, 141.66, 154.58. IR (KBr) cm−1:
1523 (C=N), 1227, 1082 (C–O–C), 1135 (C–N). ESI-
HRMS calcd. for C17H16BrN4O

+ ([M + H]+): 371.0502;
found: 371.0504.

Pharmacology

The anti-inflammatory activity of each compound was
evaluated by examining in vivo inhibition of xylene-
induced ear edema (Pardridge, 2005) in kunming mice
(22± 2 g, 8 animals per group). All of the animals were
purchased from the Laboratory of Animal Research, Yan-
bian University. Mice were acclimated to the laboratory
conditions (20–25 °C, relative humidity at 45–65 %) for
more than 1 week prior to experimentation and fed a stan-
dard pellet diet with water.

Xylene-induced ear-edema model with intraperitoneally
administered compounds All test compounds and ibupro-
fen were freshly prepared (dissolved with DMSO) prior to
intraperitoneal administration at a dose of 100 mg/kg and
volume of 0.1 mL/20 g of mice weight. Control mice were
injected with vehicle (DMSO, 0.1 mL/20 g of mice weight)
only. Thirty minutes after administration, 20 μL xylene was
smeared evenly using a micropipette on the surface of the
right ear of each mouse. Thirty minutes later, a circular
tissue (7 mm diameter) was excised from both ears of
treated mice using a cylindrical borer. Mice were restrained
from struggling during the 30 min test period. The weights
of the left (untreated) and right (treated) ear sections were
recorded. Edema was quantified by analyzing the differ-
ence in weight between the left (untreated) and right (trea-
ted) ear sections. Anti-inflammatory activity was expressed
as the inhibition percentage compared to the control group.
Ibuprofen was used in parallel as a reference drug. Edema
values, expressed as mean ± standard deviation, were
compared statistically using one-way-ANOVA followed by
Dunnet’s post-hoc test. Differences with p values < 0.05
were considered statistically significant.

Xylene-induced ear-edema model with p.o. administered
compounds Two of the compounds screened by
intraperitoneal administration (compounds 2d and 2h) and
ibuprofen were homogenized in 0.5 % sodium carbox-
ymethylcellulose (CMC–Na) and administered orally at
100 mg/kg (0.4 mL/20 g body weight). Control mice
received 0.5 % CMC–Na (0.4 mL/20 g body weight) only.
To explore the peak activity of the test compounds, edema
was quantified at different time intervals after oral admin-
istration (1, 2, 3, 4, 5, and 6 h).

Conclusion

In the present study, we described the syntheses and anti-
inflammatory activities of evaluation of novel 3-alkyl-6-
(4H-1,2,4-triazol-4-yl)-3,4-dihydro-2H-benzo[e][1,3]
oxazine derivatives (2a–2y). The results showed that
3-heptyl-6-(4H-1,2,4-triazol-4-yl)-3,4-dihydro-2H-benzo[e]
[1,3]oxazine (2d) and 3-p-tolyl-6-(4H-1,2,4-triazol-4-yl)-
3,4-dihydro-2H-benzo[e][1,3]oxazine (2h) displayed the
highest inhibition percentage, 74.04 % and 64.99 % (intra-
peritoneal administration), respectively, which were a bit
more potent than the reference drug Ibuprofen (62.65 %).
Moreover, compound 2d showed higher activity than the
reference drug at all time points by oral administration.
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