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Abstract Quantitative structure–activity relationship

(QSAR) studies were performed on a series of 21 thiazo-

lidine-2,4-dione derivatives to find the structural require-

ments for PIM-2 kinase inhibitory activity by two-

dimensional (2D-QSAR), group-based (G-QSAR) and

three-dimensional (3D-QSAR) studies. In the present

study, widely used technique viz. stepwise forward–back-

ward (SW-FB) has been applied for the development of

2D- and G-QSAR as variable selection method. The sta-

tistically significant best 2D-QSAR model was developed

by partial least squares regression (PLSR) having

r2 = 0.78, q2 = 0.63 with pred_r2 = 0.78. The statistically

significant best G-QSAR model was developed by PLSR

method having r2 = 0.89, q2 = 0.79 and pred_r2 = 0.82.

The 3D-QSAR studies were performed by k-nearest

neighbor molecular field analysis along with genetic

algorithm method which showed q2 = 0.64 and

pred_r2 = 0.94. A docking study revealed the binding

orientations of these inhibitors at active site amino acid

residues (PHE 43, ASP 124, ASP 182 and GLU 83) of

PIM-2 enzyme (PDB ID: 3IWI). The results of this study

may be useful to (medicinal) chemists to design more

potent thiazolidine-2,4-dione analogs as PIM-2 kinase

inhibitors.

Keywords G-QSAR � kNN-MFA �
Thiazolidine-2,4-dione � 2D/3D QSAR �
PIM-2 kinase inhibitors � Anticancer

Introduction

PIM kinases play a key role in regulation of signaling

pathways via Janus kinase (JAK)/signal transducer and

activator of transcription (STAT) pathway including pro-

liferation, migration and metabolism. The PIM kinases act

as weak oncogenes when expressed as transgenes. How-

ever, their oncogenic potential increases significantly when

co-expressed with a strong oncogene such as c-Myc, a

transcription factor which plays an important role in cell

growth and differentiation (Forshell et al., 2011; Möröy

et al., 1991; Van Lohuizen et al., 1989; Zhang et al., 2008).

Evidence showed that PIM-1 and PIM-2 kinases are

overexpressed not only in hematologic malignancies such

as multiple myeloma, lymphomas and leukemia but also in

solid tumors such as prostate cancer. PIM-3 over expres-

sion caused for solid tumors in pancreatic, prostate, colon

and other organelles (Brault et al., 2010; Nawijn et al.,

2011). Therefore, the PIM kinases may be considered as a

potential target for cancer therapy. Furthermore, no severe

side effects have been observed after inhibiting all these

kinases in an experiment on mice (Mikkers et al., 2004).

Novel substituted benzylidene-1,3-thiazolidine-2,4-diones

(TZDs) have been identified as potent and highly selective

inhibitors of the PIM kinases (Dakin et al., 2012).

Heterocyclic compounds play an important role in

cancer chemotherapy particularly five-membered ring

heterocycles which contain three carbon atoms, one nitro-

gen atom and one sulfur atom, known as thiazoles are of

considerable interest in different areas of medicinal
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chemistry (Asati et al., 2014). TZD, one of the most

important heterocyclic systems, has therapeutic importance

and when combined with other heterocyclic rings it may

produce better anticancer activity.

In the literature, several TZDs have been synthesized

and evaluated for their anticancer activity. In the present

study, QSAR analysis was performed for 21 previously

synthesized 5-benzylidenethiazolidine-2,4-dione analogs

(Lee et al., 2014) to establishing quantitative relationship

between biological activity of derivatives and their struc-

tural/physicochemical properties. The aim of the present

work is to generate best predictive and validated 2D-, 3D-

and G-QSAR models which may help (medicinal) chemists

in designing and development of novel thiazolidine-2,4-

dione derivatives. In this work, widely used technique viz.

stepwise forward–backward (SW-FB) with partial least

square (PLS) analysis has been applied for the develop-

ment of 2D- and G-QSAR models as variable selection

method. The k-nearest neighbor (kNN) analysis with

genetic algorithm (GA) has been applied for the develop-

ment of 3D-QSAR model. The generated models may

provide insights into the influence of various interactive

fields on the activity and thus can help in designing and

forecasting the inhibitory activity of novel anticancer

agents.

Materials and methods

Data set

Molecular modeling studies (2D-, 3D- and G-QSAR) were

performed using the VLife Molecular Design Suite (MDS

4.4). Selected data set and their biological activity are

given in Table 1 where R1 and R2 are various substituents.

Biological data presented as IC50 (lM) were converted into

log (1/IC50) or pIC50 for computational work.

Molecular modeling for 2D-QSAR

The molecular structures of all the 21 compounds were

built in 2D builder module using VLife MDS 4.4 software.

These 2D structures were converted to 3D and saved in

.mol2 format for the development of QSAR models. All the

compounds were batch optimized using standard Merck

molecular force field (MMFF) and Gasteiger–Marsili

charge followed by taking into account distance-dependent

dielectric constant at 1.0, convergence criterion or root-

mean-square (RMS) gradient at 0.01 kcal/mol Å and the

iteration limit to 10,000 (Halgren, 1996; Ghosh and Bag-

chi, 2009; Sahu et al., 2011). The most stable structure for

each compound was generated and used for the calculation

of various 2D descriptors such as physicochemical and

Baumann alignment-independent topological descriptors

(Baumann, 2002). The energy-minimized geometry was

used for the calculation of the various 2D descriptors

including individual, Chi, ChiV, path count, ChiChain,

ChiVChain, chain path count, cluster, path cluster, kappa,

element count, estate number, estate contribution, semi-

empirical and polar surface area. Alignment-independent

descriptors used ‘‘T-attribute’’ which characterize the

topology of the molecule. In this study to calculate align-

ment-independent descriptors, we have used following

attributes, 2 (double bonded atom), 3 (triple bonded atom),

T (any), C, N, O, S, H, F, Cl, Br and I; the distance range of

0–7 was considered as independent variables. Preprocess-

ing of the independent variables (i.e., descriptors) was done

by removing the invariables (descriptors that are constant

for all the molecules), which resulted in 212 descriptors in

the descriptor pool.

In order to evaluate the QSAR model externally, data

sets were divided into training and test set using random

selection method, manual data selection method and sphere

exclusion methods. Training sets are used as known bio-

logical activity data in QSAR model development. Test set

is used to evaluate the QSAR model which has been

developed by training set. Data set selected randomly given

best 2D-QSAR results included five compounds; namely,

4, 6, 8, 16 and 18 were used as test set for model 1 while

remaining 16 molecules were used as the training set

(Table 1). In order to assess the similarity of the distribu-

tion pattern of the molecules in the generated sets, statis-

tical parameters (with respect to the biological activity),

i.e., mean, maximum, minimum and standard deviation

were calculated for the training and test sets (Table 2). For

the prediction statistics to be reliable, the test set must

include at least four compounds (Golbraikh and Tropsha,

2002).

Molecular modeling for group-based QSAR

(G-QSAR)

G-QSAR addresses the challenges of QSAR model inter-

pretation and the inverse QSAR problems. Group-based

QSAR allows establishing a correlation of chemical group/

fragment variation at different molecular sites of interest

with the biological activity. Group-based QSAR method

(Ajmani et al., 2009) comprises of three steps: (a) genera-

tion of molecule fragments using a set of predefined

chemical rules, (b) calculation of descriptors for the gen-

erated fragments and (c) building statistical models using

the calculated fragment descriptors and their interactions.

G-QSAR method deals with the molecular fragments

rather than the whole molecule. The fragment descriptors

and their interactions are related to the biological activity,

resulting in model(s) that highlight important substitution
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Table 1 Structure and PIM-2 inhibitory activity (pIC50) of thiazolidine-2,4-dione derivatives

S NHR1

O

O

N
N

R2

S. no. R1 R2 pIC50 (lM)

1 OH
OX

8.03

2 OH
OX

7.84

3 H
OX

7.01

4 OH –O(CH2)2NMe2 8.66

5 H –O(CH2)2NMe2 7.49

6 OH –O(CH2)3NMe2 8.77

7 H –O(CH2)3NMe2 7.77

8 OH –NH(CH2)2NMe2 8.74

9 H –NH(CH2)2NMe2 8.24

10 OH –NH(CH2)3NMe2 8.68

11 H –NH(CH2)3NMe2 7.98

12 OH
N NX 7.80

13 H
N NX

7.88

14 OH –O(CH2)2NEt2 8.66

15 OH –O(CH2)3NEt2 8.68

16 OH
NOX

8.55

17 OH

N O
OX

8.05

18 OH –NH(CH2)2NEt2 8.55

19 OH –NH(CH2)3NEt2 8.79

20 OH –N(Me)(CH2)2NMe2 8.05

21 OH –N(Me)(CH2)2NEt2 7.49

X Position of attachment of R2 group
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site(s) along with their chemical nature and interactions.

The suggested important fragments can be used as the

building blocks to design novel molecules (Ajmani et al.,

2010). For group-based QSAR analysis, various 2D

descriptors were calculated for various groups present at

different substitution sites of the molecules (i.e., fragment

R1 and R2). The removal of the invariable group descriptors

resulted in a total of 280 group descriptors which can be

used for further analysis. Since the same descriptors are

calculated for various groups at different sites, the fol-

lowing nomenclature is used for naming a descriptor at a

particular position; for example R1-XAMostHydrophobic

descriptor signifies most hydrophobic value on the van der

Waals (vdW) surface present at substitution site R1 (Aj-

mani et al., 2010).

In G-QSAR, five compounds, namely 2, 4, 11, 16 and

18, were used as test for the development of model 2. For

determining the distribution patterns of molecules different

parameters such as mean, maximum, minimum and stan-

dard deviation were calculated for the training and test sets

(Table 2). Partial least squares regression (PLSR)

methodology coupled with feature selection method, viz.

SW-FB, was used for model development. This was further

validated for statistical significance and predictive ability

by internal and external validation for building quantitative

G-QSAR models (Hasegawa et al., 1999; Wold, 1995).

Molecular modeling for 3D-QSAR

For 3D-QSAR, molecular modeling has been done by a

process including alignment of molecules, descriptor gen-

eration with the selection of training and test set and

development of model.

Alignment of molecules

The 3D-QSAR studies were performed using VLife

Molecular Design Suite software. In this study, molecules

of the data set are aligned by template-based method (Aj-

mani et al., 2006). In this method, a template structure is

defined and used as a basis for alignment of a set of

molecules. The template structure, i.e., 5-(3-pyrazin-2-yl

benzylidene)-1,3-thiazolidine-2,4-dione is used for align-

ment by considering common elements of the series and is

shown in Fig. 1. The reference molecule compound 19 has

been chosen in such a way that it is the most active among

the series of molecules. Reference molecule is chosen on

which the other molecules of the data set get aligned

considering the chosen template. After optimizing, the

template structure and reference molecule were used to

superimpose all molecules. The superimposition of all

molecules based on minimizing root-mean-square devia-

tion (RMSD), shown in Fig. 2.

Generation of field descriptors

The results of molecular field analysis (MFA) may provide

predictive and sufficiently reliable information to medici-

nal chemist for design and development of novel anticancer

Table 2 Unicolumn statistics of the training and test sets for thiazolidine-2,4-dione derivatives in different generated models

Data set Average Max. Min. SD Sum

2D-QSAR MODE-1

Training 8.03 8.80 7.02 0.50 128.54

Test 8.64 8.74 8.55 0.084 43.19

G-QSAR MODE-2

Training 8.13 8.80 7.02 0.55 130.14

Test 8.32 8.66 7.84 0.38 41.59

3D-QSAR MODE-3

Training 8.13 8.80 7.02 0.53 130.13

Test 8.32 8.74 7.80 0.46 41.60

Fig. 1 5-(3-Pyrazin-2-yl benzylidene)-1,3-thiazolidine-2,4-dione

ring as a template
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agents. This approach is effective for the analysis of data

sets, where activity information is available but the struc-

ture of the receptor site is unknown. It attempts to postulate

and represent the essential features of a receptor site from

the aligned common features of the molecules that bind to

it. The MFA calculates probe interaction energies on a

rectangular grid around a bundle of active molecules. The

atomic coordinates of the contributing models were used to

compute field values on each point of a 3D grid. Fields of

molecules were represented using grids and energy asso-

ciated with each grid point which can serve as input for the

calculation of 3D-QSAR. These energies are added to the

study table to form new columns headed according to the

probe type. The molecular field is created using methyl

group as probe, which represent steric, electrostatic and

hydrophobic fields, respectively. For calculation of field

descriptor values electrostatic, steric and hydrophobic

fields with cutoff values 10.0 and 30.0 kcal/mol, respec-

tively, were selected and charge was selected as Gasteiger

and Marsili (Shen et al., 2003). The dielectric constant was

set to 1.0 considering the distance-dependent dielectric

function. Probe setting was carbon atom with charge 1.0.

This resulted in calculation of 4711 field descriptors

(electrostatic, steric and hydrophobic) for all the com-

pounds in separate columns after removing descriptors

having zero values or same values. Data set selected

manually given best result in which five compounds,

namely 2, 4, 8, 12 and 18, were used as test set while the

remaining 16 molecules as the training set. The unicolumn

statistics has been given in Table 2.

Model development

3D-QSAR model development was performed using k-

nearest neighbor MFA (kNN-MFA) methodology which

relies on a simple distance learning approach whereby an

unknown member is classified according to the majority of

its kNNs in the training set (Ajmani et al., 2006; Sharaf

et al., 1986). The nearness is measured by an appropriate

distance metrics (e.g., a molecular similarity measure cal-

culated using field interactions of molecular structures).

Given a suitable distance metric a kNN algorithm only

requires that a suitable value of k be chosen. In many cases,

setting k to 1 provides reasonably good predictive perfor-

mance for classification purposes. In general, optimal val-

ues of k are obtained via trial and error. A more systematic

approach is to use a cross-validation scheme to obtain the

best value of k for a given data set. The kNN-MFA models

were developed by the using of GA approach where cross-

correlation limit set to 1.0 and the term selection criterion

set as r2. Some parameters such as population and number

of generations were set up to 100 and 500 correspondingly.

As some additional parameters, variance cutoff was set at

0.0, and scaling to autoscaling; additionally, kNN param-

eter setting was done within the range of 2–5 and the

prediction method was selected as the distance-based

weighted average.

Model evaluation and validation

This is done to test the internal stability and predictive

ability of the QSAR models. Internal validation was carried

out using ‘‘leave-one-out’’ (q2, LOO) method. The cross-

validated coefficient, q2, was calculated using the follow-

ing Eq. 1:

q2 ¼ 1 �
P

yi � ŷið Þ2

P
yi � ymeanð Þ ð1Þ

where yi and ŷi are the actual and predicted activity of the

ith molecule in the training set, respectively, and ymean is

the average activity of all molecules in the training set. For

external validation, activity of each molecule in the test set

was predicted using the model generated from the training

set. The pred_r2 value is calculated by using Eq. 2

Pred r2 ¼ 1 �
P

yi � ŷið Þ
P

yi � ymeanð Þ2
ð2Þ

where yi and ŷi are the actual and predicted activity of the

ith molecule in the test set, respectively, and ymean is the

average activity of all molecules in the training set.

The robustness of the QSAR models for experimental

training sets was examined by comparing these models to

those derived for random data sets. Random sets were

Fig. 2 Template-based alignment of all the 21 thiazolidine-2,4-dione

derivatives
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generated by rearranging biological activities of the train-

ing set molecules. The significance of the models hence

obtained was derived based on calculated Z score. Z score

can be defined as the absolute difference between the value

of the model and the activity field, divided by the square

root of the mean square error of the data set Eq. 3

ZScore ¼
q2

org � q2
a

q2
std

: ð3Þ

The developed QSAR models were evaluated using the

following statistical measures: r2 (coefficient of

determination), q2 (cross-validated r2 by LOO), pred_r2

(r2 for external test set), F test (Fischer’s value for

statistical significance), Zscore (Zscore calculated by q2 in the

randomization test), best_ran_q2 (highest q2 value in the

randomization test), a (statistical significance parameter

obtained by the randomization test), r2_se (SEE, standard

error of estimate of the model) q2_se (CV_SE, standard

error of cross-validation) and pred_r2se (pred_SE, standard

error of external test set prediction). However, a QSAR

model is considered to be predictive, if the following

conditions are satisfied: r2[ 0.6, q2[ 0.6 and

pred_r2[ 0.5.

Molecular docking

Molecular docking study was performed by using Auto-

Dock Vina which gives the binding mode prediction

accurately. It has been tested against a virtual screening

benchmark and was found to be better than other programs.

Some important attributes for ligand and macromolecular

receptor are essential before doing the docking and fol-

lowing the proceeding sequence (Trott and Olson, 2010).

For ligand, (1) add all hydrogens, compute Gasteiger

charges and merge non-polar H, (2) ensure total charge

corresponds to tautomeric state, (3) choose torsion tree root

and rotatable bonds. For macromolecule, (1) add all

hydrogens, compute Gasteiger charges and merge non-

polar H, (2) assign Stouten atomic solvation parameters,

(3) create flexible residues PDBQT in addition to the rigid

PDBQT file.

The final evaluation was performed to get docking

score. Each docking produced multiple docked conforma-

tions of the ligand as well as corresponding binding energy

scores which were computed using AutoDock scoring

function (Seeliger and Groot, 2010). The conformations

were ranked based on the scores; a lower scoring confor-

mation was ranked higher. Since an experimentally derived

conformation of the bound ligand (true conformation) is

available, for each docked conformation of the ligand, a

RMSD value was also computed. The RMSD value mea-

sures the distance between the docked conformation and

the true conformation (Chang et al., 2010; Osterberg et al.,

2002). The conformations were also ranked based on the

RMSD values, a conformation with lower RMSD value

was ranked higher. AutoDock generated different file for-

mat that loaded in python molecular viewer (PyMOL) and

visualized different binding site properties which may

provide valuable insights for structure-based drug design.

A RMSD value inferior or close to 2 Å was considered as a

successful docking (Stigliani et al., 2012).

Results and discussion

In this study, biological activity (pIC50) was used as

dependent variable, and various physiochemical, topolog-

ical and 3D descriptors have been taken as independent

variable. A data set of 21 compounds was divided into

training (16 molecules) and test sets (five molecules) using

random selection method. The care was taken in such a

way that biological activities of all compounds in test set

lie within the maximum and minimum value range of

biological activities of training set of compounds. A uni-

column statistics for training set and test set were generated

to check correctness of selection criteria for trainings and

test set molecules (Table 2). After regression analysis, the

best models were selected, on the basis of r2, q2 and

pred_r2 values (Table 3).

The model generated in 2D-QSAR study through PLSR

analysis coupled with SW-FB variable selection method

has been presented in Table 4. It reveals that Baumann’s

alignment-independent topological descriptors have a

major contribution in explaining the variation in activity. In

general, a descriptor T_X_Y_Z can be defined as a count of

fragments formed with atom types X and Y separated by

topological distance of Z bonds. The definitions for the

descriptors that were found in the developed 2D-QSAR

models are given below.

H-DonorCount Number of hydrogen bond donor atoms.

T_C_O_5 This is the count of number of carbon atoms

(single double or triple bonded) separated from any

oxygen atom (single or double bonded) by five bond

distance in a molecule.

T_2_C_6 This is the count of number of double bounded

atoms (i.e., any double bonded atom, T_2) separated

from carbon atom by 6 bonds.

The descriptors obtained in the best 2D model suggested

that number of hydrogen bond donor groups (*40 %) such

as –OH contributed significant role in anticancer activity.

The positive contribution of this showed that increase in

the values would be beneficial for the anticancer activity of

thiazolidine-2,4-dione derivatives. Alignment-independent

1334 Med Chem Res (2016) 25:1329–1339
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descriptor T_C_O_5 (*25 %) with positive contribution

showed that increase in the number of carbon atoms sep-

arated from oxygen atom would be beneficial for activity.

Another alignment-independent descriptor T_2_C_6 (neg-

ative *35 %) showed that minimum number of double

bounded atoms separated from carbon is beneficial for

activity. The inter-correlation matrix between four

descriptors with the biological activity for the models 1 is

presented in Table 5. Comparative observed and predicted

activities of thiazolidine-2,4-dione derivatives by the best

2D-QSAR model are presented in Table 6. Contribution

plot of descriptor for models 1 is depicted in Fig. 3a. The

graph of actual versus predicted activity for the PLSR

analysis is shown in Fig. 3b.

In order to gain insight into the influential molecular

part(s) responsible for the variation in activity, G-QSAR

model was developed by fragment descriptors and their

interactions (Tables 3, 4). Contribution plot of descriptors

for model 2 is presented in Fig. 4a. The graph of actual

versus predicted activity for the PLSR analysis is shown

in Fig. 4b. Inter-correlation matrix between descriptors

with the biological activity for the model 2 is presented

in Table 5. Comparative observed and predicted activities

of thiazolidine-2,4-dione derivatives by best G-QSAR

model are presented in Table 6. The definitions for the

descriptors in the developed G-QSAR models are given

below.

R2-Average-vePotential This descriptor signifies the

average of the total positive electrostatic potential on

van der Waal’s surface area of the molecule at R2.

R1-PolarSurfaceAreaExcludingPandS This descriptor

signifies total polar surface area excluding phosphorous

and sulfur at R1.

R1-T_T_O_2 The descriptor T_T_O_2 indicates that the

presence of substituent with direct attachment of carbon

on aromatic ring (i.e., –COOH) is favorable for the

activity at R1.

R1-MomInertiaY This descriptor signifies moment of

inertia at Y-axis of R1.

The most contributing descriptors in part R1 with posi-

tive coefficient values are PolarSurfaceAreaExclud-

ingPandS (*32 %), so increasing the polar surface area at

R1 portion may influence the anticancer activity. Other

descriptors at R1 position with negative coefficient values

are MomInertiaY (negative *22 %) and T_T_O_2 (neg-

ative *22 %). These descriptors indicated that direct

attachment of carbon group to R1 position may decrease

the anticancer activity. The descriptor such as R2 Average-

vePotential (negative *26 %) was found to be inversely

proportional to the activity. This indicates that group such

as –NH(CH2)3NEt2 which decreases in the average of the

total positive electrostatic potential on van der Waal’s

surface area at R2 may lead to an increase in the activity.

Table 3 Statistical results of best QSAR models of thiazolidine-2,4-dione derivatives

S. no. Statistical parameter 2D-QSAR G-QSAR 3D-QSAR

(Model 1) (Model 2) (Model 3)

1 r2 0.78 0.89 –

2 q2 0.63 0.79 0.64

3 pred_r2 0.78 0.82 0.94

4 r2_se 0.24 0.20 –

5 q2_se 0.31 0.28 0.32

6 pred_r2se 0.33 0.18 0.13

7 F_test 50.29 32.54 –

8 Zscore 3.75 3.32 –

9 Best-rand_q2 0.50 0.44 –

10 a_rand_q2 0.001 0.001 –

12 ntraing 16 16 16

Table 4 List of predictive 2D and GQSAR models generated from various regression methods

Model no. Method Equation

01 2D/Random/PLSR/SW-FB IC 50 = ?0.5176 H-DonorCount - 0.1512 T_2_C_6 ? 0.0762 T_C_O_5 ? 11.8500

02 G-QSAR/Random/PLSR/SW-FB IC 50 = -7.8212 R2-Average-vePotential ? 0.0729 R1-PolarSurfaceAreaExcludingPandS

- 0.2932 R1-T_T_O_2 - 0.0001 R1-MomInertiaY ? 6.6138
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Table 5 Correlation matrix for descriptors used in different models

H-DonorCount T_2_C_6 T_C_O_5

Model 1

H-DonorCount 1.000 -0.119 0.170

T_2_C_6 -0.119 1.000 0.009

T_C_O_5 0.170 0.009 1.000

R2-Average-vePotential R1-PolarSurfaceAreaExcludingPandS R1-T_T_O_2 R1-MomInertiaY

Model 2

R2-Average-vePotential 1 -0.086 0.074 -0.316

R1-PolarSurfaceAreaExcludingPandS -0.086 1 0.245 0.346

R1-T_T_O_2 0.074 0.245 1 -0.197

R1-MomInertiaY -0.316 0.346 -0.197 1

S_556 E_849 S_1381

Model 3

S_556 1.000 0.344 -0.054

E_849 0.344 1.000 -0.655

S_1381 -0.054 -0.655 1.000

Table 6 Comparative observed and predicted activities of thiazolidine-2,4-dione derivatives by best QSAR models

Compounds Exp. pIC50 (Ma) 2D-QSAR G-QSAR 3D-QSAR

PLSR PLSR kNN

1_opt.mol2 8.03 8.13 7.98 8.11

2_opt.mol2 7.84 7.82 7.86 7.77

3_opt.mol2 7.01 7.15 7.17 7.66

4_opt.mol2 8.66 8.43 8.38 8.72

5_opt.mol2 7.49 7.76 7.67 7.23

6_opt.mol2 8.77 8.58 8.76 8.67

7_opt.mol2 7.77 7.91 7.61 8.11

8_opt.mol2 8.74 8.79 8.99 8.67

9_opt.mol2 8.24 8.12 8.23 7.9

10_opt.mol2 8.68 8.79 8.82 8.43

11_opt.mol2 7.98 8.12 8.07 8.07

12_opt.mol2 7.80 7.97 7.96 7.92

13_opt.mol2 7.88 7.30 7.70 8

14_opt.mol2 8.66 8.28 8.29 8.72

15_opt.mol2 8.68 8.58 8.72 8.72

16_opt.mol2 8.55 8.05 8.47 8.74

17_opt.mol2 8.05 8.35 8.10 7.77

18_opt.mol2 8.55 8.49 8.76 8.74

19_opt.mol2 8.79 8.79 8.51 8.37

20_opt.mol2 8.05 7.97 7.95 7.76

21_opt.mol2 7.49 7.67 7.68 8.05

a Molar concentration
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The 3D-QSAR models were selected on the basis of

statistical parameters and the values of the best model 3

having q2 = 0.64 and pred_r2 = 0.94 (Table 3). The

comparative observed and predicted activities of thiazo-

lidine-2,4-dione derivatives by best QSAR models is pre-

sented in Table 6. The graphs of actual verses predicted

activity for the series are plotted in Fig. 5 for model 3

which showed good correlation coefficient. Inter-correla-

tion matrix between descriptors with the biological activity

for the models 3 is presented in Table 5.

In 3D-QSAR studies, 3D data points generated around

thiazolidine-2,4-dione pharmacophore in model 3 are

S_556 (-0.0929 -0.0812), S_1381 (-0.3207 -0.3034)

and E_849 (0.2828 0.3184), that is, steric and electrostatic

interaction field at lattice points 556, 1381 and 849,

respectively (Figs. 6, 7). This helps in identification of

various molecular features responsible for variation of

activity and hence aid in design of novel anticancer agents.

The steric descriptor such as S_556 and S_1381 with

negative coefficients showed a region where bulky sub-

stituents are disfavored for activity. Electrostatic field

descriptor such as E_849 with positive coefficient repre-

sents regions where electropositive (electron-withdrawing)

groups are favorable for activity. The model is validated by

predicting the biological activities of the test molecules, as

indicated in Table 6.

Fig. 3 a Contribution plot

between selected descriptors for

model 1, b fitness plot between

actual and predicted activities

for model 1

Fig. 4 a Contribution plot

between selected descriptors for

model 2, b fitness plot between

actual and predicted activities

for model 2

Fig. 5 Fitness plot between actual and predicted activities for model 3
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Binding mode analysis by molecular docking

The intermolecular interaction between ligand and target

PIM-2 kinase was confirmed by docking study. The most

active compound 19 showed significant interaction with

receptor and bound with different amino acid residues such

as PHE-43, GLU-83, ASP-182 and ASP-124 of PIM-2

kinase through hydrogen bonds (Fig. 8). The hydrogen

bond distance from PHE-43 to carbonyl, GLU-83 to car-

bonyl, GLU-83 to hydrogen, ASP-182 to carbonyl and

ASP-124 to –NH groups were found to be 3.0, 3.1, 1.9, 3.3

and 2.0 Å, respectively. The conformations of the most

active compound were ranked on the basis of RMSD val-

ues (Fig. 9). The lowest RMSD value was 2.266 Å with

-7.9 kcal/mol binding affinity which showed good inhi-

bitory activity against PIM-2 kinase.

Conclusions

In the present study, an attempt has been made to identify the

structural requirements of thiazolidine-2,4-dione derivatives

for potential anticancer activity. From 2D-, 3D- and G-QSAR

analysis, different models have been generated and the best

model may be used for the design of novel anticancer agent(s).

The descriptors generated in 2D-QSAR equation highlighted

the importance of thiazolidine-2,4-dione scaffold for anti-

cancer activity of compounds. The 2D-QSAR model indicates

that the descriptors are statistically significant and having high

correlation coefficient and reliable predictability. These

models generated various descriptors such as H-DonorCount,

T_2_C_6 and T_C_O_5 which contribute to biological

activity. The negative coefficient value of descriptors indi-

cated that a lower value leads to better anticancer activity.

Positive coefficient value of descriptors indicates that a higher

value leads to better anticancer activity. The results obtained

from G-QSAR generated various descriptors such as R2-

Average-vePotential, R1-PolarSurfaceAreaExcludingPandS,

R1-T_T_O_2 and R1-MomInertiaY which contribute to

Fig. 6 Contribution plot for steric and electrostatic interactions of all

compounds (model 3)

Fig. 7 Contribution plot for steric and electrostatic interactions of the

most active compound 19 in the selected series (model 3)

Fig. 8 Docking of compound 19 with PIM-2 kinase

Fig. 9 Conformations ranked based on the RMSD values
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biological activity. The G-QSAR study revealed that increase

in total polar surface area at R1 position and decrease in

Average-vePotential at R2 increase the anticancer activity.

The results obtained from 3D-QSAR studies were used to

optimize the electrostatic, steric and hydrophobic require-

ments around the thiazolidine-2,4-dione scaffold for enhanc-

ing the anticancer activity. The 3D-QSAR studies suggested

that the substituents with less bulky and more electropositive

groups around thiazolidine-2,4-dione core increase anticancer

activity. The results of the present work may be useful to

(medicinal) chemists to understand the relationship of struc-

tural/physiochemical parameters with biological activity. It

may be helpful to select suitable substituent(s) for the design

and development of more potent, effective and selective

anticancer agents.
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