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Abstract Among the most well-known members of the
mitotic protein kinase family are polo-like kinases. Polo-
like kinase 4 as a type of this family is used as a therapeutic
target in the treatment of proliferative diseases. A three-
dimensional quantitative structure activity relationship
study with comparative molecular field analysis and
comparative molecular similarity indices analysis was car-
ried out on a data set of 47 molecules consisting of (E)-3-
((1H-indazol-6-yl)methylene) indolin-2-ones derivatives of
polo-like kinase 4 inhibitors to rational design of new drug.
The validity of model was tested with a data set divided into
training and test set. All constructed models show good
statistical reliability in terms of predicting polo-like kinase
inhibitory activity of the molecules, based on molecular
property fields like steric, electrostatic, hydrophobic,
hydrogen bond donor and hydrogen bond acceptor fields.
Moreover, molecular docking with CDOCKER algorithm
was done to investigate interactions of between ligand
and protein and to achieve bioactive ligand conformer.
The energy difference between the highest occupied mole-
cular orbital and the lowest unoccupied molecular orbital
(gap) implicitly stated the high reactivity of the most
active molecule in the active site of protein. Furthermore, the
molecular electrostatic potential energy at density functional
theorylevel confirm the results from molecular docking.

The identified key features obtained from the quantitative
structure activity relationship modeling enabled us to
design novel indolinone derivatives. In silico absor-
ption, distribution, metabolism and excretion and toxicity
risk assessment analyses were carried out on the new
molecules to investigate compliance with the standard
ranges.

Keywords Polo-like kinases ● 3D-QSAR ● CDOCKER
algorithm ● HOMO and LUMO ● ADME and toxicity risk
assessment

Introduction

Polo-like kinases (PLKs) are a family of serine/threonine
kinases which play a significant part in the regulation of
mitosis and DNA damage pathways (Barr et al., 2004).
Having barrel-shaped and microtubule-based structures,
centrioles are duplicated exactly once in every cell cycle
and serve as platforms in order to assemble centrosomes
and cilium (Mónica Bettencourt-Dias et al., 2011; Bornens,
2012; Gönczy, 2012; Lüders and Stearns, 2007; Nigg and
Raff, 2009). Centrosomes make up the major microtubule-
organizing centers in animal cells. In each centrosome, two
centrioles are embedded in a protein matrix recognized as
the pericentriolar material (PCM). In quiescent and differ-
entiated cells, centrioles function as basal bodies for the
formation of cilia and flagella. Anomalies in centrosome
number and/or structure have long been implicated in
tumorigenesis (Basto et al., 2008; Ganem et al., 2009; Nigg,
2002). Genetic studies have revealed that mutations in
centriolar and centrosomal proteins are in charge of a
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different range of developmental diseases, namely
remarkably ciliopathies, microcephaly and dwarfism (Bet-
tencourt-Dias et al., 2011; Davis and Katsanis, 2012;
Megraw et al., 2011). PLK4 also known as SAK, has a
central role in confining centriole biogenesis and duplica-
tion PLK4 has only one polo-box and an active site with
high homology to the Aurora kinases (Habedanck et al.,
2005; Kleylein-Sohn et al., 2007; Nigg, 2007); the linking
mechanism between PLK4 activity and centriole formation
is unknown, though. PLK4 localizes to the centriole and is
also essential for controlling centriole duplication and
mitotic progression (Bettencourt-Dias et al., 2005; Hudson
et al., 2001). PLK4-induced centriole biogenesis in human
cells involves the sequential assembly of several essential
proteins, including human Sas-6, Cep135, CPAP (human
Sas-4) and CP110 (Kleylein-Sohn et al., 2007). This type of
centriole is not much abundant in normal adult tissues and
can automatically regulate its own stability. Overexpression
of PLK4 in human cells not only induces centrosome
amplification through simultaneous generation of multiple
procentrioles adjoining each parental centriole (Kleylein-
Sohn et al., 2007) but it is also able to produce procentriole
formation which results in the recruitment of electron-dense
material onto the proximal walls of parental centrioles.
It is known that the PLK4 depletion can be resulted in the
death of breast cancer cell lines but not in the normal
breast cells (Mak, 2012; Mason et al., 2011). The
researchers have found that RNAi-mediated depletion of
PLK4 in breast cancer cells prevents centriole duplication
which causes mitotic defects and cell death and growth
suppression of breast cancer xenografts in vivo (Mak, 2012;
Mason et al., 2011).

Computer-aided drug design approaches make a positive
contribution in the design of potential PLK4 inhibitors and
would help more to further understanding of the role of this
enzyme in cancer cell proliferation. Herein, selective
molecular field approaches in designing new selective
PLK4 inhibitors were employed. In this research, three-
dimensional-quantitative structure activity relationship (3D-
QSAR) studies using comparative molecular field analysis
(CoMFA) (Cramer et al., 1988) and comparative molecular
similarity indices analysis (CoMSIA) (Klebe et al., 1994)
descriptors on (E)-3-((1H-indazol-6-yl)methylene) indolin-
2-ones derivatives are reported. A partial least square (PLS)
(Kubinyi, 1993) based on statistical analysis was used to
find the correlation between the biological activity and
descriptors generated based on aligned molecules. Both
CoMFA and CoMSIA contour maps revealed some key
factors affecting the activities of the inhibitors and provided
us with some guidelines to design some new potent dual
PLK4 inhibitors.

Materials and methods

Data set and structures

A set of 47 (E)-3-((1H-indazol-6-yl) methylene) indolin-2-
ones derivatives of PLK4 inhibitors as anti-proliferative
agents with associated activity data were collected from
literature. The potent anti-proliferative activity against the
MDA-MB-468 breast cancer cell line, the PLK4 inhibitors
were selected testing in the corresponding mouse xenograft
model. Nanomolar activity against PLK4 and concomitant
anti-proliferative effects against a panel of breast cancer cell
lines was measured using an indirect ELISA detection
system (Johnson et al., 2007; Laufer et al., 2013). The
inhibitory activity values (IC50) were converted into nega-
tive logarithm scale value in mole (pIC50) as a dependent
variable for all the models subsequently developed. The
pIC50 values of the data set extent from 4.5 to 9.5. The
dataset was randomly partitioned into training and test set
compounds by considering activity range. The structure of
compound and their biological activities are shown in
Table 1.

CoMFA and CoMSIA

CoMFA and CoMSIA were done using SYBYL 7.3
molecular modeling software package from Tripos, Inc., St.
Louis, MO. The 3D structures of dataset compounds were
drawn in SYBYL and the Gasteigere–Hückel method was
applied to calculate partial atomic charges.

The energy minimizations were processed by means of
the Tripos force field with a distance-dependent dielectric
and the Powell conjugate gradient algorithm convergence
criterion of 0.01 kcal/mol Å. The most active compound
32 was selected as the template for aligning other com-
pounds. Rigid body alignment (using Distill) of molecules
was done on the maximum common substructure without
involving bond types in ring. A sp3 hybridized carbon atom
with +1 charge was chosen and interaction energies
between the probe atom and molecules were calculated in
each intersection as descriptors. The steric (van der Waals)
interaction is modeled using the Lennard–Jones (6–12)
potential and the electrostatic interaction is modeled using
coulombic, by the Tripos force field. The CoMSIA
approach was performed with the same 3D cubic box and
the descriptors involving steric, electrostatic, hydrogen
bond donor, hydrogen bond acceptor and hydrophobic
fields were extracted using a probe atom with +1.0 charge,
radius 1.0 Å, hydrophobic and hydrogen bond properties
of +1.0.
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Partial least squares and validation of models

PLS analysis that is a method multiple regression analysis
used to studies 3D-QSAR where CoMFA and CoMSIA
descriptors were used as independent variables and the
pIC50 values as dependent variables. Cross validation as an
internal validation technique was used to assess the pre-
diction quality of the models. In a standard internal vali-
dation method, named leave one out cross validation
(LOOCV), one compound is excluded from the original
training set, and a new model is built based on new training
set and this model is used to predict the activity of the
excluded one. For each model, this procedure is repeated for
whole compounds of data set, and each compound is
excluded once, then cross validated q2 which is considered
as a criterion of robustness and predictive ability of the
models, is calculated by Eq. 1.

q2 ¼ 1�
P ðyi � ŷÞ2
P ðyi � yÞ2 ð1Þ

where y presents average activity value of the entire dataset
and yi and ŷ are observed and predicted activity values,
respectively. A high q2 value (q2> 0.5) is used as an evi-
dence of high predictive ability of the model.

Golbarikh and Tropsha reported that the high value
of q2 is essential and important but not adequate for a
predictive model. So to investigate the prediction of
model, an external analysis by test set of molecules should
be employed. According to Golbarikh and Tropsha, a
QSAR model is predictive if it fulfills the following
conditions:

q2 > 0:5;

R2 > 0:6;

ðR2 � R2
0Þ

R2
<0:1 or

ðR2 � R′2
0 Þ

R2
<0:1;

0:85 � k � 1:15 or 0:85 � k0 � 1:15;

where R2 is squared correlation coefficient values
between the observed and predicted values of the test set
compounds.

R2
0 and R′2

0 are squared correlation coefficient values for
observed versus predicted and predicted versus observed
activities, through origin, respectively and k′ is the slope of
regression lines through the origin.

The Rpred
2 value was calculated according to the Eq. 2:

R2
pred ¼ 1�

Pm
i¼1 ðyi � ŷiÞ2Pm
i¼1 ðyi � yÞ2 ð2Þ

where ŷi and yi indicate predicted and observed activity
values of the test set, respectively, and y is the average value
of training set activities and m is the number of compounds
in the test set.

Molecular docking

To find the best binding conformation of the inhibitors to
the active site of PLK4, docked inhibitor conformations
were generated. Molecular docking by CDOCKER algo-
rithm was done in Discovery Studio 2.5 (AccelrysInc, San
Diego, CA, USA) (Studio, 2009). Compound 32 was typed
with CHARMm force field and partial charges were
calculated by Momany–Rone (Momany and Rone, 1992)
option. The resulting structure was minimized with Smart
Minimizer algorithm which performs 1000 steps of steepest
descent with a RMS gradient tolerance of 3, followed by
conjugate gradient minimization. The crystal structures of
the PLK4 were downloaded from the RCSB protein data
bank (PDB code: 3COK). The protein preparation and
minimization were performed in Discovery Studio 2.5 to
investigate interactions of ligand and protein and to achieve
bioactive ligand conformer (Ghasemi and Shiri, 2012). The
complex was typed with CHARMm force field, hydrogen
atoms were added, proteins’ ligands and all water molecules
were removed and pH of protein was adjusted to almost
neutral, 7.4, using protein preparation. A 15 Å radius sphere
was defined around the bounded ligand to compose the
active site of the X-ray structure, then the most active
compound 32 was docked into the protein structure using
CDOCKER algorithm.

Quantum chemical calculations

In this study, the geometry optimization and calculations
were made at the density functional theory (DFT) level on a
personal computer (PC) by energy optimization, using the
Gaussian 09 (Frisch et al., 2009) program package. The
highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO) energies at B3LYP/
6-31G (d, p) level were calculated for bioactive conformer
obtained in the docking studies. The molecular electrostatic
potential was also studied at the same level. The MEP
surface was created using Molekel (Varetto, 2009).

ADME and toxicity risk assessment studies

Four important agents in pharmacokinetics are absorption,
distribution, metabolism and excretion (ADME) (Van de
Waterbeemd and Gifford, 2003) and their significance has
been thoroughly recognized and predicted in drug design.
These factors include pharmacokinetics issues that deter-
mine whether the drug molecules reach the target protein in
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the body or not and how long the drug molecules will
remain in the body. There is a relationship between che-
mical structures and physiological parameters; thus,
some chemical descriptors were used to calculate pharma-
cokinetic parameters by the QikProp v. 3.2 programs
(Schrödinger, Portland, OR, USA, 2009) and were checked
with the related standard ranges. 12 molecules designed in
SYBYL 7.3 molecular modeling package (Tripos Inc., St.
Louis, USA) were submitted to Schrödinger 9.0 to predict
ADMET properties such as polar surface area (PSA). PSA
is a surface descriptor which applies to measure perme-
ability of drugs and is defined as a part of the surface area
contributed by nitrogen, oxygen, and connected hydrogen
atoms. Molecular weight is another important descriptor.
Larger molecules invariably having too many functional
groups are able to form hydrogen bonds, and compounds
with a molecular weight more than 500 Da are quite likely
to have more than ten rotatable bonds. We computed the
blood-brain barrier (log BB). Some distribution descriptors
in the body have the volume of distribution that can afford a
measurement of restrictive or non-restrictive function of
plasma binding, and also log Khsa for serum protein binding.
Another distribution descriptors are permeability (such as
the apparent Caco-2 or MDCK permeability), and skin-
permeability coefficient (log Kp). The octanol–water parti-
tion coefficient (log P) is a physicochemical parameter of
drug’s hydrophobicity. Compounds with a higher lipophi-
licity have an increased metabolism and poor absorption,
and a high probability of binding to unwanted hydrophobic
macromolecules hence an increased potential of toxicity.
These parameters are used for an acceptable oral activity.
Topological polar surface area (TPSA) was calculated by
OSIRIS property explorer that could be ≤140 Å2 of a
molecule correlating well with the passive molecular
transport through membranes. To assess the toxicity risk
assessment including mutagenicity, tumorigenicity, irritant
and reproductive effects for the compounds designed, Osiris
program was employed. Also, their various drug relevant
values such as drug-likeness and drug score value were
determined.

Results and discussion

CoMFA and CoMSIA results

Statistical quality parameters of CoMFA and CoMSIA
methods are summarized in Table 2 and the experimental
versus predicted activities of the training and test set com-
pounds are presented in Fig. 1. PLS analysis shows a high
q2 value of 0.629 with six components for CoMFA model.
The non-cross-validated PLS analysis results in a conven-
tional r2 of 0.953, F= 94, and a standard error of estimation

(SEE) of 0.373, with a column filtering of 2.0. The good
r2pred values of 0.911 from CoMFA show that the model has
acceptable predictive power. For the CoMSIA model, the
highest cross-validated q2 was obtained by using a combi-
nation of steric, electrostatic, hydrophobic and H-bond
acceptor fields (CoMSIA, q2= 0.630, r2ncv= 0.961, r2pred
= 0.889, F= 120.6, SEE = 0.331, SEP= 0.073) with six
components. Also, the ability of prediction and the strength
of the models evaluated by bootstrapping r2boots for CoMFA
(0.965) and CoMSIA (0.965) (Smith and Gemperline,
2002) indicates degree of confidence in analysis. In addi-
tion, the QSAR model is considered to be predictive if the
following conditions are satisfied: q2> 0.6 and r2pred> 0.5
(Tropsha et al., 2003). The results of the external validation
are shown in Table 3.

CoMFA and CoMSIA contour maps analysis

The ability of CoMFA model for graphical representation of
the results (PLS regression coefficients) is an advantage of
CoMFA model over other classic QSAR methods. These
maps show regions where differences in molecular fields are
associated with differences in biological activity (Mao et al.,
2012). The CoMFA steric and electrostatic contour maps
are shown in Fig. 2. In the CoMFA steric contour maps,
green contours show sterically favorable regions and yellow
contours show sterically unfavorable regions. These con-
tours represent 80 and 20% contributions, respectively. In
the CoMFA electrostatic contour map, blue contours show
electropositive charge favorable areas and red contours
show electronegative charge favorable regions with 80 and
20 % contributions, respectively. The most active com-
pound (compound 32) was chosen to be the reference
molecule.

Table 2 Summery of the statistical parameters for the CoMFA and
CoMSIA models

Statistical parameters CoMFA CoMSIA-SEHDA

r2ncv 0.953 0.961

q2 0.629 0.630

r2pred 0.911 0.889

SEE 0.373 0.331

SEP 0.080 0.073

r2bs 0.965 0.965

F 94.0 120.6

R2 − R2
0/ R

2 −0.081 −0.102

R2 − R0
′2/R2 −0.089 −0.083

k 0.976 0.980

K′ 1.019 1.014

Component 6 6

Med Chem Res (2016) 25:2643–2665 2657



A large yellow area near substitute Aril (Ar) indicates
that small groups are more desirable. To justify this, we
could say that the activities of the compounds M33, M34
with piperazine substituent attached to the pyridine ring and
compound M35 with substituent –CO2H attached to the
phenyl ring are lower than those of the compounds M24,
M28 with substituent H.

In addition, the substituent R with yellow area shows that
the bigger group is undesirable. This corresponds with the
experimental results, and it could be explained why the
activities of the compounds M17 and M24 with the group
–OMe are higher than the compound M23 with substituent
Et. The Red area near substituent Ar indicates that high
electron density is preferred. The terminal O atom of
compound M35 has higher electron density than the N atom
in NMe2 of compound M31, so this confirms why com-
pound M31 has a lower activity than compound M35. One
blue contour near substituent R indicating electron donating
groups like –OMe attached to the benzene ring will increase
biological activity. Thus, the compounds M32, M24, M28
and M34 have high activities. The electrostatic contour
maps of CoMFA field are in a large part due to the diversity

Fig. 1 Predicted against observed activities for training and test sets
based on the a CoMFA model b CoMSIA model

Table 3 The experimental pIC50 values, predicted pIC50 values and
the residuals of the training and test set compounds for CoMFA and
CoMSIA

Experimental CoMFA CoMSIA

Pred. Res. Pred. Res.

7.34 6.42 0.92 7.45 −0.11

7.60 7.6 0 7.61 −0.01

6.64 6.16 0.48 6.01 0.64

6.07 5.41 0.66 4.96 1.11

5.21 5.55 −0.34 5.15 0.07

4.89 5.1 −0.21 4.53 0.36

4.49 4.98 −0.48 5.02 −0.53

4.31 4.82 −0.51 4.61 −0.3

4.47 4.84 −0.37 4.47 0

6.18 5.3 0.88 5.37 0.81

5.66 5.92 −0.26 5.32 0.34

6.41 6.76 −0.35 6.64 −0.23

6.54 6.04 0.5 6.51 0.03

6.62 6.12 0.5 6.55 0.07

7.27 6.43 0.84 6.64 0.64

5.89 6.06 −0.17 6.47 −0.58

7.33 7 0.33 7 0.33

5.00 5.69 −0.69 5.11 −0.11

5.2 5.41 −0.21 5.46 −0.26

5.92 6 −0.08 6.04 −0.12

7.89 8.48 −0.59 8.08 −0.19

8.70 8.34 0.36 8.55 0.15

8.80 8.83 −0.02 8.92 −0.11

9.32 9.41 −0.09 8.85 0.47

8.27 8.26 0.01 8.67 −0.4

8.64 8.55 0.09 8.78 −0.14

8.85 8.63 0.22 8.89 −0.04

9.35 9.32 0.03 8.82 0.53

9.05 8.7 0.35 8.23 0.82

7.38 8.27 −0.89 7.92 −0.54

8.70 8.66 0.04 8.97 −0.27

9.49 9.19 0.3 8.96 0.53

8.85 8.9 −0.05 9.48 −0.63

9.21 9.31 −0.1 9.52 −0.31

9.09 8.41 0.68 9.16 −0.07

4.96 5.17 −0.21 5.03 −0.07

6.19 6.13 0.06 6.33 −0.14

6.81 6.82 −0.01 6.92 −0.11

6.02 5.78 0.24 5.6 0.42

6.44 6.59 −0.15 6.41 0.03

5.77 5.55 0.22 6.01 −0.24

4.97 5.14 −0.17 4.96 0.01

6.28 6.35 −0.07 6.37 −0.09

5.93 5.64 0.29 6.23 −0.3

8.39 8.27 0.13 8.24 0.15

8.51 8.85 −0.34 8.42 0.1

6.71 6.56 0.15 6.65 0.06
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of structures. Also, the blue contour maps which cover a
separate area showing electron donating group (NH2) in
compounds M36 and M39 is effective for activity.

The CoMSIA contour maps are shown in Fig. 3. It can be
seen that CoMSIA steric and electrostatic contour maps are
similar to the corresponding CoMFA ones. The hydrophobic
contour maps of CoMSIA are shown by Fig. 3c. The yellow
(hydrophobic favorable) and white (hydrophobic unfavor-
able) contours represent 80 and 20% contributions, respec-
tively. The yellow contour near phenyl ring substituent Ar
indicating hydrophobic groups in this area are preferred for
PLK4 inhibitory activity. According to docking results, there
are some interactions with hydrophobic residues of receptor
such as LYS40 confirming hydrophobic contour of CoMSIA.
This is a sensible reason why compound M35 with hydro-
phobic phenyl ring has higher activity than compound M33
with hydrophilic pyridine ring.

White contour covers the substituent Ar so hydrophilic
groups that were attached to the phenyl ring will increase
activity. That is why compound M35 with substituent
–CO2H has more activity than compounds M30 and M33
with piperazine and hydrogen substituents.

Figure 3d depicts H-bond donor field distribution of
CoMSIA model which is represented by cyan and purple
contours. Cyan and purple contours indicate regions where
hydrogen bond donor groups on ligand are favoured and
disfavored, respectively. There is one purple contour near
the CO group in indolinone ring and –OMe group indicat-
ing that hydrogen bond donor groups in the receptor
enhance the activity of inhibitor. The hydrogen bond donor
group of ARG98 and GLU95 of the docking results com-
plements the purple contour in the ligand. Based on
hydrogen bond acceptor field in Fig. 3e, magenta contours
show regions where hydrogen bond acceptor groups are
favoured and red contours indicate regions where hydrogen

Fig. 2 Contour maps of a steric and b electrostatic fields of CoMFA
based on the most active compound 32

Fig. 3 Contour maps of steric (a), electrostatic (b), hydrophobic (c), hydrogen bond donor (d) and hydrogen bond acceptor (e) based on the most
active compound 32
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bond acceptor groups are unfavoured for increasing the
activity. There is one magenta contour covering –NMe2
substituent in phenyl ring suggesting hydrogen bond
acceptor group is favoured. The hydrogen bond donor
group of LYS40 complements the magenta contour in the
ligand.

Design for new active compounds

The structure–activity relationship revealed by 3D-QSAR
and molecular docking studies are illustrated in Fig. 4. To
propose new active compounds, the resulting CoMFA
contour maps were used. These molecules activities were
predicted by the CoMFA model which had previously been
recognized. The structures and predicted pIC50 values of
designed compounds in SYBYL 7.3 illustrated in Table 4
shows that electron-donor substituent at Ar position are
essential to increase activity designed molecules. Com-
pounds DM1, DM2 and DM10 which display case better
predicted pIC50 values contain electron- donating sub-
stituent at the terminal of the Aromatic ring side chain.
From the comparison of compound DM1 and DM2, with
the increase of electron donation and the distance between
the aromatic ring and NMe2 group; the activity increases as
well.

Docking results

To validate the docking reliability, root-mean square dis-
tance (RMSD) value was calculated between bounded
inhibitor and redocked ligand which were 1.839 Å in this
method. This value shows a high reliability of CDOCKER
method to reproduce the known binding mode of these
inhibitors. Docking results show a hydrogen bond between
NMe2 substituent and LYS40, and other hydrogen bonds
was found between the CO substituent of indolinone and

ARG98, GLU95 (Fig. 5). The phenyl ring of the compound
M32 has a p-cation interaction to NH3+of LYS40 in
accordance with phenyl ring. Fig. 5 shows the key residues,
pi interaction and hydrogen bond binding between the
compound M32 and the binding site of receptor.

Frontier molecular orbital

According to the frontier molecular orbitals theory, HOMO
and LUMO energy are two significant indicators of che-
mical reactivity. The character electron donor and electron
acceptor of compound were measured by the HOMO and
LUMO energies respectively. The energy difference
between the HOMO and LUMO (gap) is an important factor
to represent a simple measure of molecule stability. A small
gap value implies high reactivity of molecules in reactions
while a large gap value implies high stability of molecules
and low reactivity of molecules in reactions.

GAP ¼ EHOMO�ELUMO

HOMO represents the ability to donate an electron while
LUMO as an electron acceptor represents the ability to
obtain an electron. In Fig. 6, HOMO and LUMO orbitals of
the conformer obtained from docking with HOMO–LUMO
gap are given. As seen in the figure, in the HOMO, the
electrons are mainly delocalized on the nitrogen of the
indolinone and indazole ring, and partially on the nitrogen
of Ar substituted; in the LUMO the electrons are completely
delocalized on the indolinone and indazole rings. These
observations confirm the obtained results from molecular
docking.

Molecular electrostatic potential

The molecular electrostatic potential (MEP), V(r), at a given
point r(x, y, z) located in the neighborhood of a molecule
can be defined in terms of the interaction energy between

Fig. 4 Structure−activity
relationship revealed by 3D-
QSAR and docking studies
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Table 4 Structures and predicted pIC50 values of newly designed
derivatives in SYBYL 7.3

N
H

O

NH

N

OMe

Ar

Compd. no. Substituent Predicted
pIC50

Ar CoMFA

DM1 10.174

DM2 10.582

DM3 9.811

DM4 9.546

DM5 10.008

Table 4 continued

DM6 9.796

DM7 9.804

DM8 9.806

DM9 10.054

DM10 10.186

DM11 9.914

DM12 9.611
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the electrical charge generated from the molecule electrons
and nuclei as well as a positive test charge (a proton) placed
at r. The V(r) values for the system studied were calculated
employing the equation (Politzer and Murray, 2002)

V rð Þ ¼
X

ZA= RA � rj j � ρðr′Þ= r′� rj jd3r′

where ZA is the charge of nucleus A located at RA, ρ(r′) is
the electronic density function of the molecule, and r′ is the
dummy integration variable.

The molecular electrostatic potential is related to the
electronic density and can also be used as a highly bene-
ficial descriptor for the determination of sites for electro-
philic attack and nucleophilic reactions as well as hydrogen-
bonding interactions (Kaufman, 1979; Pomelli et al., 2001).
The electrostatic potential V(r) is also well-suited for ana-
lyzing processes based on the recognition of one molecule
from another one as in drug–receptor and enzyme substrate
interactions, since it is through their potentials that the two
species first ‘see’ each other (Politzer et al., 1985). Defined
as a real physical property, V(r) can be determined experi-
mentally by diffraction or by computational methods
(Politzer et al., 1981).

MEP was calculated at the B3LYP/6-31G (d, p) opti-
mized geometry so that it was possible to anticipate reactive
sites for electrophilic and nucleophilic attack for the title
molecule. As shown in Fig. 7, the two regions namely
negative (red) and positive (blue) were related to electro-
philic and nucleophilic reactivity respectively. As can be
seen from the figure, the negative region for electrophilic
attack is on the oxygen of indolinone with red color. This
oxygen is H-bond acceptor from GLU95 and ARG98 in
molecular docking.

Fig. 5 The best docked conformation of the most active compounds
(compound 32), in the binding site of PLK4

Fig. 6 The HOMO and LUMO
orbitals and the energy levels for
the most active molecule (32)
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ADMET analysis

Analyzing the predicted ADMET properties provided the
chance for their more optimization. Therefore, we should
modify the structure of indolinone to improve the solubility
and permeability. Analyzing pharmacokinetic parameters
necessary for ADMET (skin-permeability coefficient (log
Kp), apparent Caco-2 and MDCK permeability (the higher

the value of MDCK cell, the higher the cell permeability),
log BB, aqueous solubility (log S), maximum of transdermal
transport rate (Jm), human oral absorption in the gastro-
intestinal tract (GI), log Khsa for serum protein binding,
log P for octanol/water) were computed using QikProp
3.2 shown in acceptable range (Table 5). Furthermore, they
all show drug-like properties according to Lipinski’s rule of
five (Lipinski et al., 2012). Log P for octanol/water shows

Fig. 7 Molecular electrostatic
potential map (in a.u.) of the
most active molecule (32)

Table 5 Prediction of ADME properties of hits using Qikprop

Descriptors Dm1 Dm2 Dm3 Dm4 Dm5 Dm6 Stand. range[a]

Apparent Caco-2 permeability (nm/s) 183 182 182 733 390 412 <25 poor, >500 great

Apparent MDCK permeability (nm/s) 87 87 87 353 179 189 <25 poor, >500 great

Jm (max. transdermal transport rate) 0 0 0 0 0 0 µg/cm2 h

log S (aqueous solubility) −4.719 −5.191 −4.799 −6.336 −4.607 −6.033 −6.5/0.5

% Human oral absorption in GI (±20 %) 84 88 84 100 100 94 <25 % is poor

log BB for brain/blood −0.922 −0.904 −0.930 −1.309 −1.440 −1.572 −3.0/1.2

logKhsa (serum protein binding) 1.087 1.087 1.102 1.376 0.708 1.125 −1.5/1.5

log P for octanol/water 5.097 5.710 5.091 6.225 4.291 5.617 −2.0/6.5

Skin-permeability coefficient (log Kp) −3.649 −3.699 −3.780 −1.562 −2.332 −1.549 −8.0 to −1.0, Kpin cm/h

Descriptors Dm7 Dm8 Dm9 Dm10 Dm11 Dm12 Stand. range[a]

Apparent Caco-2 permeability (nm/s) 237 227 735 451 374 409 <25 poor, >500 great

Apparent MDCK permeability (nm/s) 104 99 355 209 157 188 <25 poor, >500 great

Jm (max. transdermal transport rate) 0 0 0.001 0 0 0.001 µg/cm2h

log S (aqueous solubility) −4.324 −5.391 −5.223 −4.816 −4.659 −4.485 −6.5/0.5

% Human oral absorption in GI (±20 %) 91 97 96 100 100 100 <25 % is poor

log BB for brain/blood −1.784 −1.885 −1.124 −1.373 −1.595 −1.398 −3.0/1.2

logKhsa (serum protein binding) 0.504 0.802 1.019 0.805 0.676 0.690 −1.5/1.5

log P for octanol/water 3.761 4.694 5.218 4.558 4.296 4.273 −2.0/6.5

Skin-permeability coefficient (log Kp) −2.672 −2.169 −1.671 −2.190 −2.293 −2.252 −8.0 to −1.0, Kpin cm/h
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the partition coefficient, which is important for the estima-
tion of absorption and distribution of drugs within the body.
Partition coefficient for the compounds design ranged from
3.761 to 6.225, which is in the acceptable range of −2.0 to
6.5. Apparent Caco-2 permeability as a main parameter
governing drug metabolism and its access to biological
membranes, ranged from 82 to 355. The percentage of
human oral absorption calculated for the design molecules
was average to high. Also, the parameters for the risk
assessment of toxicity and pharmacological properties of
compounds design are in the acceptable range and con-
sidering these compounds as drugs is valid. As it can be
seen in Table 6, none of the designed compounds had the
risk of mutagenicity, tumorigenesis and irritating effects.

Conclusion

In this study, molecular docking and 3D-QSAR methods
were performed on a series of (E)-3-((1H-indazol-6-yl)
methylene) indolin-2-ones derivatives as PLK4 inhibitors to
explore the structure–activity relationship. The good pre-
dictive ability of CoMFA and CoMSIA observed for the test
set of compounds indicates that these models could be
successfully used for predicting the pIC50 values. In addi-
tion, the CoMFA and CoMSIA contour maps along with the
docking results can provide us with more useful insight into
understanding the interaction between ligand and target.
They assist to design new potent candidates.
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