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Abstract A series of 4-aryl/heteroaryl-4H-fused pyrans

was synthesized via multicomponent reaction in a mi-

crowave synthesizer. All the pyrans were evaluated for

in vitro xanthine oxidase inhibition. Structure–activity re-

lationship was also established. Among the series of 108

compounds, Compound 5n was the most potent displaying

remarkable inhibition against the enzyme with an IC50

value of 0.59 lM. Enzyme kinetic study was carried out

for the compound 5n to determine the type of inhibition.

The study revealed that the compound 5n was a mixed-type

inhibitor. Molecular modelling studies were also performed

to figure out the interactions of both the enantiomers of 5n

with the amino acid residues of the enzyme.
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Introduction

Oxidative hydroxylation of hypoxanthine and xanthine

catalysed by xanthine oxidase to produce uric acid and

reactive oxygen species leads to many diseases such as

gout and at least symptoms of diseases such as oxidative
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damage to the tissue (Sharma et al., 2014; Stockert et al.,

2002; Borges et al., 2002; Hille, 2006). Therefore, the se-

lective inhibition of XO may result in broad-spectrum

chemotherapeutic for gout, cancer, inflammation and ox-

idative damage (Borges et al., 2002; Hille, 2006; Pacher

et al., 2006). Allopurinol (Hille, 2006; Pacher et al., 2006),

2-alkyl hypoxanthines (Biagi et al., 2001; Robins et al.,

1985), pterin and 6-formylpterin (Oettl and Reibneggar,

1999) represent the class of purine-based xanthine oxidase

inhibitors. All these inhibitors have been successfully uti-

lized and have proved their inhibitory potential towards the

enzyme. However, these purine-based inhibitors have been

reported to be associated with Steven–Johnson syndrome

and worsening of renal function induced in some of the

patients (Borges et al., 2002; Hille, 2006; Pacher et al.,

2006). Keeping in view these side effects, our research

group has been actively involved in the design of some

non-purine xanthine oxidase inhibitors in the recent past

such as azaflavones (Nepali et al. 2011a, b), n-acetyl

pyrazolines (Nepali et al. 2011a, b), b-acetamido com-

pounds (Dhiman et al., 2012), naphthopyrans (Sharma

et al., 2014) and 4,6-diaryl/heteroarylpyrimidin-2(1H)-ones

(Shukla et al., 2014).

Polyfunctionalized 4H-pyrans have a unique role in

medicinal chemistry due to their wide range of biological

and pharmacological activities (Elnagdi et al., 1983;

Goldmann and Stoltefus, 1991). These compounds have

been utilized as anticancer agents, anticoagulants, spas-

molytics and antianaphylactics (Andreani and Lapi, 1960;

Bonsignore et al., 1993). 4H-Pyran derivatives containing

heterocyclic rings are extensively used for their pharma-

cological activities (Green et al., 1995; Sanchez et al.,

2012). Fused pyran derivatives also exhibit a wide spec-

trum of pharmacological activities and biological activities,

such as insecticidal (Uher et al., 1994), antiviral and an-

tileishmanial (Perez-Perez et al., 1995; Fan et al., 2010),

anticonvulsant and antimicrobial activities (Aytemir et al.,

2004). Also, many of them are non-peptide human im-

munodeficiency virus (HIV) protease inhibitors (Wang

et al., 1996; Pochet et al., 1996; Mazumder et al., 1996).

Pyrans are also an important structural motif in number of

non-purine xanthine oxidase inhibitors (Nepali et al.

2011a, b; Star and Marby, 1971; Cos et al., 1998). Cou-

marins and flavonoids represent the class of fused pyrans as

non-purine xanthine oxidase inhibitors (Nepali et al.

2011a, b; Cos et al., 1998; Da-Silva et al., 2004; Lin et al.,

2002). Both the classes have been extensively explored for

their xanthine oxidase inhibitory potential and insights

about the structure–activity relationship, and their interac-

tions with the amino acid residues of the enzyme have also

been figured out. Recently working on similar lines, our

research group synthesized and evaluated a series of

naphthopyrans for in vitro xanthine oxidase inhibition in

view of some of the potent non-purine xanthine oxidase

inhibitors possessing benzopyran skeleton. The potent in-

hibitory potential of some naphthopyrans was attributed to

the interactions of pyran ring as indicated by molecular

modelling studies (Sharma et al., 2014).

In continuation of our search for non-purine-based xan-

thine oxidase inhibitors (Dhiman et al., 2012; Nepali et al.

2011a, b; Sharma et al., 2014; Singh et al., 2014; Shukla

et al., 2014; Virdi et al., 2014) and motivated by the

promising xanthine oxidase inhibitory potential of naph-

thopyrans, the present study screens a library of fused pyrans

in diverse scaffolds for xanthine oxidase inhibition. A library

of 4-aryl/heteroaryl-4H-fused pyrans was synthesized and

evaluated against the enzyme. The type of inhibition and the

interactions of the most potent inhibitor with the amino acid

residues of the enzyme have also been figured out.

Results and discussion

Synthesis

A library of 4H-pyrans was synthesized as shown in

Scheme 1. The compounds were synthesized by exposing a

mixture of aromatic aldehyde, malononitrile, C–H-acti-

vated acidic compound and catalytic amount of DMAP to

microwave radiation in a microwave synthesizer operating

at 150 �C with the maximum microwave power of 400 W

(Scheme 1). The structures of the synthesized compounds

were elucidated by 1H NMR and 13C NMR. All spectral

data were in accordance with assumed structures.

In vitro xanthine oxidase assay

In vitro screening of the pyrans using bovine milk xanthine

oxidase (grade 1, ammonium sulphate suspension) enzy-

matic assay was performed as described in the literature

(Escribano et al., 1988; Takano et al., 2005). Allopurinol

(Pacher et al., 2006) was employed as reference inhibitor.

The molecules exhibiting % age inhibition of more than

80 % at 50 lM were further tested in triplicate for the

xanthine oxidase inhibitory activity to calculate the IC50

values. Among a series of 108 compounds, 41 compounds

were found to display a % age inhibition of [80 % and

were tested at different concentration against xanthine

oxidase (Table 1; Fig. 1). Compounds 5m and 5n dis-

played significant inhibitory potential with IC50 values, 0.9

and 0.59 lM, respectively (IC50 value of allopuri-

nol = 8.29 lM). Figure 2 shows interesting structure–ac-

tivity relationship for the inhibitory effects against the

enzyme. Careful observation of the IC50 values of the

compounds indicates that nature of Ring A and Ring C

remarkably influences the activity. Few generalizations

Med Chem Res (2015) 24:3334–3349 3335

123



about the structure–activity relationship are as follows: (1)

compounds with nitro- and halo-substituted Ring C (1g, 1j,

1s, 2s, 3g, 3j, 3s, 4g, 4j, 4s, 5g, 5j, 5s, 6g, 6j, 6s, 7g, 7j, 7s,

8g, 8j, 8s) exhibited significant inhibition, whereas com-

pounds with methoxy- and hydroxy-substituted phenyl

rings (1e, 1h, 1i, 1k, 1p, 1q, 2e, 2f, 2h, 2i, 2k, 2q, 3c, 3f,

3h, 3i, 3k, 3q, 3r, 4h, 4i, 5h, 5i, 5k, 5p, 5q, 6e, 6h, 6i, 6k,

6q, 7h, 7i, 8h, 8i) did not qualify for the evaluation at

different concentration (i.e. % age inhibition\80). (2) The

influence of placement of substitution was also evident

from Fig. 1 as compounds with para substituted phenyl

rings (halo and nitro groups) were the only one to pass the

initial screening at 50 lM by displaying % age inhibition of

[80 (1g, 1j, 1s, 2s, 3g, 3j, 3s, 4g, 4j, 4s, 5q, 5j, 5s, 6g, 6j,

6s, 7g, 7j, 7s, 8g, 8j, 8s). (3) The compounds with sub-

stituted phenyl rings (substitutions other than nitro and

halo, Ring C) were even less active than compounds

bearing unsubstituted phenyl ring (Ring C) (1a, 3a, 4a, 5a,

6a, 7a, 8a). (4) Replacement of phenyl rings with naphthyl

ring (compare 1a, 3a, 5a with 1l, 3l, 5l) resulted in decline

in the inhibitory potential of the compounds as naphthyl-

substituted (Ring C) inhibitors displayed % age inhibition

of \80 % and did not qualify for evaluation at different

concentrations. (5) Replacement of phenyl rings with het-

eroaryl rings (Ring C) resulted in drastic improvement in

the activity (compare 1a, 2a, 3a, 4a, 5a, 6a, 7a, 8a with

1m, 1n, 2n, 3m, 3n, 4n, 5m, 5n, 6n, 7n, 8m, 8n). (6)

Among the heteroaryl-substituted compounds (Ring C),

compounds with thiophenyl Ring C were more active than

the compound with furanyl ring (Ring C) (compare 1n, 3n,

5n, 8n with 1m, 3m, 5m, 8m). This could be attributed to

the higher aromatic character of thiophene ring as com-

pared to Furan ring. Overall the preference order for Ring

C is as follows: thiophene[ furanyl[ phenyl with halo

(preferable chloro at para position)[ phenyl with nitro

(para substituted). (7) Ring A also displayed significant

influence on the inhibitory potential. Coumarin-substituted

(Ring A) compounds were found to be the most active

(compare 5a with 1a, 2a, 3a, 4a, 6a, 7a, 8a). (8) Com-

pounds with bicyclic ring (Ring A) also displayed a sig-

nificant inhibitory potential higher than compounds with

monocyclic rings (compare 5a, 6a, 8a with 1a, 2a, 3a, 4a,

7a). (9) Both 1-naphthyl- and 2-naphthyl-substituted pyr-

ans (Ring A) displayed promising results; however, no

competition was observed between the activity profiles of

two. Overall the preference order for Ring A is as follows:

* C-H activated acidic compound in case of 3 was prepared from the reaction of hydrazine hydrate and ethyl acetoacetate. 

Scheme 1 Synthesis of 4H-

pyrans. *C–H-activated acidic

compound in case of 3 was

prepared from the reaction of

hydrazine hydrate and ethyl

acetoacetate
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coumarin[ 1-naphthyl = 2-naphthyl[ pyrazole[ cyclo-

hexanedione[ thiobarbituric acid[ barbituric acid[ 5,5-

dimethyl cyclohexanedione. Figure 2 represents the struc-

ture–activity relationship.

Compound 5n, the most active of the series with an IC50

value 0.59 lM, was further investigated for enzyme ki-

netics study and molecular modelling studies.

Enzyme kinetic study

Compound 5n was further investigated for the type of in-

hibition, and enzyme kinetics study was carried out. The

Lineweaver–Burk plot (Fig. 3) revealed that the compound

5n was mixed-type XO inhibitor. The pattern of graph

shows that it is a form of mixed inhibition scenario. The

Km, Vmax and slope are all affected by concentration of the

inhibitor. The inhibitor has increased the Km and slope

(Km/Vmax) while decreasing the Vmax. Moreover, Figure 3

shows that intersecting lines on the graph converge to the

left of the y-axis and above the x-axis which indicates that

the value of a (a constant that defines the degree to which

inhibitor binding affects the affinity of the enzyme for

substrate) is[1. Mixed-type inhibitors are those which are

capable of binding to both the free enzyme and the en-

zyme–substrate complex. However, keeping in view the

pattern of intersecting lines on the graph, it can be assumed

that the inhibitor preferentially binds to the free enzyme

and not the enzyme–substrate complex (Copeland, 2005).

Molecular modelling study

Molecular docking study was performed to get structural

insights into the binding behaviour of the potent compound

5n. A flexible docking study was performed using Gold

Software (GOLD 2012). Compound 5n has a chiral centre;

therefore, both R and S conformations of 5n were docked.

The binding poses with highest fitness score were selected,

and their binding interactions were studied.

The docking study reveals that S-enantiomer of 5n fits

well in the binding site, while R-enantiomer was not able to

get in the cavity (Fig. 4). The binding interactions of S-

enantiomer with highest score were studied. In binding

pose, S-enantiomer of 5n fits well in the binding cavity and

gets stabilized by various molecular interactions. The

chromene ring gets sandwiched in Phe914 and Phe1009

showing ‘‘face-to-face’’ and ‘‘edge-to-face’’ pie-stacking,

respectively. The carbonyl group of chromene ring was

found to involve in hydrogen bonding with Thr1010.

Another hydrogen bonding was observed between Glu802

and oxygen of 5n. The sulphur of thiophene ring was found

to be involved in van der Waals interactions with Ser876.

The above interactions provided an insight behind the in-

hibition of XO by 5n (Fig. 4).

Conclusion

Allopurinol, a well-known xanthine oxidase inhibitor, is a

competitive inhibitor and has been employed as standard

for the in vitro and in vivo studies over the years. However,

its use has been associated with some complications. The

Table 1 % age inhibition of the synthesized compounds at 50 lM

Code % age

inhibition

(50 lM)

Code % age

inhibition

(50 lM)

Code % age

inhibition

(50 lM)

1a 81 3i 38 5w 25

1b 62 3j 82 6a 87

1d 59 3k 45 6b 43

1e 42 3l 54 6d 61

1g 88 3m 84 6e 68

1h 55 3n 89 6g 82

1i 56 3o 44 6h 64

1j 84 3q 55 6i 41

1k 66 3r 52 6j 86

1l 42 3s 88 6k 47

1m 84 3t 79 6n 88

1n 89 3u 74 6q 63

1p 46 4a 83 6s 89

1q 59 4d 31 6v 35

1s 88 4g 84 7a 80

1u 43 4h 10 7d 46

1v 56 4i 63 7g 85

2a 68 4j 85 7h 32

2b 75 4n 90 7i 70

2e 35 4s 88 7j 81

2f 50 4u 37 7n 89

2g 73 4v 66 7s 83

2h 59 5a 89 7u 68

2i 37 5b 75 7v 70

2j 58 5g 89 8a 85

2k 23 5h 42 8b 33

2n 83 5i 37 8g 87

2q 63 5j 85 8h 66

2s 87 5k 34 8i 51

2v 26 5l 49 8j 83

3a 83 5m 93 8m 85

3b 45 5n 96 8n 87

3c 24 5o 66 8s 86

3d 62 5q 65 8v 44

3f 27 5s 90

3g 85 5p 52

3h 48 5v 15
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competitive inhibitors are basically purine-based struc-

tures, and the interactions of purine analogue XO inhibitors

with the activities of purine and pyrimidine metabolism

enzymes such as guanine deaminase, HGPRT (hypoxan-

thine–guanine phosphoribosyltransferase), PNP (purine

nucleoside phosphorylase), OPRT (orotate phosphoribo-

syltransferase) and OMPDC (orotidine-5-monophosphate

decarboxylase) leading to the hypersensitivity (Steven–

Johnson) a syndrome characterized by fever, skin rash,

hepatitis, leukocytosis with eosinophilia and worsening

renal function induced in some of the patients has basically
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Fig. 1 IC50 values of selected compounds (IC50 value of allopurinol = 8.29 lM)

O NH2

N

A B

C

PREFERENCE ORDER

RING A = coumarin > 1-naphthyl = 2-naphthyl > pyrazole > cyclohexanedione > thiobarbituric 
acid > barbituric > 5,5-dimethyl cyclohexanedione

RING C= thiophene > furanyl > phenyl with halo (preferable chloro at para position) > phenyl 
with nitro (para substituted)

Fig. 2 Structure–activity relationship
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encouraged us to focus on XO inhibitors with structurally

diverse and novel non-purine isosteres. Moreover, the

success of febuxostat has further motivated us to focus on

non-purine isosters. Febuxostat is a non-purine selective

inhibitor of xanthine oxidase. It works by non-com-

petitively blocking the molybdenum pterin centre which is

the active site on xanthine oxidase. Many long- and short-

term clinical trials have proved the efficacy of febuxostat in

the treatment of gout and lowering uric acid levels. In these

studies, febuxostat was found to be superior to allopurinol

in reducing the serum uric acid levels. Thus, all these

reasons have collectively led us to investigate non-com-

petitive chemical architectures for xanthine oxidase inhi-

bition. Keeping in view the success of some non-purine

xanthine oxidase inhibitors, a library of 4H-pyrans was

designed in the present study and the compounds were

evaluated for inhibitory effects against the enzyme xan-

thine oxidase. All the compounds were first screened at

50 lM, and the compounds displaying a % age inhibition of

[80 were further evaluated at different concentrations.

Structure–activity relationship revealed that Ring A as well

as Ring C remarkably influences the inhibitory potential.

The most potent compound 5n was investigated to explore

the type of inhibition it was exerting, and thus, enzyme

kinetics study was carried out on 5n. The Lineweaver–

Burk plot revealed that compound 5n was a mixed-type

inhibitor. The compound was studied for its interactions

with the amino acid residues. The 3D structural coordinates

of XO were obtained from protein databank (PDB ID:

1VDV) for the docking study. The docking study reveals

that S-enantiomer of 5n fits well in the binding site, while

R-enantiomer was not able to get in the cavity (Fig. 4). S-

enantiomer of 5n fits well in the binding cavity and gets

stabilized by various molecular interactions, i.e. ‘‘face-to-

face’’ and ‘‘edge-to-face’’ pie-stacking and hydrogen

bonding.

Experimental

The reagents were purchased from Sigma-Aldrich, Merck,

CDH, Loba chem., Spectro chem., India, and used without

further purification. All yields refer to isolated products

after purification. Biotage Microwave Synthesizer (Model:

Initiator) operating at 150 �C with the microwave power

maximum level of 400 W. Products were characterized by

spectral data. 1H NMR and 13C NMR spectra were

recorded on Bruker Avance II 500 NMR Spectrometer and

Fig. 3 Lineweaver–Burk plot
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JEOL AL 300 NMR Spectrometer. The spectra were

measured in DMSO-d6 relative to TMS (0.00 ppm).

Melting points were determined in open capillaries and

were uncorrected.

Experimental procedure for the synthesis of 4H-

pyrans (1, 2, 3, 4, 5, 6, 7, 8)

A mixture of aromatic aldehyde (1 mmol), malononitrile

(1 mmol), C–H-activated acidic compound (1 mmol) and

catalytic amounts of DMAP (5 mol%) in a 50-ml conical

flask was exposed to microwave radiation for 20 min in a

microwave reactor operating at 150 �C with the maximum

microwave power of 400 W. Cold methanol was added to

the reaction mixture, and the solid precipitates were filtered

off to obtain the desired product.

The structures of the synthesized compounds were elu-

cidated by 1H NMR and 13C NMR. All spectral data were

in accordance with assumed structures. In each occasion,

the spectral data (1H and 13C NMR) of known compounds

were compared with that reported in the literature.

2-Amino-5,6,7,8-tetrahydro-5-oxo-4-phenyl-4H-chro-

mene-3-carbonitrile (1a) (Yu and Da-Ming, 2012; Xu

et al., 2011), 2-amino-5,6,7,8-tetrahydro-4-(4-fluor-

ophenyl)-5-oxo-4H-chromene-3-carbonitrile (1b) (Yu

and Da-Ming, 2012), 2-amino-5,6,7,8-tetrahydro-4-(4-

bromophenyl)-5-oxo-4H-chromene-3-carbonitrile (1c)

(Yu and Da-Ming, 2012), 2-amino-5,6,7,8-tetrahydro-4-

(2-methoxyphenyl)-5-oxo-4H-chromene-3-carbonitrile

(1h) (Xu et al., 2011), 2-amino-5,6,7,8-tetrahydro-4-(4-

methoxyphenyl)-5-oxo-4H-chromene-3-carbonitrile (1i)

(Xu et al., 2011; Rostamnia and Morsali, 2014),

2-amino-5,6,7,8-tetrahydro-4-(4-nitrophenyl)-5-oxo-4H-

chromene-3-carbonitrile (1j) (Yu and Da-Ming, 2012;

Xu et al., 2011; Rostamnia and Morsali, 2014; Hosseini-

Monfared et al., 2013), 2-amino-5,6,7,8-tetrahydro-4-(4-

hydroxyphenyl)-5-oxo-4H-chromene-3-carbonitrile (1k)

(Xu et al., 2011), 2-amino-5,6,7,8-tetrahydro-4-(furan-2-

yl)-5-oxo-4H-chromene-3-carbonitrile (1m) (Xu et al.,

2011), 2-amino-5,6,7,8-tetrahydro-4-(3,4-dimethoxyphenyl)-

5-oxo-4H-chromene-3-carbonitrile (1q) (Yu and Da-Ming,

2012; Xu et al., 2011), 2-amino-5,6,7,8-tetrahydro-4-(4-

chlorophenyl)-5-oxo-4H-chromene-3-carbonitrile (1s) (Yu

and Da-Ming, 2012; Rostamnia and Morsali, 2014; Hosseini-

Monfared et al., 2013), 2-amino-5,6,7,8-tetrahydro-4-(3-ni-

trophenyl)-5-oxo-4H-chromene-3-carbonitrile (1v) (Xu et al.,

2011), 2-amino-5,6,7,8-tetrahydro-7,7-dimethyl-5-oxo-4-phe-

nyl-4H-chromene-3-carbonitrile (2a) (Kumar et al., 2009;

Sadegh and Ali, 2014; Yu and Da-Ming, 2012; Gao et al.,

2008; Hasaninejad et al., 2013; Jiang-Cheng et al., 2011;

Bihani et al., 2013; Khaksar et al., 2012; Banerjee et

al., 2011), 2-amino-5,6,7,8-tetrahydro-4-(4-fluorophenyl)-7,7-

dimethyl-5-oxo-4H-chromene-3-carbonitrile (2b) (Sadegh

and Ali, 2014; Gao et al., 2008; Khaksar et al., 2012),

2-amino-5,6,7,8-tetrahydro-4-(4-bromophenyl)-7,7-dimethyl-

5-oxo-4H-chromene-3-carbonitrile (2g) (Sadegh and Ali,

2014; Khaksar et al., 2012), 2-amino-5,6,7,8-tetrahydro-4-(2-

methoxyphenyl)-7,7-dimethyl-5-oxo-4H-chromene-3-carboni-

trile (2h) (Yu and Da-Ming, 2012; Jiang-Cheng et al., 2011),

2-amino-5,6,7,8-tetrahydro-4-(4-methoxyphenyl)-7,7-dime-

thyl-5-oxo-4H-chromene-3-carbonitrile (2i) (Kumar et al.,

2009; Jiang-Cheng et al., 2011; Bihani et al., 2013; Khaksar

et al., 2012; Banerjee et al., 2011), 2-amino-5,6,7,8-te-

trahydro-4-(4-nitrophenyl)-7,7-dimethyl-5-oxo-4H-chromene-

Fig. 4 a Binding poses of R-enantiomer (brown) and S-enantiomer

(green) in binding cavity of XO. b Binding interactions of S-

enantiomer of 5n (green) (Color figure online)
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3-carbonitrile (2j) (Kumar et al., 2009; Sadegh and Ali, 2014;

Yu and Da-Ming, 2012; Hasaninejad et al., 2013; Jiang-

Cheng et al., 2011; Bihani et al., 2013; Khaksar et al., 2012;

Banerjee et al., 2011), 2-amino-5,6,7,8-tetrahydro-4-(4-hy-

droxyphenyl)-7,7-dimethyl-5-oxo-4H-chromene-3-carbonitrile

(2k) (Gao et al., 2008; Jiang-Cheng et al., 2011; Banerjee

et al., 2011), 2-amino-5,6,7,8-tetrahydro-4-(thiophen-2-yl)-

7,7-dimethyl-5-oxo-4H-chromene-3-carbonitrile (2n) (Hasa-

ninejad et al., 2013), 2-amino-5,6,7,8-tetrahydro-4-(3,4-meth-

oxyphenyl)-7,7-dimethyl-5-oxo-4H-chromene-3-carbonitrile

(2q) (Sadegh and Ali, 2014; Jiang-Cheng et al., 2011),

2-amino-5,6,7,8-tetrahydro-4-(4-chlorophenyl)-7,7-dimethyl-

5-oxo-4H-chromene-3-carbonitrile (2s) (Sadegh and Ali,

2014; Yu and Da-Ming, 2012; Gao et al., 2008; Jiang-Cheng

et al., 2011; Bihani et al., 2013; Khaksar et al., 2012; Ban-

erjee et al., 2011), 2-amino-5,6,7,8-tetrahydro-4-(3-nitro-

phenyl)-7,7-dimethyl-5-oxo-4H-chromene-3-carbonitrile (2v)

(Kumar et al., 2009; Yu and Da-Ming, 2012; Jiang-Cheng

et al., 2011; Bihani et al., 2013; Khaksar et al., 2012; Ban-

erjee et al., 2011), 6-amino-2,4-dihydro-3-methyl-4-

phenylpyrano[2,3-c]pyrazole-5-carbonitrile (3a) (Ali and El-

Remaily, 2013; Paul et al., 2013; Bora et al., 2013; Bolligarla

and Das, 2011; Bihani et al., 2013), 6-amino-2,4-dihydro-4-

(4-fluorophenyl)-3-methylpyrano[2,3-c]pyrazole-5-carbonitrile

(3b) (Ali and El-Remaily, 2013; Bora et al., 2013), 6-amino-

2,4-dihydro-4-(3-hydroxyphenyl)-3-methylpyrano[2,3-c]pyra-

zole-5-carbonitrile (3c) (Bora et al., 2013), 6-amino-2,4-di-

hydro-4-(3-chlorophenyl)-3-methylpyrano[2,3-c]pyrazole-5-

carbonitrile (3d) (Ali and El-Remaily, 2013), 6-amino-2,4-

dihydro-4-(2-hydroxyphenyl)-3-methylpyrano[2,3-c]pyrazole-

5-carbonitrile (3f) (Ali and El-Remaily, 2013), 6-amino-2,4-

dihydro-4-(4-bromophenyl)-3-methylpyrano[2,3-c]pyrazole-5-

carbonitrile (3g) (Ali and El-Remaily, 2013; Paul et al., 2013;

Bora et al., 2013), 6-amino-2,4-dihydro-4-(4-methoxyphenyl)-

3-methylpyrano[2,3-c]pyrazole-5-carbonitrile (3i) (Ali and El-

Remaily, 2013; Paul et al., 2013; Bora et al., 2013; Bolligarla

and Das, 2011; Bihani et al., 2013), 6-amino-2,4-dihydro-4-(4-

nitrophenyl)-3-methylpyrano[2,3-c]pyrazole-5-carbonitrile (3j)

(Ali and El-Remaily, 2013; Bolligarla and Das, 2011; Bihani

et al., 2013), 6-amino-2,4-dihydro-4-(4-hydroxyphenyl)-3-

methylpyrano [2,3-c]pyrazole-5-carbonitrile (3k) (Ali and El-

Remaily, 2013; Bolligarla and Das, 2011; Bihani et al., 2013),

6-amino-2,4-dihydro-4-(naphthalen-2-yl)-3-methylpyrano[2,3-

c]pyrazole-5-carbonitrile (3l) (Bolligarla and Das, 2011; Bihani

et al., 2013), 6-amino-2,4-dihydro-4-(thiophen-2-yl)-3-

methylpyrano[2,3-c]pyrazole-5-carbonitrile (3n) (Paul et al.,

2013), 6-amino-2,4-dihydro-4-(3,4-dimethoxyphenyl)-3-

methylpyrano[2,3-c]pyrazole-5-carbonitrile (3q) (Bolligarla

and Das, 2011; Bihani et al., 2013), 6-amino-2,4-dihydro-4-

(4-chlorophenyl)-3-methylpyrano[2,3-c]pyrazole-5-carbonitrile

(3s) (Ali and El-Remaily, 2013; Bolligarla and Das, 2011;

Bihani et al., 2013), 6-amino-2,4-dihydro-4-(pyridin-4-yl)-3-

methylpyrano[2,3-c]pyrazole-5-carbonitrile (3t) (Colombo

et al., 2003), 2-amino-4,5-dihydro-5-oxo-4-phenylpyrano[3,2-

c]chromene-3-carbonitrile (5a) (Safaei et al., 2012; Jain et al.,

2013; Kidwai and Sexena, 2006), 2-amino-4,5-dihydro-4-(4-

bromophenyl)-5-oxopyrano[3,2-c]chromene-3-carbonitrile (5g)

(Safaei et al., 2012; Jain et al., 2013), 2-amino-4,5-dihydro-4-

(2-methoxyphenyl)-5-oxopyrano[3,2-c]chromene-3-carbonitrile

(5h) (Wang et al., 2010), 2-amino-4,5-dihydro-4-(4-methox-

yphenyl)-5-oxopyrano[3,2-c]chromene-3-carbonitrile (5i) (Jain

et al., 2013), 2-amino-4,5-dihydro-4-(4-nitrophenyl)-5-oxopy-

rano[3,2-c]chromene-3-carbonitrile (5j) (Jain et al., 2013),

2-amino-4,5-dihydro-4-(4-hydroxyphenyl)-5-oxopyrano[3,2-c]-

chromene-3-carbonitrile (5k) (Xiang-Shan et al., 2005; Kidwai

and Sexena, 2006; Gong et al., 2009), 2-amino-4,5-dihydro-4-

(furan-2-yl)-5-oxopyrano[3,2-c]chromene-3-carbonitrile (5m)

(Safaei et al., 2012; Jain et al., 2013), 2-amino-4,5-dihydro-4-

(thiophen-2-yl)-5-oxopyrano[3,2-c]chromene-3-carbonitrile

(5n) (Jain et al., 2013), 2-amino-4,5-dihydro-4-(1H-indol-2-

yl)-5-oxopyrano[3,2-c]chromene-3-carbonitrile (5o) (Abd-

El-Aziz et al., 2004), 2-amino-4,5-dihydro-4-(4-hydroxy-3-

methoxyphenyl)-5-oxopyrano[3,2-c]chromene-3-carbonitrile

(5p) (Bihani et al., 2013), 2-amino-4,5-dihydro-4-(4-chlor-

ophenyl)-5-oxopyrano[3,2-c]chromene-3-carbonitrile (5s) (Jain

et al., 2013; Kidwai and Sexena, 2006), 2-amino-4,5-dihydro-

4-(3-nitrophenyl)-5-oxopyrano[3,2-c]chromene-3-carbonitrile

(5v) (Jain et al., 2013), 2-amino-4,5-dihydro-4-(2-bro-

mophenyl)-5-oxopyrano[3,2-c]chromene-3-carbonitrile (5w)

(Wang et al., 2010), 2-amino-4-phenyl-4H-benzo[h] chromene-

3-carbonitrile (6a) (Bihani et al., 2013; Khurana et al., 2010),

2-amino-4-(4-fluorophenyl)-4H-benzo[h]chromene-3-car-

bonitrile (6b) (Khurana et al., 2010), 2-amino-4-(4-bro-

mophenyl)-4H-benzo[h]chromene-3-carbonitrile (6g) (Khurana

et al., 2010), 2-amino-4-(2-methoxyphenyl)-4H-benzo[h]-

chromene-3-carbonitrile (6h) (Maalej et al., 2012), 2-amino-

4-(4-methoxyphenyl)-4H-benzo[h]chromene-3-carbonitrile (6i)

(Bihani et al., 2013), 2-amino-4-(4-nitrophenyl)-4H-ben-

zo[h]chromene-3-carbonitrile (6j) (Bihani et al., 2013;

Khurana et al., 2010), 2-amino-4-(4-chlorophenyl)-4H-

benzo[h] chromene-3-carbonitrile (6s) (Bihani et al.,

2013; Khurana et al., 2010), 2-amino-4-(3-nitrophenyl)-

4H-benzo[h]chromene-3-carbonitrile (6v) (Bihani et al.,

2013; Khurana et al., 2010), 7-amino-2,3,4,5-tetrahydro-

2,4-dioxo-5-phenyl-1H-pyrano[2,3-d]pyrimidine-6-car-

bonitrile (7a) (Devi et al., 2003), 7-amino-5-(3-chlor-

ophenyl)-2,3,4,5-tetrahydro-2,4-dioxo-1H-pyrano[2,3-d]

pyrimidine-6-carbonitrile (7d) (Xiang-Shan et al., 2005),

7-amino-5-(2-methoxyphenyl)-2,3,4,5-tetrahydro-2,4-dioxo-

1H-pyrano[2,3-d]pyrimidine-6-carbonitrile (7h) (Safaei

et al., 2012), 7-amino-5-(4-nitrophenyl)-2,3,4,5-tetrahy-

dro-2,4-dioxo-1H-pyrano[2,3-d]pyrimidine-6-carbonitrile (7j)

(Safaei et al., 2012), 7-amino-5-(4-chlorophenyl)-2,3,4,5-te-

trahydro-2,4-dioxo-1H-pyrano[2,3-d]pyrimidine-6-car-

bonitrile (7s) (Safaei et al., 2012), 7-amino-5-(3-nitrophenyl)-

2,4-dioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-
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carbonitrile (7v) (Safaei et al., 2012), 3-amino-1-phenyl-1H-

benzo[f] chromene-2-carbonitrile (8a) (Bihani et al., 2013;

Wang et al., 2008), 3-amino-1-(4-fluorophenyl)-1H-ben-

zo[f]chromene-2-carbonitrile (8b) (Wang et al., 2008),

3-amino-1-(4-bromophenyl)-1H-benzo[f]chromene-2-carboni-

trile (8g) (Wang et al., 2008), 3-amino-1-(4-methoxyphenyl)-

1H-benzo[f]chromene-2-carbonitrile (8i) (Wang et al., 2008),

3-amino-1-(4-nitrophenyl)-1H-benzo[f]chromene-2-carboni-

trile (8j) (Wang et al., 2008; Bihani et al., 2013), 3-amino-1-

(furan-2-yl)-1H-benzo[f]chromene-2-carbonitrile (8m) (Wang

et al., 2008), 3-amino-1-(4-chlorophenyl)-1H-benzo[f]-

chromene-2-carbonitrile (8s) (Wang et al., 2008; Bihani

et al., 2013), 3-amino-1-(4-chlorophenyl)-1H-benzo[f]chromene-

2-carbonitrile (8v) (Wang et al., 2008; Bihani et al., 2013).

The characterization data for the synthesized new

compounds are given below:

2-Amino-4-(3-chlorophenyl)-5,6,7,8-tetrahydro-5-oxo-4H-

chromene-3-carbonitrile (1d) Yield 80 %; mp: 210–

211 �C, 1H NMR (DMSO-d6, 300 MHz, d, TMS = 0):

7.27–7.35 (2H, m), 7.12–7.18 (2H, m), 7.08 (2H, bs, D2O

exchangeable protons), 4.22 (1H, s), 2.63 (2H, m), 2.30

(2H, t, J = 6 Hz), 1.93 (2H, m). 13C NMR (DMSO-d6,

500 MHz, d, TMS = 0): 20.22 (CH2), 26.94 (CH2), 35.74

(CH2), 36.73 (CH), 57.97 (C), 113.57 (C), 120.01 (CN),

126.45 (Ar–C), 127.07 (Ar–C), 127.47 (Ar–C), 130.75

(Ar–C), 133.36 (C–Cl), 147.74 (Ar–C), 158.97 (C–C),

165.33 (C–NH2), 196.37 (C=O). Anal. Calcd. for C16H13

ClN2O2: C, 72.18; H, 3.94; Cl, 10.65; N, 8.42; Found: C,

72.33; H, 3.58; Cl, 10.95; N, 8.56.

2-Amino-4-(3,4-dihydroxyphenyl)-5-oxo-5,6,7,8-tetrahydro-

4H-chromene-3-carbonitrile (1e) Yield 60 %; mp:

200–201 �C, 1H NMR (DMSO-d6, 300 MHz, d, TMS =

0): 6.86 (2H, s, D2O exchangeable protons), 6.61 (1H, d,

J = 8.1 Hz,), 6.54 (1H, s), 6.41 (1H, d, J = 8.1 Hz), 4.01

(1H, s), 2.58 (2H, bs), 2.26 (2H, bs), 1.92 (2H, m). 13C

NMR (DMSO-d6, 500 MHz, d, TMS = 0): 19.39 (CH2),

26.17 (CH2), 36.85 (CH2), 38.63 (CH), 58.19 (C), 113.96

(C), 120.27 (CN), 118.18 (Ar–C), 116.2 (Ar–C), 123.14

(Ar–C), 136.22 (Ar–C), 144.21 (C–OH), 147.27 (C–OH),

158.12 (C), 165.33 (C–NH2), 196.97 (C=O). Anal. Calcd.

for C16H14N2O4: C, 64.42; H, 4.73; N, 9.39; Found: C,

64.24; H, 5.11; N, 9.55.

2-Amino-4-(naphthalen-1-yl)-5-oxo-5,6,7,8-tetrahydro-4H-

chromene-3-carbonitrile (1l) Yield 83 %; mp: 210–

211 �C, 1H NMR (DMSO-d6, 300 MHz, d, TMS = 0):

8.39 (1H, d, J = 8.1 Hz), 7.90 (1H, d, J = 1.5 Hz), 7.77

(1H, d, J = 8.1 Hz), 7.57 (1H, d, J = 5.1 Hz), 7.41–7.54

(3H, m), 7.25 (1H, d, J = 6.9 Hz), 6.95 (2H, s, D2O ex-

changeable protons), 5.15 (1H, s), 2.71 (2H, m), 2.30 (2H,

m), 1.98 (2H, m). 13C NMR (DMSO-d6, 500 MHz, d,

TMS = 0): 20.31 (CH2), 26.74 (CH2), 35.69 (CH2), 36.78

(CH), 58.88 (C), 113.69 (C), 117.33(CN), 124.52 (Ar–C),

124.96 (Ar–C), 125.43 (Ar–C), 125.67 (Ar–C), 126.73

(Ar–C), 126.86 (Ar–C), 128.94 (Ar–C), 132.66 (Ar–C),

133.57 (Ar–C), 134.01 (Ar–C), 158.67 (C), 165.98 (C–

NH2), 196.77 (C=O). Anal. Calcd. for C20H16N2O2: C,

75.93; H, 5.10; N, 8.86; Found: C, 75.20; H, 5.30; N, 9.10.

2-Amino-4-(thiophen-2-yl)-5-oxo-5,6,7,8-tetrahydro-4H-

chromene-3-carbonitrile (1n) Yield 85 %; mp: 158–

159 �C, 1H NMR (DMSO-d6, 300 MHz, d, TMS = 0): 7.38

(1H, d, J = 4.8 Hz), 7.119 (2H, s, D2O exchangeable pro-

tons), 6.85–6.92 (2H, m), 4.53 (1H, s), 2.56 (2H, bs), 2.31

(2H, bs), 1.90 (2H, m). 13C NMR (DMSO-d6, 500 MHz, d,

TMS = 0): 20.33 (CH2), 25.64 (CH), 26.96 (CH2), 36.87

(CH2), 58.44 (C), 113.74 (C), 120.22 (CN), 123.67 (Ar–C),

126.61 (Ar–C), 126.98 (Ar–C), 139.77 (Ar–C), 158.71 (C),

165.83 (C–NH2), 196.27 (C=O). Anal. Calcd. for C14H12-

N2O2S: C, 61.75; H, 4.44; N, 10.29; S, 11.77; Found: C,

61.90; H, 4.35; N, 10.45; S, 11.81.

2-Amino-4-(4-hydroxy-3-methoxyphenyl)-5-oxo-5,6,7,8-te-

trahydro-4H-chromene-3-carbonitrile (1p) Yield 76 %;

mp: 200–201 �C, 1H NMR (DMSO-d6, 300 MHz, d, TMS =

0): 8.87 (1H, s, D2O exchangeable proton), 6.91 (2H, bs, D2O

exchangeable proton), 6.67 (2H, m), 6.51 (1H, d, J = 8.1 Hz),

4.09 (1H, s), 3.72 (3H, s), 2.59 (2H, bs), 2.27 (2H, bs), 1.91

(2H, m). 13C NMR (DMSO-d6, 500 MHz, d, TMS = 0):

20.42 (CH2), 26.80(CH2), 36.24(CH2), 37.37 (CH), 56.22

(OCH3), 58.78 (C), 113.11 (C), 114.22 (Ar–C), 116.17

(Ar–C), 120.99 (CN), 122.88 (Ar–C), 135.42 (Ar–C), 142.23

(C–OH), 151.39 (C–OCH3), 158.91 (C), 166.01 (C–NH2),

196.72 (C=O). Anal. Calcd. for C17H16N2O4: C, 65.38; H,

5.16; N, 8.97; Found: C, 64.80; H, 5.02; N, 8.93.

2-Amino-4-(3-methylthiophen-2-yl)-5-oxo-5,6,7,8-tetrahy-

dro-4H-chromene-3-carbonitrile (1u) Yield 78 %; mp:

150–151 �C, 1H NMR (DMSO-d6, 300 MHz, d, TMS =

0): 7.19 (1H, d, J = 4.8 Hz), 7.01 (2H, s, D2O exchange-

able protons), 6.74 (1H, d, J = 5.1 Hz), 4.57 (1H, s), 2.60

(2H, bs), 2.28 (2H, bs), 2.23 (3H, s), 1.96 (2H, bs). 13C

NMR (DMSO-d6, 500 MHz, d, TMS = 0): 12.33 (CH3),

19.10 (CH2), 20.30 (CH), 26.44 (CH2), 36.22 (CH2), 58.65

(C), 113.99 (C), 120.27 (CN), 124.10 (Ar–C), 124.70 (Ar–

C), 135.11 (Ar–C), 135.99 (Ar–C), 158.31 (C), 166.21 (C–

NH2), 196.11 (C=O). Anal. Calcd. for C15H14N2O2S: C,

62.92; H, 4.93; N, 9.78; S, 11.20; Found: C, 63.21; H, 4.58;

N, 9.94; S, 11.32.

2-Amino-4-(3,4-dihydroxyphenyl)-7,7-dimethyl-5-oxo-5,6,

7,8-tetrahydro-4H-chromene-3-carbonitrile (2e) Yield

57 %; mp: 185–186 �C, 1H NMR (DMSO-d6, 300 MHz, d,

TMS = 0): 8.78 (2H, bs, D2O exchangeable protons), 6.89

(2H, s, D2O exchangeable protons), 6.61 (1H, d, J =

8.1 Hz), 6.52 (1H, d, J = 1.8 Hz), 6.38 (1H, dd, J = 1.8

and 8.1 Hz), 3.97 (1H, s), 2.55 (2H, bs), 2.22 (1H, d,
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J = 16.2 Hz), 2.08 (1H, d, J = 16.2 Hz), 1.06 (3H, s),

0.92 (3H, s). 13C NMR (DMSO-d6, 500 MHz, d,

TMS = 0): 27.23 (CH3), 28.95 (CH3), 32.25 (C), 35.27

(CH2), 50.52 (CH2), 59.30 (C), 113.79 (C), 115.12 (Ar–C),

115.74 (Ar–C), 118.36 (CN), 123.1 (Ar–C), 136.27 (Ar–C),

144.40 (C–OH), 145.39 (C–OH), 158.87 (C), 162.31 (C–

NH2), 196.11 (C=O). Anal. Calcd. for C18H18N2O4: C,

66.25; H, 5.56; N, 8.58; Found: C, 65.98; H, 5.75; N, 8.32.

2-Amino-4-(2-hydroxyphenyl)-7,7-dimethyl-5-oxo-5,6,7,8-

tetrahydro-4H-chromene-3-carbonitrile (2f) Yield 68 %;

mp: 80–81 �C, 1H NMR (DMSO-d6, 300 MHz, d, TMS =

0): 8.72 (1H, s, D2O exchangeable proton), 6.32–6.89 (7H,

m), 4.84 (1H, s), 2.55 (2H, bs), 2.22 (1H, d, J = 16.2 Hz),

2.08 (1H, d, J = 16.2 Hz), 1.06 (3H, s), 0.92 (3H, s). 13C

NMR (DMSO-d6, 500 MHz, d, TMS = 0): 27.23 (CH3),

29.05 (CH3), 32.46 (C), 35.78 (C), 50.15 (CH2), 59.36 (C),

113.23 (C), 115.25 (Ar–C), 118.63 (CN), 121.22 (Ar–C),

122.36 (Ar–C), 127.78 (Ar–C), 130.20 (Ar–C), 147.41 (C),

158.68 (C–OH), 162.26 (C–NH2), 196.01 (C=O). Anal.

Calcd. for C18H18N2O3: C, 72.95; H, 6.80; N, 9.45; Found:

C, 72.17; H, 7.10; N, 9.64.

6-Amino-4-(2-methoxyphenyl)-3-methyl-2,4-dihydropyra-

no[2,3-c]pyrazole-5-carbonitrile (3h) Yield 84 %; mp:

170–171 �C, 1H NMR (DMSO-d6, 300 MHz, d, TMS =

0): 12.01 (1H, s, D2O exchangeable proton), 7.19 (1H, m),

6.96–7.01 (2H, m), 6.90 (1H, m), 6.79 (2H, s, D2O ex-

changeable protons), 4.97 (1H, s), 3.78 (3H, s), 1.79 (3H,

s). 13C NMR (DMSO-d6, 500 MHz, d, TMS = 0): 10.55

(CH3), 11.10 (CH), 54.45 (OCH3), 56.11 (C), 112.75 (Ar–

C), 110.96 (Ar–C), 114.90 (C), 120.99 (Ar–C), 121.00

(CN), 126.80 (Ar–C), 130.01 (Ar–C), 136.82 (C), 142.27

(C–OCH3), 156.09 (C), 162.00 (C–NH2). Anal. Calcd. for

C15H14N4O2: C, 63.82; H, 5.00; N, 19.85; Found: C, 64.09;

H, 4.75; N, 19.76.

6-Amino-4-(furan-2-yl)-3-methyl-2,4-dihydropyrano[2,3-

c]pyrazole-5-carbonitrile (3m) Yield 67 %; mp: 185–

186 (DEC) �C, 1H NMR (DMSO-d6, 300 MHz, d, TMS =

0): 12.16 (1H, s, D2O exchangeable proton), 7.53 (1H, bs),

6.95 (2H, s, D2O exchangeable proton), 6.37 (1H, d,

J = 1.8 Hz), 6.17 (1H, d, J = 2.7 Hz), 4.77 (1H, s), 1.97

(3H, s). 13C NMR (DMSO-d6, 500 MHz, d, TMS = 0):

10.03 (CH3), 30.28 (CH), 54.45 (C), 95.57 (C), 106.09

(Ar–C), 110.69 (Ar–C), 121.04 (CN), 136.28 (C), 142.72

(Ar–C), 155.27 (Ar–C), 156.18 (C), 161.94 (C–NH2). Anal.

Calcd. for C12H10N4O2: C, 59.50; H, 4.16; N, 23.13;

Found: C, 59.81; H, 3.97; N, 23.29.

6-Amino-4-(1H-indol-2-yl)-3-methyl-2,4-dihydropyrano[2,3-c]

pyrazole-5-carbonitrile (3o) Yield 66 %; mp: 190–191 �C,
1H NMR (DMSO-d6, 300 MHz, d, TMS = 0): 11.69 (1H,

s, D2O exchangeable proton), 8.91 (1H, s, D2O ex-

changeable proton), 8.34 (1H, d, J = 7.2 Hz), 7.92 (1H, s),

7.48 (1H, d, J = 7.5 Hz), 7.21–7.29 (2H, m), 4.84 (1H, s),

1.76 (3H, s). 13C NMR (DMSO-d6, 500 MHz, d,

TMS = 0): 10.88 (CH3), 30.02 (CH), 54.44 (C), 96.03 (C),

105.55 (Ar–C), 110.66 (Ar–C), 119.94 (Ar–C), 120.15

(CN), 120.88 (Ar–C), 122.22 (Ar–C), 128.04 (Ar–C),

135.20 (Ar–C), 136.55 (Ar–C), 142.05 (C), 162.27 (C–

NH2). Anal. Calcd. for C16H13N5O: C, 65.97; H, 4.50; N,

24.04; Found: C, 65.66; H, 4.33; N, 24.13.

6-Amino-3-methyl-4-(2,3,4-trimethoxyphenyl)-2,4-dihy-

dropyrano[2,3-c]pyrazole-5-carbonitrile (3r) Yield

79 %; mp: 196–197 �C, 1H NMR (DMSO-d6, 300 MHz, d,

TMS = 0): 12.10 (1H, s, D2O exchangeable protons), 6.87

(2H, D2O exchangeable protons), 6.43 (2H, bs), 4.58 (1H,

s), 3.85 (6H, s), 3.84 (3H, s), 1.87 (3H, s). 13C NMR

(DMSO-d6, 500 MHz, d, TMS = 0): 10.53 (CH3), 12.01

(CH), 54.28 (OCH3), 55.63 (C), 56.27 (OCH3), 56.36

(OCH3), 96.75 (C), 105.30 (Ar–C), 110.96 (Ar–C), 120.69

(CN), 123.36 (Ar–C), 136.42 (C), 139.91 (C–OCH3),

142.94 (C–OCH3), 147.71 (C–OCH3), 151.72 (C), 162.76

(C–NH2). Anal. Calcd. for C17H18N4O4: C, 59.64; H, 5.30;

N, 16.37; Found: C, 59.78; H, 5.25; N, 16.55.

6-Amino-3-methyl-4-(3-methylthiophen-2-yl)-2,4-dihydropy-

rano[2,3-c]pyrazole-5-carbonitrile (3u) Yield 85 %; mp:

179–180 �C, 1H NMR (DMSO-d6, 300 MHz, d, TMS =

0): 12.15 (1H, s, D2O exchangeable proton), 7.02(1H, d,

J = 5.1 Hz), 6.86 (2H, bs, D2O exchangeable protons),

6.78 (1H, d, J = 5.1 Hz), 5.01 (1H, s), 2.16 (3H, s), 1.83

(3H, s). 13C NMR (DMSO-d6, 500 MHz, d, TMS = 0):

10.35 (CH3), 11.55 (CH3), 12.70 (CH), 54.90 (C), 110.76

(C), 120.07 (CN), 124.11 (Ar–C), 124.71 (Ar–C), 133.31

(Ar–C), 135.56 (Ar–C), 136.89 (C), 142.24 (C), 162.08 (C–

NH2). Anal. Calcd. for C13H12N4OS: C, 57.34; H, 4.44; N,

20.57; S, 11.77; Found: C, 56.99; H, 4.71; N, 20.34; S,

11.98.

7-Amino-2-oxo-5-phenyl-4-thioxo-2,3,4,5-tetrahydro-1H-

pyrano[2,3-d]pyrimidine-6-carbonitrile (4a) Yield 82 %;

mp: 180–181 �C, 1H NMR (DMSO-d6, 300 MHz, d,

TMS = 0): 7.98 (2H, d, J = 7.5 Hz), 7.19 (2H, d, J =

7.5 Hz), 4.56 (1H, s), 3.89 (3H, s). 13C NMR (DMSO-d6,

500 MHz, v TMS = 0): 36.53 (CH), 59.63 (C), 94.62 (C),

115.17 (CN), 125.88 (Ar–C), 126.71 (Ar–C), 126.77

(Ar–C), 142.25 (Ar–C), 151.99 (C=O), 158.36 (C), 160.36

(C–NH2), 174.62 (C=S). Anal. Calcd. for C14H10N4O2S: C,

56.37; H, 3.38; N, 18.78; S, 10.75; Found: C, 56.60; H,

3.15; N, 18.92; S, 10.82.

7-Amino-5-(3-chlorophenyl)-2-oxo-4-thioxo-2,3,4,5-tetrahy-

dro-1H-pyrano[2,3-d]pyrimidine-6-carbonitrile (4d) Yield

87 %; mp: 190–191 �C, 1H NMR (DMSO-d6, 300 MHz):

d, TMS = 0): 9.11 (1H, s), 10.91 (1H, s), 7.41 (1H, s),

7.24–7.33 (2H, m), 7.13 (1H, d, J = 8.3 Hz), 7.06 (1H, s),

4.59 (1H, s). 13C NMR (DMSO-d6, 500 MHz, d,
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TMS = 0): 36.86 (CH), 59.97 (C), 94.75 (C), 115.67 (CN),

125.61 (Ar–C), 127.63 (Ar–C), 128.94 (Ar–C), 130.26

(Ar–C), 134.43 (C–Cl), 143.34 (Ar–C), 151.69 (C=O),

158.24 (C), 160.56 (C–NH2), 174.67 (C=S). Anal. Calcd.

for C14H9ClN4O2S: C, 50.53; H, 2.73; Cl, 10.65; N, 16.84;

S, 9.64; Found: C, 50.80; H, 2.51; Cl, 10.76; N, 16.96; S,

9.38.

7-Amino-5-(4-bromophenyl)-2-oxo-4-thioxo-2,3,4,5-tetrahy-

dro-1H-pyrano[2,3-d]pyrimidine-6-carbonitrile (4g) Yield

88 %; mp: 185–186 �C, 1H NMR (DMSO-d6, 300 MHz, d,

TMS = 0): 11.17 (1H, s, D2O exchangeable proton), 7.47

(2H, d, J = 8.1 Hz), 7.18 (2H, d, J = 8.4 Hz), 7.15 (2H,

bs, D2O exchangeable proton), 4.23 (1H, s). 13C NMR

(DMSO-d6, 500 MHz, d, TMS = 0): 35.86 (CH), 59.97

(C), 94.75 (C), 115.67 (CN), 120.55 (C–Br), 131.25 (Ar–

C), 131.32 (Ar–C), 131.51 (Ar–C), 131.82 (Ar–C), 141.24

(Ar–C), 151.37 (C=O), 158.59 (C), 160.86 (C–NH2),

174.78 (C=S). Anal. Calcd. for C14H9BrN4O2S: C, 44.58;

H, 2.40; Br, 21.18; N, 14.85; S, 8.50; Found: C, 44.81; H,

2.12; Br, 21.36; N, 14.52; S, 8.39.

7-Amino-5-(2-methoxyphenyl)-2-oxo-4-thioxo-2,3,4,5-te-

trahydro-1H-pyrano[2,3-d]pyrimidine-6-carbonitrile (4h)

Yield 80 %; mp: 180–181 �C, 1H NMR (DMSO-d6,

300 MHz, d, TMS = 0): 10.88 (1H, s), 9.01 (1H, s), 7.13

(1H, d, J = 8.0 Hz), 6.87–6.89 (3H, m), 6.84–6.88 (2H, m),

4.29 (1H, s), 3.64 (3H, s). 13C NMR (DMSO-d6, 500 MHz,

d, TMS = 0): 35.42 (CH), 56.31 (OCH3), 59.78 (C), 94.79

(C), 114.41 (Ar–C), 115.99 (CN), 121.58 (Ar–C), 121.89

(Ar–C), 126.88 (Ar–C), 130.12 (Ar–C), 151.98 (C=O),

157.66 (C), 158.37 (C–OCH3), 160.00 (C–NH2), 174.28

(C=S). Anal. Calcd. for C15H12N4O3S: C, 54.87; H, 3.68;

N, 17.06; S, 9.77; Found: C, 54.44; H, 3.92; N, 17.32; S,

9.49.

7-Amino-5-(4-methoxyphenyl)-2-oxo-4-thioxo-2,3,4,5-te-

trahydro-1H-pyrano[2,3-d]pyrimidine-6-carbonitrile (4i)

Yield 76 %; mp: 200–201 �C, 1H NMR (DMSO-d6,

300 MHz, d, TMS = 0): 7.98 (2H, d, J = 7.5 Hz), 7.19

(2H, d, J = 7.5 Hz), 4.56 (1H, s), 3.89 (3H, s). 13C NMR

(DMSO-d6, 500 MHz, d, TMS = 0): 35.35 (CH), 56.42

(OCH3), 59.36 (C), 94.26 (C), 113.96 (Ar–C), 114.13 (Ar–

C), 115.71 (CN), 129.00 (Ar–C), 129.54 (Ar–C), 136.08

(Ar–C), 151.90 (C=O), 157.76 (C), 158.63 (C–OCH3),

160.63 (C–NH2), 174.26 (C=S). Anal. Calcd. for C15H12-

N4O3S: C, 54.87; H, 3.68; N, 17.06; S, 9.77; Found: C,

54.51; H, 3.88; N, 17.34; S, 9.82.

7-Amino-5-(4-nitrophenyl)-2-oxo-4-thioxo-2,3,4,5-tetrahy-

dro-1H-pyrano[2,3-d]pyrimidine-6-carbonitrile (4j) Yield

84 %; mp: 268–269 �C, 1H NMR (DMSO-d6, 300 MHz, d,

TMS = 0): 10.93 (1H, s), 9.41 (1H, s), 8.13 (2H, d,

J = 8.5 Hz), 7.49 (2H, d, J = 8.5 Hz), 7.08 (2H, s), 3.29

(1H, s). 13C NMR (DMSO, 500 MHz, d, TMS = 0): 36.59

(CH), 59.23 (C), 94.28 (C), 115.58 (CN), 121.57 (Ar–C),

121.89 (Ar–C), 130.28 (Ar–C), 130.85 (Ar–C), 145.14

(Ar–C), 148.95 (C=O), 151.39 (Ar–C), 158.27 (C), 160.33

(C–NH2), 174.68 (C=S). Anal. Calcd. for C14H9N5O4S: C,

48.98; H, 2.64; N, 20.40; S, 9.34; Found: C, 49.12; 2.36; N,

20.54; S, 9.60.

7-Amino-2-oxo-5-(thiophen-2-yl)-4-thioxo-2,3,4,5-tetrahy-

dro-1H-pyrano[2,3-d]pyrimidine-6-carbonitrile (4n) Yield

81 %; mp: 212–213 �C, 1H NMR (DMSO-d6, 300 MHz, d,

TMS = 0): 12.09 (1H, bs), 11.42 (1H, bs), 7.38 (2H, bs),

7.02 (1H, d), 6.57 (1H, m), 6.49 (1H, d), 4.21 (1H, s). 13C

NMR (DMSO-d6, 500 MHz, d, TMS = 0): 34.33 (CH),

59.65 (C), 94.56 (C), 115.69 (CN), 123.65 (Ar–C), 126.71

(Ar–C), 126.99 (Ar–C), 139.77 (Ar–C), 151.91 (C=O),

158.79 (C), 160.45 (C–NH2), 174.85 (C=S). Anal. Calcd.

for C12H8N4O2S2: C, 47.36; H, 2.65; N, 18.41; S, 21.07;

Found: C, 47.56; H, 2.45; N, 18.19; S, 21.29.

7-Amino-5-(4-chlorophenyl)-2-oxo-4-thioxo-2,3,4,5-tetrahy-

dro-1H-pyrano[2,3-d]pyrimidine-6-carbonitrile (4s) Yield

85 %; mp: 194–195 �C, 1H NMR (DMSO-d6, 300 MHz, d,

TMS = 0): 11.1 (1H, s), 9.2 (1H, s), 7.73 (2H, d,

J = 8.0 Hz), 7.17 (2H, d, J = 8.0 Hz), 6.97 (2H, s), 4.37

(1H, s). 13C NMR (DMSO-d6, 500 MHz, d, TMS = 0):

35.97 (CH), 59.60 (C), 94.50 (C), 115.11 (CN), 128.48

(Ar–C), 128.84 (Ar–C), 130.01 (Ar–C), 130.10 (Ar–C),

131.53 (C–Cl), 140.30 (Ar–C), 151.97 (C=O), 158.15 (C),

160.17 (C–NH2), 174.19 (C=S). Anal. Calcd. for C14H9-

ClN4O2S: C, 50.53; H, 2.73; Cl, 10.65; N, 16.84; S, 9.64;

Found: C, 50.81; H, 2.39; Cl, 10.54; N, 16.78; S, 9.78.

7-Amino-5-(3-methylthiophen-2-yl)-2-oxo-4-thioxo-2,3,4,

5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carbonitrile

(4u) Yield 80 %; mp: 228–229 �C, 1H NMR (DMSO-d6,

300, d, TMS = 0): 12.04 (1H, bs), 11.02 (1H, bs), 7.26

(2H, bs), 6.48 (1H, d), 6.62 (1H, m), 3.99 (1H, s), 2.20 (3H,

s). 13C NMR (DMSO-d6, 500 MHz, d, TMS = 0): 13.13

(CH3), 33.03 (CH), 59.32 (C), 94.43 (C), 115.54 (CN),

124.11 (Ar–C), 124.17 (Ar–C), 133.95 (Ar–C), 135.09

(Ar–C), 151.15 (C=O), 158.59 (C), 160.19 (C–NH2),

174.91 (C=S). Anal. Calcd. for C13H10N4O2S2: C, 51.65;

H, 3.33; N, 18.53; S, 10.61; Found: C, 51.39; H, 3.61; N,

18.72; S, 10.31.

7-Amino-5-(3-nitrophenyl)-2-oxo-4-thioxo-2,3,4,5-tetrahy-

dro-1H-pyrano[2,3-d]pyrimidine-6-carbonitrile (4v) Yield

80 %; mp: 200–201 �C, 1H NMR (DMSO-d6, 300, d,

TMS = 0): 11.13 (1H, bs), 9.15 (1H, s), 8.16 (1H, s), 8.01

(1H, d, J = 8.0 Hz), 7.56–7.63 (2H, m), 4.33 (1H, s). 13C

NMR (DMSO-d6, 500 MHz, d, TMS = 0): 35.99 (CH),

59.95 (C), 94.55 (C), 115.16 (CN), 118.28 (Ar–C), 124.34

(Ar–C), 129.29 (Ar–C), 135.45 (Ar–C), 143.53 (Ar–C),

150.60 (C–NO2), 151.06 (C=O), 158.84 (C), 160.48 (C–

NH2), 174.88 (C=S). Calculated Anal. Calcd. for
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C14H9N5O4S: C, 48.98; H, 2.64; N, 20.40; S, 9.34; Found:

C, 49.10; H, 2.34; N, 20.68; S, 9.02.

2-Amino-4,5 dihydro-4-(4-fluorophenyl)-5-oxopyrano[3,2-

c]chromene-3-carbonitrile (5b) Yield 84 %; mp: 190–

191 �C, 1H NMR (DMSO-d6, 300 MHz, d, TMS = 0):

7.83 (1H, d, J = 8.1 Hz), 7.65 (1H, dd, J = 8.1 and

7.1 Hz), 7.44 (1H, m), 7.32 (1H, d, J = 8.4 Hz), 7.21 (2H,

d, J = 7.9 Hz), 7.12 (2H, d, J = 8.0 Hz), 4.31 (1H, s). 13C

NMR (DMSO-d6, 500 MHz, d, TMS = 0): 37.81 (CH),

58.14 (C), 105.24 (C), 115.21 (Ar–C), 115.41 (Ar–C),

115.45 (Ar–C), 116.40 (Ar–C), 119.14 (CN), 123.32 (Ar–

C), 125.40 (Ar–C), 128.34 (Ar–C), 130.58 (Ar–C), 130.60

(Ar–C), 139.12 (Ar–C), 152.50 (Ar–C), 159.10 (C–NH2),

159.90 (C–F), 160.12 (C), 161.90 (C=O). Anal. Calcd. for

C19H11FN2O3: C, 68.26; H, 3.32; F, 5.68; N, 8.38; Found:

C, 68.32; H, 3.28; F, 5.70; N, 8.44.

2-Amino-4-(naphthalene-2-yl)-5-oxo-4,5-dihydropyrano[3,2-

c]chromene-3-carbonitrile (5l) Yield 88 %; mp: 210–

211 �C, 1H NMR (DMSO-d6, 300 MHz, d, TMS = 0):

8.43 (1H, d, J = 7.8 Hz), 7.94–7.99 (2H, m), 7.82 (1H, d,

J = 8.1 Hz), 7.72 (1H, m), 7.44–7.62 (5H, m),7.32–7.41

(3H, m), 5.47 (1H, s). 13C NMR (DMSO-d6, 500 MHz, d,

TMS = 0): 36.87 (CH), 58.16 (C), 104.03 (C), 117.30 (Ar–

C), 119.66 (CN), 121.55 (Ar–C), 125.66 (Ar–C), 125.79

(Ar–C), 126.15 (Ar–C), 126.71 (Ar–C), 127.32 (Ar–C),

127.43 (Ar–C), 127.76 (Ar–C), 127.89 (Ar–C), 131.65

(Ar–C), 133.94 (Ar–C), 135.35 (Ar–C), 152.56 (Ar–C),

153.49 (C–NH2), 158.98 (Ar–C), 160.10 (C=O). Anal.

Calcd. for C23H14N2O3: C, 75.40; H, 3.85; N, 7.65; Found:

C, 75.26; H, 4.00; N, 7.35.

2-Amino-4-(3,4-dimethoxyphenyl)-5-oxo-4,5-dihydropyrano

[3,2-c]chromene-3-carbonitrile (5q) Yield 76 %; mp:

170–171 �C, 1H NMR (DMSO-d6, 300 MHz, d, TMS =

0): 7.92 (1H, d, J = 8.1 Hz), 7.66 (1H, dd, J = 8.1 Hz and

7.2 Hz), 7.44 (1H, m), 7.37 (1H, d, J = 9 Hz), 6.83–6.86

(2H, m), 6.76 (1H, d, J = 8.7 Hz), 4.43 (1H, s), 3.73 (3H,

s), 3.76 (3H, s). 13C NMR (DMSO-d6, 500 MHz, d,

TMS = 0): 36.98 (CH), 55.97 (OCH3), 56.02 (OCH3),

58.61 (C), 104.59 (C), 112.11 (Ar–C), 112.36 (Ar–C),

113.51 (Ar–C), 117.03 (Ar–C), 119.76 (CN), 120.14 (Ar–

C), 122.93 (Ar–C), 125.10 (Ar–C), 133.31 (Ar–C), 136.31

(Ar–C), 148.42 (Ar–C), 148.99 (Ar–C), 152.58 (C), 153.64

(C–NH2), 158.39 (C), 160.00 (C=O). Anal. Calcd. for

C21H16N2O5: C, 67.02; H, 4.28; N, 7.44; Found: C, 67.26;

H, 3.98; N, 7.64.

2-Amino-4-(3-chlorophenyl)-4H-benzo[h]chromene-3-car-

bonitrile (6d) Yield 82 %; mp: 176–177 �C, 1H NMR

(DMSO-d6, 300 MHz, d, TMS = 0): 8.25 (1H, d,

J = 8.1 Hz), 7.89 (1H, d, J = 7.8 Hz), 7.56–7.67 (3H, m),

7.12 (1H, d, J = 8.4 Hz), 4.97 (1H, s). 13C NMR (DMSO-

d6, 500 MHz, d, TMS = 0): 29.33 (CH), 56.10 (C), 117.67

(CN), 121.20 (Ar–C), 124.56 (Ar–C), 126.49 (Ar–C),

126.97 (Ar–C), 127.23 (Ar–C), 127.47 (Ar–C), 127.86

(Ar–C), 128.18 (Ar–C), 131.20 (Ar–C), 133.25 (Ar–C),

133.73 (C–Cl), 143.25 (Ar–C), 148.61 (Ar–C), 160.74 (C–

NH2). Anal. Calcd. for C20H13ClN2O: C, 72.18; H, 3.94;

Cl, 10.65; N, 8.42; Found: C, 71.94; H, 3.63; Cl, 10.86;

8.22.

2-Amino-4-(3,4-dihydroxyphenyl)-4H-benzo[h]chromene-

3-carbonitrile (6e) Yield 71 %; mp: 150–151 �C, 1H

NMR (DMSO-d6, 300 MHz, d, TMS = 0): 8.30–8.39 (2H,

m), 7.83–7.97 (2H, m), 7.18–7.73 (4H, m), 6.92 (1H, d,

J = 8.4 Hz), 7.18 (2H, s, D2O exchangeable protons), 5.80

(1H, s). 13C NMR (DMSO-d6, 500 MHz, d, TMS = 0):

30.10 (CH), 59.22 (C), 115.36 (Ar–C), 117.76 (CN),

117.96 (Ar–C), 120.23 (Ar–C), 120.93 (Ar–C), 121.10

(Ar–C), 122.35 (Ar–C), 125.71 (Ar–C), 125.74 (Ar–C),

127.48 (Ar–C), 132.77 (Ar–C), 134.44 (Ar–C), 143.05

(Ar–C), 144.20 (C–OH), 147.55 (C–OH), 160.31 (C–NH2).

Anal. Calcd. for C20H14N2O3: C, 72.72; H, 4.27; N, 8.48;

Found: C, 72.99; H, 3.98; N, 8.72.

2-Amino-4-(4-hydroxyphenyl)-4H-benzo[h]chromene-3-car-

bonitrile (6k) Yield 85 %; mp: 228–229 �C, 1H NMR

(DMSO-d6, 300 MHz, d, TMS = 0): 9.35 (1H, s, D2O

exchangeable protons), 8.23 (1H, d, J = 8.1 Hz), 7.87 (1H,

d, J = 8.1 Hz), 7.57–7.63 (3H, m), 7.03–7.11 (5H, m),

6.69(2H, d, J = 8.1 Hz), 4.77 (1H, s). 13C NMR (DMSO-

d6, 500 MHz, d, TMS = 0): 29.88 (CH), 57.24 (C), 115.83

(Ar–C), 118.92 (CN), 121.14 (Ar–C), 123.23 (Ar–C),

124.84 (Ar–C), 126.80 (Ar–C), 127.07 (Ar–C), 129.14

(Ar–C), 133.06 (Ar–C), 136.64 (Ar–C), 143.02 (Ar–C),

151.74 (C–OH), 160.43 (C–NH2). Anal. Calcd. for

C20H14N2O2: C, 76.42; H, 4.49; N, 8.91; Found: C, 76.22;

H, 4.64; N, 9.02.

2-Amino-4-(thiophen-2-yl)-4H-benzo[h]chromene-3-car-

bonitrile (6n) Yield 83 %; mp: 231–232 �C, 1H NMR

(DMSO-d6, 300 MHz, d, TMS = 0): 8.22 (1H, d,

J = 8.1 Hz), 7.89 (1H, d, J = 7.8 Hz), 7.55–7.65 (3H, m),

7.36 (1H, d, J = 4.5 Hz), 7.24–7.28 (3H, m), 7.08 (1H, bs),

6.93 (1H, bs), 5.26 (1H, s). 13C NMR (DMSO-d6,

500 MHz, d, TMS = 0): 30.53 (CH), 59.02 (C), 119.84

(CN), 120.44 (Ar–C), 120.97 (Ar–C), 121.12 (Ar–C),

123.67 (Ar–C), 125.84 (Ar–C), 125.98 (Ar–C), 126.37

(Ar–C), 126.63 (Ar–C), 126.74 (Ar–C), 132.77 (Ar–C),

139.44 (Ar–C), 143.50 (Ar–C), 160.77 (C–NH2). Anal.

Calcd. for C18H12N2OS: C, 71.03; H, 3.97; N, 9.20; S,

10.54; Found: C, 71.38; H, 3.58; N, 8.90; S, 10.82.

2-Amino-4-(3,4-dimethoxyphenyl)-4H-benzo[h]chromene-

3-carbonitrile (6q) Yield 73 %; mp: 140–141 �C, 1H

NMR (DMSO-d6, 300 MHz, d, TMS = 0): 8.24 (1H, d,

J = 7.8 Hz), 7.88(1H, d, J = 7.54 Hz), 7.54–7.65 (3H, m),

7.11–7.16 (3H, m), 6.72–6.91 (3H, m), 4.84 (1H, s), 3.82
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(3H, s), 3.80 (3H, s). 13C NMR (DMSO-d6, 500 MHz, d,

TMS = 0): 31.11 (CH), 55.67 (OCH3), 56.66 (OCH3),

59.68 (C), 113.32 (Ar–C), 115.86 (Ar–C), 118.59 (Ar–C),

120.24 (Ar–C), 120.95 (Ar–C), 121.17 (Ar–C), 125.71

(Ar–C), 125.77 (Ar–C), 127.42 (Ar–C), 132.76 (Ar–C),

133.75 (Ar–C), 143.54 (Ar–C), 147.84 (C–OCH3), 150.31

(C–OCH3), 160.34 (C–NH2). Anal. Calcd. for C22H18

N2O3: C, 73.73; H, 5.06; N, 7.82; Found: C, 73.44; H, 5.26;

N, 8.10.

7-Amino-5-(4-bromophenyl)-2,4-dioxo-2,3,4,5-tetrahydro-

1H-pyrano[2,3-d]pyrimidine-6-carbonitrile (7g) Yield

79 %; mp: 170–171 �C, 1H NMR (DMSO-d6, 300 MHz, d,

TMS = 0): 11.17 (1H, s, D2O exchangeable proton), 7.47

(2H, d, J = 8.1 Hz), 7.18 (2H, d, J = 8.4 Hz), 7.15 (2H,

bs, D2O exchangeable proton), 4.23 (1H, s). 13C NMR

(DMSO-d6, 500 MHz, d, TMS = 0): 35.72 (CH), 58.72

(C), 88.40 (C), 119.51 (CN), 120.22 (C–Br), 130.15 (Ar–

C), 131.58 (Ar–C), 144.06 (Ar–C), 149.95 (C=O), 152.81

(C–NH2), 158.00 (C), 162.96 (C=O). Anal. Calcd. for

C14H9BrN4O3: C, 46.56; H, 2.51; Br, 22.12; N, 15.51;

Found: C, 46.26; H, 2.86; Br, 22.31; N, 15.23.

7-Amino-5-(4-methoxyphenyl)-2,4-dioxo-2,3,4,5-tetrahy-

dro-1H-pyrano[2,3-d]pyrimidine-6-carbonitrile (7i) Yield

70 %; mp: 237–238 �C, 1H NMR (DMSO-d6, 300 MHz, d,

TMS = 0): 7.98 (2H, d, J = 7.5 Hz), 7.19 (2H, d,

J = 7.5 Hz), 4.56 (1H, s), 3.89 (3H, s). 13C NMR (DMSO-

d6, 500 MHz, d, TMS = 0): 35.27 (CH), 55.55 (OCH3),

58.22 (C), 88.44 (C), 114.22 (Ar–C), 120.15 (CN), 130.11

(Ar–C), 134.50 (Ar–C), 149.59 (C=O), 152.18 (C–OCH3),

156.00 (C–NH2), 158.55 (C), 162.69 (C=O). Anal. Calcd.

for C15H12N4O4: C, 57.69; H, 3.87; N, 17.94; Found: C,

57.99; H, 3.96; N, 17.52.

7-Amino-5-(thiophen-2-yl)-2,3,4,5-tetrahydro-2,4-dioxo-1H-

pyrano[2,3-d]pyrimidine-6-carbonitrile (7n) Yield 74 %;

mp: 172–173 �C, 1H NMR (DMSO-d6, 300 MHz, d,

TMS = 0): 11.14 (1H, s, D2O exchangeable proton), 7.40

(1H, d, J = 7.8 Hz), 6.83–6.86 (2H, bs), 6.8 (1H, s, D2O

exchangeable proton), 4.52 (1H, s). 13C NMR (DMSO-d6,

500 MHz, d, TMS = 0): 25.80 (CH), 58.10 (C), 80.10 (C),

119.10 (CN), 123.50 (Ar–C), 125.40 (Ar–C), 127.00 (Ar–

C), 139.80 (Ar–C), 150.40 (C=O), 158.90 (C–NH2), 160.84

(C), 163.68 (C=O). Anal. Calcd. for C12H8N4O3S: C,

50.00; H, 2.80; N, 19.43; S, 11.12; Found: C, 48.10; H,

3.21; N, 20.21; S, 11.21.

7-Amino-5-(3-methylthiophen-2-yl)-2,4-dioxo-2,3,4,5-tetrahy-

dro-1H-pyrano[2,3-d]pyrimidine-6-carbonitrile (7u) Yield

78 %; mp: 171–173 �C, 1H NMR (DMSO-d6, 300 MHz, d,

TMS = 0): 11.21 (1H, s, D2O exchangeable proton), 7.80

(2H, bs, D2O exchangeable proton), 7.28 (1H, d,

J = 7.6 Hz), 6.26 (1H, d, 7.6 Hz), 4.62 (1H, s), 2.30 (3H,

s). 13C NMR (DMSO-d6, 500 MHz, d, TMS = 0): 13.40

(CH3), 22.30 (CH), 58.10 (C), 80.12 (C), 119.10 (CN),

121.10 (Ar–C), 124.30 (Ar–C), 133.60 (Ar–C), 135.40

(Ar–C), 150.6 (C=O), 159.3 (C–NH2), 160.4 (C), 163.8

(C=O). Anal. Calcd. for C13H10N4O3S: C, 51.65; H, 3.33;

N, 18.53; S, 10.61; Found: C, 50.21; H, 3.20; N, 20.10; S,

12.31.

3-Amino-1-(2-methoxyphenyl)-1H-benzo[f]chromene-2-car-

bonitrile (8h) Yield 70 %; mp: 200–201 �C, 1H NMR

(DMSO-d6, 300 MHz, d, TMS = 0): 7.89–7.92 (2H, m),

7.74 (1H, d, J = 7.8 Hz), 7.42 (2H, m), 7.32 (1H, dd,

J = 1.2 and 6.9 Hz), 7.13 (1H, m), 7.03 (1H, d,

J = 8.4 Hz), 6.77–6.86 (4H, m), 5.60 (1H, s). 13C NMR

(DMSO-d6, 500 MHz, d, TMS = 0): 17.31 (CH), 56.44

(OCH3), 57.41 (C), 112.18 (Ar–C), 117.16 (CN), 121.52

(Ar–C), 123.39 (Ar–C), 125.30 (Ar–C), 127.61 (Ar–C),

128.41 (Ar–C), 128.95 (Ar–C), 129.05 (Ar–C), 129.63

(Ar–C), 131.13 (Ar–C), 134.07 (Ar–C), 151.77 (Ar–C),

156.11 (C–OCH3), 160.69 (C–NH2). Anal. Calcd. for

C21H16N2O2: C, 76.81; H, 4.91; N, 8.53; Found: C, 76.52;

H, 5.12; N, 8.88.

3-Amino-1-(thiophen-2-yl)-1H-benzo[f]chromene-2-carboni-

trile (8n) Yield 77 %; mp: 228–229 �C, 1H NMR

(DMSO-d6, 300 MHz, d, TMS = 0): 8.05 (1H, d,

J = 8.1 Hz), 7.93 (2H, d, J = 8.7 Hz), 7.43–7.54 (2H, m),

7.26–7.32 (2H, m), 7.09 (2H, m), 6.86–7.02 (2H, m), 5.71

(1H, s). 13C NMR (DMSO-d6, 500 MHz, d, TMS = 0):

17.41 (CH), 57.44 (C), 117.3 (CN), 118.81 (Ar–C), 121.25

(Ar–C), 122.15 (Ar–C), 122.51 (Ar–C), 123.22 (Ar–C),

126.38 (Ar–C), 126.61 (Ar–C), 126.95 (Ar–C), 128.57

(Ar–C), 128.79 (Ar–C), 138.81 (Ar–C), 139.18 (Ar–C),

136.81 (Ar–C), 151.75 (Ar–C), 161.09 (C–NH2). Anal.

Calcd. for C18H12N2OS: C, 71.03; H, 3.97; N, 9.20; S,

10.54; Found: C, 71.32; H, 3.66; N, 8.96; S, 10.76.

Xanthine oxidase assay

Bovine milk xanthine oxidase (grade 1, ammonium sul-

phate suspension, Sigma-Aldrich) activity was assayed

spectrophotometrically by measuring the uric acid forma-

tion at 293 nm using a Hitachi U-3010 UV–visible spec-

trophotometer at 25 �C (Escribano et al., 1988; Takano

et al., 2005). The reaction mixture contained 50 mM

potassium phosphate buffer (pH 7.6), 75 lM xanthine and

0.08 U of xanthine oxidase. Inhibition of xanthine oxidase

activity by various inhibitors was measured by following

the decrease in the uric acid formation at 293 nm at 25 �C.

The enzyme was preincubated for 5 min, with test com-

pound, dissolved in DMSO (1 % v/v), and the reaction was

started by the addition of xanthine. Final concentration of

DMSO (1 % v/v) did not interfere with the enzyme ac-

tivity. All the experiments were performed in triplicate, and

values were expressed as means of three experiments.
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Molecular modelling study

The 3D structural coordinates of XO were obtained from

protein databank (PDB ID: 1VDV) (Fukunari et al., 2004).

The ligand structure was prepared in ChemDraw, and en-

ergy was minimized MM2 module of Chem3D ultra

(ChemDraw Ultra 6.0 and Chem3D Ultra, 2000). The li-

gand was docked at the binding site using the GOLD 5.1

(GOLD, Evaluation Version 5.1 2012). Gold performs

genetic algorithm-based ligand docking to optimize the

conformation of ligand at the receptor binding site.

GoldScore scoring function was used to find out the

binding pose. GoldScore comprises four components:

protein–ligand hydrogen bond energy, protein–ligand van

der Waals (vdw) energy, ligand internal vdw energy and

ligand torsional strain energy.
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