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Abstract In a pursuit of combating acquired immun-

odeficiency syndrome, the targets human immunodefi-

ciency virus (HIV) protease, reverse transcriptase and HIV

specific proteins were exhaustively explored. Resistance

through mutations in these targets has impeded the further

developments in HIV research. HIV-1 integrase (HIV-1

IN) has emerged as a newer target and 30-processing, and
strand transfer inhibition has proved potential intervention

in HIV replication. In present study, in line with our in-

terests in coumarin derivatives as potential bioactive

molecules, 4D-quantitative structure–activity relationship

(4D-QSAR) is proposed. Fifty-seven structurally diverse

coumarin derivatives were subjected to 4D-QSAR studies.

Quantum mechanics-based geometry optimization and

molecular dynamics simulation were carried out on indi-

vidual compound. The conformational ensemble generated

for each compound was aligned with most active com-

pound, and Coulombic and Lennard-Jones interaction en-

ergy descriptors were computed. After selecting the best

variables in MATLAB, partial least square regression

(PLS) analysis was carried out on 44 training set and 13

test set compounds. The model with ten latent variables

was found best with R2 calculated = 0.903015, R2 cross-

validated = 0.599553, R2 predicted = 0.688525, root-

mean-square error (RMSE) calculated = 0.21276, RMSE

predicted = 0.371579 and prediction bias = -0.15362.

Docking studies were carried out on AutoDock Vina,

which were in good agreement with the PLS model, sug-

gesting the importance of few descriptors of Coulombic

interaction energy and VWD interactions with VAL79,

VAL77, ARG199 and GLU157. These results may be

useful in designing more potent HIV-1 IN inhibitors.
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Introduction

Acquired immunodeficiency syndrome (AIDS) is a disease

caused by human immunodeficiency virus (HIV). Since its

first report in 1981, it has caused more than 30 million

deaths worldwide (Curran, 1983). Most of the current ap-

proved drugs are developed targeting the two essential

enzymes, viral reverse transcriptase and protease (Johnson

et al., 2010). HIV-1 integrase (HIV-1 IN), the enzyme

essential in viral replication, has emerged as most

promising target as it does not have human homologue, and

former two targets are eloped with emergence of highly

resistant viral strains (Jaskolski et al., 2011). HIV-1 IN

comprises of single polypeptide chain with 288 amino acid

residues and three domains, N-terminal domain (residues

1–54), catalytic domain (residues 55–209) and C-terminal

domain (residues 210–288). HIV-1 IN catalyzes the in-

sertion of viral DNA into the host genome in two bio-

chemical steps (a) 30-processing which removes two

nucleotides from each 30-ends of the viral cDNA to pro-

duce reactive 30-hydroxyl ends and (b) strand transfer

which joins 30-viral DNA ends into the host DNA through a

nucleophilic transesterification reaction (Schroder et al.,

2002). Several HIV-1 IN inhibitors have been reported, but
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only two compounds, raltegravir and elvitegravir, strand

transfer inhibitors, are approved for clinical use (US Food

and Drug Administration, 2014). Major impediments in the

development of HIV-1 IN strand transfer inhibitors are

cross-resistance due to the similar mechanism of action of

developed agent, HIV-1 IN polymorphism which is less

studied and the fact that the agent has to act on HIV-1 IN—

viral DNA complex. The inhibitors of 30-processing step

are thought to suppress both 30-processing and strand

transfer steps (Korolev et al., 2011). Zhao’s (1997) report

on coumarin derivatives opened the avenue for coumarin-

based HIV-1 IN inhibitors. Many coumarin derivatives

were reported subsequently as HIV-1 IN inhibitors as 30-
processing and strand transfer inhibitors (Mao et al., 2002;

Chiang et al., 2007; Tewtrakul et al., 2007; Liu et al., 2009;

Kostova et al., 2006; Al-Mawsawi et al., 2006; Bailly

et al., 2005; Olmedo et al., 2012; Mahajan et al., 2009;

Spino et al., 1998). Hansch (Hansch and Fujita, 1964) and

Wilson (Free and Wilson, 1964) established QSAR, a tool

which establishes the quantitative relationship between

structural, physicochemical and conformational properties

with biological activity. Since its inception, QSAR ap-

proaches have evolved from 2D-QSAR to more complex

4D quantitative structure–activity relationship (4D-QSAR).

QSAR approaches are further classified as receptor-de-

pendent and receptor-independent QSAR methods based

on the descriptors calculated with or without receptor.

Comparative molecular field analysis (CoMFA; Cramer

et al., 1988) and comparative molecular similarity indices

analysis (CoMSIA; Klebe et al., 1994) are most acclaimed

3D-QSAR approaches exploited in successful design of

many therapeutic agents. Hopfinger et al. (1997) proposed

a 4D-QSAR where conformational flexibility of ligand and

freedom of alignment in three dimensional spaces as re-

quired in 3D-QSAR is utilized. In this approach, grid cell

occupancy descriptors, GCODs, are calculated by aligning

the set of molecules in defined grid box which resembles

active site of receptor. GOCDs are the impetus of inter-

action pharmacophore elements, IPEs for atom sets like

polar positive, polar negative, aromatic, hydrogen bond

acceptor, and hydrogen bond donor. Partial least squares

(PLS; Dijkstra, 2010) are one of the chemometric methods

commonly envisaged in many QSAR models. In present

work, 4D-QSAR approach called LQTAgrid-QSAR

(LQTA, Laboratório de Quimiometria Teórica e Aplicada)

introduced by Martins et al. (2009) has been used to build a

4D-QSAR model. Such 4D-QSAR model was developed in

a search of important structural features required in the

coumarin derivatives and subsequent design of more active

molecules. In this approach, conformational ensemble was

generated for individual compound called conformational

ensemble profile (CEP) by molecular dynamics (MD)

simulations using GROMACS 4.6.3 (Berendsen et al.,

1995; Hess et al., 2008; Pronk et al., 2013).

Experimental

Methods

Dataset

Fifty-seven coumarin derivatives presented in Table 1 have

been taken from different literatures (Zhao et al., 1997;

Nunthaboot et al., 2006; Mao et al., 2002, Chiang et al.,

2007, Su et al., 2006; Al-Mawsawi et al., 2006). These

coumarin derivatives have been reported in these literatures

as 30-processing inhibitors. All the derivatives selected

have biscoumarin component common in their structure.

Based on the substitution pattern in these derivatives, 13

compounds were selected as test set and remaining 44

compounds as training set. From the literature, the reported

30-processing IC50 in lM was transformed to pIC50 by

taking negative logarithm of IC50 values in moles.

Computer hardware and software

Computational work was done on Ubuntu Linux 12.0 and

windows XP operating system. Various software used in-

clude AutoDock 4.2 with MGLTools 1.5.6 (Morris et al.,

2009), AutoDock Vina (Trott and Olson, 2010), Marvin

Sketch, UCSF Chimera 1.8rc (Pettersen et al., 2004),

Discovery Studio 3.5 (Accelrys Inc.), ArgusLab 4.0.1,

Firefly 801 Quantum Chemistry Package (Granovsky,

Firefly version 8.0; Schmidt et al., 1993), MATLAB 7.7.0

(R2008b) (MathWorks, Inc.), PLS_Toolbox version 7.51

(Eigenvector Research, Inc.), Pymol version 1.3 (from

Schrodinger, LLC), LQTAgrid (Martins et al., 2009), ERM

algorithm, a MATLAB .m script (Ballabio et al., 2014) and

GROMACS 4.6.3.

Geometry optimization

General 4D-QSAR methodology is depicted in Fig. 1.

Structures of all compounds were drawn using Marvin

Sketch. Geometry optimization was carried out in Ar-

gusLab 4.0.1 on semi empirical quantum mechanical basis

with parameterized model number 3 (PM3) hamiltonian,

until restricted closed-shell Hartree–Fock self-consistent

field formalism converses to 10-10 kcal/mol and steepest

descent geometry search criteria until gradient converses to

10-6 kcal/mol. Gasteiger partial atomic charges of opti-

mized molecules were computed in UCSF Chimera.
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Table 1 Structures of coumarin derivatives studied

Comp. R pIC50 Comp. R pIC50

2 4.3625 38

CH3

4.5686

3* 3.8927 39

CH3

5.1487

4

CH3

4.0555 40

CH3

5.3372

5 4.3010 41

CH3

CH3

4.7212

6 4.3187 42*

CH3

CH3

5.0132
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Table 1 continued

7 4 43

CH3

CH3

5.7212

8* 4.4685 44

CH3

CH3

5.0315

9 4.5376 45

OCH3

OCH3

5.5850

10 5 46 5.6382

11 5.2596 47 5

12* 5.0705 48 5.2146
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Table 1 continued

13* 5.0969 49 5.4948

14 5.8239 50 5.3098

21

CH3

5.2668 51 4.6020

22* 5.2525 52 5.8239

23 5.2564 53 4.2757

24* 5.7212 54 5.5850

25*

CH3
CH3

CH3

5.5086 55* 4.5686

26 5.8239 56* 4.8538
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Table 1 continued

27 5.6777 57* 4.7447

28 5.9586

29

CH3

6.3010

Comp. R pIC50

30 5.5086 1 4.3344

31* 4.6363 15 4.7644

32

CH3

4.6363 16 6.4317

33

CH3CH3

3.9913 17 4.0757

34 6.0177 18 4.2076

35*

CH3
CH3

6.2365 19 5.3767
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GROMACS coordinates and topology files

PRODRG2 server (Schuttelkopf et al., 2004) was used to

generate coordinate and topology files of all the com-

pounds from dataset. As the structures were optimized,

energy minimization option in PRODRG was not chosen.

Appropriate add hydrogen or hybridization patch was used

during the generation of coordinate and topology files. The

Gasteiger charges computed in UCSF Chimera were

manually loaded in PRODRG-generated topology files.

Molecular dynamics simulation

Molecular dynamics simulation was carried out in GRO-

MACS 4.6.3 in order to obtain CEP of each compound.

During MD simulation, GROMOS96 ffG43a1 force field

was used in an explicit water model in a cubic box of 1 Å

volume. MD simulation included heating the system at 50,

100, 200 and 350 K for 20 picoseconds (ps) simulation

time with 1-femtosecond (fs) step size. Particle mesh

Ewald (PME) method was used to compute long-range

electrostatics, and the Van der Waal (VWD) interaction

energies were calculated with a cutoff radius of 1 Å.

Compound and solvent water were separately coupled

during the simulation. The pressure and temperature of the

system were controlled by Parrinello–Rahman coupling

and velocity rescaling thermostat (V-rescale), respectively.

The system was then cooled down to 300 K. The trajectory

generated was recorded every 2000 simulation steps, which

is 2 ps simulation time.

Alignment

Conformations of all the compounds generated at 300 K

simulation were subjected to alignment. Compound 16, the

most active among all compounds, was chosen as reference

compound. The atoms chosen for alignment included the

Fig. 1 Schematic representation of 4D-QSAR methodology

Table 1 continued

36 6.3098 20

Compound

4.4473

37

Compound

4.4317

a Test set compounds
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common structural component (biscoumarin part) as shown

in Fig. 2. The CEP of all other conformations of the rest of

the compounds was aligned against the reference com-

pound. In the alignment step, trajectories generated at

20–100 ps time with 2-ps increment were aligned. The

alignments of conformers of the few most active (36, 29,

35 and 34) and least active compounds (3, 33, 7, 4 and 17)

from dataset aligned with conformers of most active

compound 18 are shown in Fig. 3.

Descriptors of interaction energy

The grid box of size 18 9 18 9 18, large enough to ac-

commodate the CEPs, was chosen. LQTAgrid module was

used with a hypothetical N-terminal of protein as –NH3?

probe to generate matrix of interaction energy descriptors.

The electrostatic property in terms of Coulombic (C) po-

tential function and steric 3D property in terms of Lennard-

Jones (LJ) potential function was generated as a descriptor

matrix of 11,664 descriptors containing 5832 LJ and 5832

Coulombic potential-based descriptors.

Variable selection and model development

The dimension of the descriptor matrix generated by

LQTAgrid was 57 9 11,664. Descriptor matrix was refined

by eliminating descriptors having correlation lower than 0.3

leaving 4248 descriptors. V-WSP variable reduction

MATLAB routine which is an unsupervised variable re-

duction based on V-WSP algorithm (Ballabio et al., 2014)

was subsequently applied on 4248 descriptors with 0.85

absolute correlations which gave 357 most suitable de-

scriptors. The dataset was split into training set of 44 com-

pounds and test set of 13 compounds. Test set compounds

were selected so as to include highest and lowest activities as

well as structural diversity. The PLS model was built using

PLS_Toolbox (Eigenvector Research, Inc) in MATLAB

workspace. The model built by using absolute values, ten

latent variables and Venetian blinds with six splits which

includes one sample per split was found to be the best model.

Docking studies

Till date, neither full-length structure of integrase from

HIV-1 nor integrase complex with its DNA counterpart is

1

2
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4

5

6
7

8

9
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13 14
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17
18

19

20

21
22

23

24

25

Fig. 2 Structural component (biscoumarin part) used in alignment

Fig. 3 Alignment of conformers generated during MD simulation

(CEP) a aligned CEP of most active (reference) compound 16; b CEP

of active compound 36 aligned with compound 16 (compound 16
shown blue color); c CEP of active compound 29; d CEP of active

compound 35; e CEP of active compound 34; f CEP of least active

compound 3; g CEP of less active compound 33; h CEP of less active

compound 7; i CEP of less active compound 4; j CEP of less active

compound 17 (Color figure online)

Fig. 4 Docked conformer of ligand (red) and original pose of co-

crystallized ligand (green) (Color figure online)
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available. Due to emergence of resistance strains against

HIV-1 IN catalytic site inhibitors like raltegravir, devel-

opment of allosterical site inhibitors can be extremely ad-

vantageous approach (Al-Mawsawi et al., 2006). Through

structure-based design, a new allosteric region in HIV-1 IN

has been identified and is available at RCSB protein data

bank (PDB code, 3NF7). The QSAR methodology pro-

posed in this work is receptor independent, but to under-

stand the structural features important for HIV-1 IN

inhibition, docking studies were carried out using Au-

toDock Vina from molecular graphics laboratory, Scripps

Research Institute. The accuracy of docking was validated

by docking the co-crystallized ligand, 5-[(5-chloro-2-oxo-

2, 3-dihydro-1H-indil-1-yl) methyl]-1, 3-benzodioxole-4-

carboxylic acid, into the active site. The root-mean-square

deviation (RMSD) between docked pose and original co-

crystallized pose was 0.104 Å (Fig. 4).

Results and discussion

4D-QSAR model

The objective of current 4D-QSAR studies was to build the

best 4D-QSAR model with good predictive abilities. The

strategy of MD simulation and subsequent generation of

interaction energy contributions was thought to emulate

interaction of important residues at the binding site of HIV-

1 IN with compounds under investigation. The number of

refined descriptors was 357, and multiple linear regression

(MLR), a multivariate chemometric tool, cannot be a good

model. This is because the number of independent variable

matrix exceeds dependent variable vector, and generated

model could have the over-fitting. PLS regression is best in

this situation, and in current investigation, PLS regression

was carried out. The data were split into 44 training set

compounds and 13 test set compounds with the help of

random_select.m script for MATLAB. The PLS model

Table 2 Measured pIC50 values and predicted pIC50 values for test

set and training set compounds along with residuals

Compound Measured pIC50 Predicted pIC50 Residuals

1 4.334419008982 4.218796467603 0.115622541

2 4.362510270487 4.292851473356 0.069658797

3 4.055517327850 4.070994312099 -0.015476984

4 4.301029995664 4.929051036990 -0.628021041

5 4.318758762624 4.297172297996 0.021586465

6 4.000000000000 4.225984967218 -0.225984967

7 4.537602002101 4.952535012945 -0.414933011

8 5.000000000000 4.883759953935 0.116240046

9 5.259637310506 5.007835647832 0.251801663

10 5.823908740944 5.933911854721 -0.110003114

11 4.764471553092 4.460038311022 0.304433242

12 6.431798275933 6.436902388893 -0.005104113

13 4.075720713938 4.303588179146 -0.227867465

14 4.207608310502 4.418238487517 -0.210630177

15 5.376750709602 5.471653046563 -0.094902337

16 4.447331783888 4.535159084407 -0.087827301

17 5.266802734893 4.942603318326 0.324199417

18 5.256490235272 5.041183179271 0.215307056

19 5.823908740944 5.810132157321 0.013776584

20 5.677780705266 5.290979083718 0.386801622

21 5.958607314842 5.711095294205 0.247512021

22 6.301029995664 6.606644362291 -0.305614367

23 5.508638306166 4.987933203060 0.520705103

24 4.636388020108 4.918641635193 -0.282253615

25 3.991399828238 4.249516452047 -0.258116624

26 6.017728766960 6.061294602571 -0.043565836

27 6.309803919971 6.324185436771 -0.014381517

28 4.431798275933 4.402167205600 0.02963107

29 4.568636235841 4.575497417042 -0.006861181

30 5.148741651281 5.156188976342 -0.007447325

31 5.337242168318 5.452276191748 -0.115034023

32 4.721246399047 4.671281136009 0.049965263

33 5.721246399047 5.622842500361 0.098403899

34 5.031517051446 5.159682067118 -0.128165016

35 5.585026652029 5.570422818042 0.014603834

36 5.585026652029 5.454214555548 0.130812096

37 5.638272163982 5.782761404506 -0.144489241

38 5.000000000000 4.947913365630 0.052086634

39 5.214670164989 5.241055638411 -0.026385473

40 5.494850021680 5.372937598471 0.121912423

41 5.309803919971 5.099751277486 0.210052642

42 4.602059991328 4.745421103961 -0.143361113

43 5.823908740944 5.741446043459 0.082462697

44 4.275724130399 4.156873405957 0.118850724

45 3.892790030352 3.425573987363 0.467216043

46 4.468521082958 4.172199634613 0.296321448

47 5.070581074286 5.007013788099 0.063567286

Table 2 continued

Compound Measured pIC50 Predicted pIC50 Residuals

48 5.096910013008 5.179083425720 -0.082173413

49 3.917214629684 4.923115627074 -1.005900997

50 5.252588192114 5.481395971109 -0.228807779

51 5.721246399047 5.261728169978 0.459518229

52 5.508638306166 5.071478458416 0.437159848

53 4.636388020108 4.966301350566 -0.32991333

54 5.013228265734 4.730168402454 0.283059863

55 4.568636235841 4.091666547569 0.476969688

56 4.853871964322 5.133427941778 -0.279555977

57 4.744727494897 4.994098670226 -0.249371175
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Fig. 5 Predicted pIC50 values against measured pIC50 values for training set and test set compounds

Fig. 6 Scores on latent variables
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development was carried out by using PLS_Toolbox from

Eigenvector Research, Inc. Data were preprocessed by

autoscaling the raw data. The leave-one-out cross-valida-

tion method was found inappropriate for current data as the

data constitute more than 20 samples. Thus, Venetian blind

cross-validation method with six sample splits with one

sample per split was adopted. The model with 10 latent

variables was found best among 20 models. This PLS

model showed R2 calculated = 0.903015, R2 cross-

validated = 0.599553 and R2 predicted = 0.688525. All

these regression coefficients are within acceptable limits.

The full model including test set and training set showed

R2 = 0.853. The other statistical findings include root-

mean-square error (RMSE) calculated = 0.21276, RMSE

predicted = 0.371579 and prediction bias = -0.15362.

The pIC50 values predicted with the residuals are shown in

Table 2. The plots of predicted activity against measured

activity, scores on latent variables and measured activity

against residuals are shown in Figs. 5, 6 and 7,

respectively.

Fig. 7 Predicted pIC50 residuals against measured pIC50 values

Table 3 Important interactions of top five highly active and inactive compounds at binding site of HIV-1 IN

Compound Electrostatic interactions VWD interactions Interactions with water

16 LYS188, SER147, ARG199 VAL79 –

36 LYS188(H)a, HIS183(H), VAL150 ARG199 –

29 LYS188(H) VAL77 HOH272

35 LYS188(H) VAL77, GLU157 HOH272

34 LYS188(H), HIS183, GLY82 ARG199 HOH272

3 LYS188, HIS183 – HOH272

33 LYS188(H), HIS183, MET154, VAL150 – –

7 LYS188, ARG199 – HOH272

4 LYS188, HIS183, ARG199, MET154 – HOH272

17 LYS188, ARG199, GLU157(H) – HOH272

a (H), Hydrogen bond
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Docking studies

During development of current 4D-QSAR model, NH3
?

probe was exploited while generating interaction energy

contributions. The interaction energy contribution between

NH3
? field point and CEP at each grid point of

18 9 18 9 18 grid box spaced at 1 Å grid was generated.

VAL150, LYS188, ARG199, HIS183, ILE151, MET154

Fig. 8 Interaction of active and less active compounds with important residues
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and LEU158 are important residues in the binding site of

HIV-1 IN. First three residues are important for hydrogen

bonding, and other residues are important for hydrophobic

interactions. Docking studies were carried out using Au-

toDock Vina on heteroatom stripped and optimized model

protein of HIV-1 IN catalytic domain (PDB, 3NF7). During

docking, the grid box of size 11 9 11 9 11 was used

spaced at 1 Å and with x, y, z center 9.918, -26.384,

-10.818, respectively. The VWD interaction constitutes

Coulombic contributions, and electrostatic, hydrophobic

interaction constitutes steric LJ potential contributions in

4D-QSAR descriptors. The interactions of docked con-

formers of few most active and least active compounds

from dataset with important residues are presented in

Table 3 and shown in Fig. 8.

Docking studies revealed that for HIV-1 IN inhibitory

activity electrostatic, hydrophobic interactions are neces-

sary between ligand and the important residues, LYS188,

HIS183 and ARG199. The most active compounds were

found to make important VWD interactions with VAL79,

VAL77, ARG199 and GLU157, whereas least active

compounds could not make such interactions. The water

molecule, HOH272, at binding site was found to make

interaction with most of the HIV-1 IN inhibitors. The 4D-

QSAR studies resulted in a model where the descriptors

17_17_9_NH3
?_Coulombic (C), 17_17_8_NH3

?_C, 18_15_

9_NH3
?_C, 18_16_18_NH3

?_LJ, 8_13_11_NH3
?_LJ,

18_15_10_NH3
?_C, 17_15_12_NH3

?_LJ, 18_17_8_

NH3
?_C, 18_17_6_NH3

?_C, 17_16_10_NH3
?_C were

found most contributing to the final model. Out of these,

seven descriptors are Coulombic contribution descriptors

and three are LJ steric interaction energy contributions.

These descriptors as field points on the structures of most

active compound 16 and least active compound 3 and the

VWD and electrostatic, hydrophobic surfaces around these

molecules are shown in Fig. 9.

Conclusion

4D-QSAR model was built using GROMACS-based MD

simulation on coumarin derivatives as HIV-1 IN inhibitors.

In the model, interaction energy descriptors were con-

structed on CEP of each compound. PLS regression was

Fig. 9 Interpretation of

interaction energy descriptors.

a Interaction energy descriptors

around most active compound

16; b Interaction energy

descriptors around least active

compound 3; c VW surface;

d Hydrophobic surface around

most active compound 16;
e VW surface; f hydrophobic
surface around least active

compound 3
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carried out on selected descriptor matrix of 357 descriptors.

The selected model with ten latent variables showed R2

calculated 0.903015, R2 cross-validated 0.599553 and R2

predicted 0.688525. The results of 4D-QSAR are in good

agreement with the docking studies, suggesting that the

VW interactions are important for higher activity of these

compounds. The 4D-QSAR model generated can be used

for development of HIV-1 IN 30-processing inhibitors. As a
part of future work, we are designing coumarin-based

molecules with substituents which will mainly contribute

to VW interactions.
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